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Abstract

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is dedicated to

the observation of astrophysical sources through detection of gravitational waves. In

order to reach the sensitivity requirements for Advanced LIGO, the isolation and

alignment system for the optics must reduce the RMS of seismic motion at all fre-

quencies. At the LIGO observatories, the seismic motion has peaks around 0.15 Hz in

all three translational degrees of freedom which dominate the differential RMS motion

of the ground. The isolation system needs to simultaneously reduce the seismic peak

magnitude by at least a factor of five in all three degrees of freedom. At frequencies

from 1 Hz to 10 Hz, the isolation system needs to achieve an isolation factor of 1000

to 2000.

Tilt-horizontal coupling is the most challenging problem for low-frequency seismic

isolation systems. Tilt-horizontal coupling comes from the principle of equivalence:

horizontal inertial sensors cannot distinguish between horizontal acceleration and tilt

motion. The magnitude of tilt-horizontal coupling rises very rapidly at low frequen-

cies, and this makes low frequency isolation difficult. A variety of techniques, in-

cluding sensor correction and sensor blending, are used to address the tilt-horizontal

coupling problem. Optimal FIR complementary filters were designed to separate

efficiently tilt motion from horizontal acceleration. A nonlinear analysis technique

was developed to study the nonlinear tilt-horizontal coupling effect. With these tech-

niques, our prototype vibration isolation systems obtained isolation performance that

is very close to the requirement of Advanced LIGO.
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Chapter 1

Introduction

1.1 Gravitational Waves

The existence of gravitational waves was first predicted by Einstein in 1916 [16] to

provide a causal explanation to the gravitational force exerted by an accelerating

mass. By expressing gravitational force with a wave equation, it ceases to act in-

stantaneously, as suggested earlier by Newton, and instead travels at the speed of

light.

At this time, gravitational waves have yet to be directly observed, but there has

been indirect observations made by Hulse & Taylor [26], Taylor & Weisberg [52]

and others. Through careful study of the orbital decay in a neutron star binary

system, Taylor & Weisberg found the decay rate to be in excellent agreement with

the predicted energy lost to gravitational radiation.

Gravitational waves are differential planar strain waves, meaning that an object

subjected to a gravitational wave is alternatingly stretched in one axis while com-

pressed in the orthogonal axis (figure 1.1). The gravitational waves have both a plus,

h+, and cross, h×, polarization.

The strain ,h, produced by an gravitational wave is tiny: h ∼ rs1rs2/(roR) where

rs1 and rs2 are the Schwarzschild radii of the masses involved (rs = GM/c2). The

remaining variables are G, the gravitational constant; R, the distance to the source;

ro, the distance between the stars; M , the mass of each star and c, the speed of light.

1
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Time = 0 T = 1 PeriodT = 
3P

4
T = 

2P

4
T = 

 P

4

h+

hx

Figure 1.1: The effect of a gravitational wave passing perpendicularly through an
object. Note the plus h+ and cross h× polarizations. Courtesy of Brian Lantz.

.

The ratio of G2/c4 is so small that the only measurable sources of gravitational waves

are produced by masses on the order of a solar mass or greater.

Despite the need for large masses, there are a variety of sources that may be

powerful enough to be detected. A commonly discussed source is the coalescence of

two compact objects such as neutron stars or black holes. For an estimate of the

strain that these sources would produce on Earth, consider a pair of 1.4 solar mass

(3×1030 kg) neutron stars located in one of the closest galaxies (in the Virgo Cluster,

for example) at a distance R of approximately 15 megaparsec or 4.5 × 1023 meters.

Moments before impact these stars may orbit each other at frequencies approaching

400 Hz. The resulting strain on Earth will be approximately 10−21 [43].

1.2 Laser Interferometric Gravitational Wave De-

tection

In spite of the extraordinarily small strain on earth, several methods have been pro-

posed to detect gravitational radiation for astrophysical observation. These include

bar detectors which consist of a large suspended mass whose longitudinal flexible

mode is at a frequency of about 1 kHz for which there are anticipated gravitational

radiation sources.

However, in more recent times, most research effort has been directed toward laser

interferometric detectors. Laser interferometry is attractive for gravitational wave

detection because of its inherently high displacement sensitivity and the capability
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to project light over large distances. The high displacement sensitivity is necessary

because of the small displacement produced by gravitational waves on Earth, and

since the detection of gravitational waves is based on measuring a strain, the signal is

amplified by a large baseline. The Michelson configuration is typical for all detectors,

and the fundamental aspects of the interferometer arrangement differ little from the

1887 original. The important distinction for gravitational wave detection is that the

mirrors are not connected to a rigid structure. Instead, each mirror is freely suspended

to respond to gravitational wave effects. In the event of a gravitational wave, the

space between the freely suspended mirrors, or test masses, is stretched much like

the smiling face in figure 1.1. The interferometer is sensitive to this distortion and

outputs the resulting displacement signal.

Rainer Weiss first proposed a practical interferometric detection scheme in the

1970’s [56]. Subsequent to this, several countries have constructed long baseline

detectors. A interferometric detector was built by a British-German group known

as GEO [45] in Hanover, Germany. The Japanese built a detector with impressive

sensitivity for its size called TAMA [53]. There is an Italian/French effort known

as Virgo [55]. The Australian group, ACIGA [9], is building a detector in Western

Australia .

1.3 LIGO

Laser Interferometer Gravitational-wave Observatory (LIGO) detectors [4], built in

the United States, are both larger and more sensitive than any other existing interfero-

metric detectors. There are two LIGO observatories: the LIGO Hanford Observatory

(LHO) in Hanford, Washington and the LIGO Livingston Observatory (LLO) in Liv-

ingston, Louisiana. Both of these observatories are now operational. The current

configuration of each observatory is commonly known as Initial LIGO with the ex-

pectation of an Advanced LIGO [18] configuration by approximately 2010. The LIGO

observatories consist of two 4 km long beam tubes arranged orthogonally to one an-

other (figure 1.2). Each beam tube contains one arm of a Michleson interferometer

with a Fabry-Perot resonant cavity. The end mirrors of the Fabry-Perot cavity are
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contained in Beam Splitter Chambers (BSC) at either end of each 4 km long beam

tube. The BSC at the Corner Station houses the beam splitter and the surrounding

Horizontal Access Modules (HAM) contain a variety of support optics for the main

interferometer.

Beam

Tube

HAM

BSC

4 km

4 km

HAM

BSC

BSC

HAM

Figure 1.2: The vacuum envelope of the Laser Interferometer Gravitational-wave
Observatory (LIGO). The beam tubes are 4 kilometers long and contain the two axes
of the LIGO interferometer. The test masses are suspended within the Beam Splitter
Chambers (BSC) while the Horizontal Access Module (HAM) chambers contain a
variety of support optics. Courtesy of Oddvar Spjeld.

Initial LIGO is intended to sense gravitational waves at frequencies between 40

and 7000 Hz from sources within 15-20 megaparsecs (1 megaparsec ≈ 3.0×1022 meters

≈ 3.0 × 106 lightyears ) from the earth. The goal of Advanced LIGO is to increase

the sensitivity of the instrument to distances approaching 200 megaparsecs over a
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frequency range of 10 to 10,000 Hz. This translates into a factor of 10 reduction in

the strain-equivalent noise floor which requires nearly every aspect of the detector

to be improved or replaced with the notable exception of the vacuum envelope. The

expected sensitivity of Advanced LIGO is shown in figure 1.3.
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Figure 1.3: Various detector noise sources to the Advanced LIGO strain sensitivity
level. Current estimates of the contributions of various detector noise sources to the
Advanced LIGO strain (h) sensitivity level. [19]

1.3.1 Vibration Isolation and Alignment of Ligo

For terrestrially rooted gravitational wave detectors, vibration isolation systems are

necessary for reducing the coupling from the ground seismic vibration to the motion

of the suspended masses.

Ground motion induced vibrations can disrupt the operation of the interferom-

eter and add noise at the low end of the gravitational wave detection band. The

sources and magnitude of seismic disturbances vary with frequency (figure 1.6) [1].

Overall, the root-mean-square (RMS) of the ambient ground motion at each site is

approximately 1 µm. Much of the spectral contribution to this RMS motion comes

from the so-called microseismic peak in the 0.1-0.3 Hz band. The microseismic peak
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results from coastal ocean water waves exciting surface waves along the Earth’s crust.

Another notable disturbance source is human activity which contributes largely be-

tween 1 and 10 Hz. This is particularly apparent at the LIGO Livingston Observatory

(LLO), where commercial logging in the surrounding forest causes a factor of 10 in-

crease in motion during the daytime. At very low frequencies, the surface of the Earth

undergoes a tidal motion on the order of 200 µm peak to peak caused by attraction

to the sun and the moon. Seasonal temperature variations may also introduce larger

annual length variations [19].

In the presence of these disturbances, suspensions for LIGO must provide both

alignment and isolation. Alignment control is important in all degrees-of-freedom

(DOF). We have to aim the interferometer beam at the center of the test mass and

to control the length between the two ends of each optical cavity. Vibration isolation

has to be done both inside and below the detection band of LIGO. In the detection

band, isolation is necessary to reduce test mass motion to enable gravitational wave

detection. At frequencies below the detection band, vibration isolation is to reduce

the RMS motion of the mirrors such that the interferometers can operate in their

designed dynamic ranges.

The required vibration isolation performance in terms of isolation factor and the

amplitude spectrum density (ASD) of the motion of the suspended mirrors for Ad-

vanced LIGO is:

0.16 Hz 1 Hz 10 Hz
isolation factor 10 1000 1010

ASD (m/
√

Hz) 2× 10−7 10−11 10−19

Table 1.1: Vibration isolation performance required by Advanced LIGO

1.4 Passive and Active Vibration Isolation

The simplest passive horizontal vibration isolation system is a suspended pendulum

as shown in figure 1.4 (a). Its transfer function from ground motion G(s) to the
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(a) Passive isolation. (b) Active isolation.

Figure 1.4: Passive and active vibration isolation systems.

motion of the suspended mass, x(s) is:

Tp(s) =
x(s)

G(s)
=

ω2
0 + 2λω0s

s2 + 2λω0s + ω2
0

, (1.1)

where λ denotes the damping ratio and ω0 denotes the natural frequency of the

pendulum.

ω0 =

√
g

l
, (1.2)

where g is gravity acceleration on the surface of the earth and l is the length of the

simple pendulum. At frequencies above ω0, the passive isolation system provides iso-

lation factor approximately proportional to frequency squared. For passive isolation

systems, equation 1.2 determines the characteristic size of the system. For example,

for a passive isolation system that provides isolation at frequencies above 0.1 Hz, the

length of the pendulum is at least 25 meters long. One problem associated with a

long pendulum is its thermal stability. When the temperature changes, the length of

the pendulum changes proportionally to its length, which makes alignment difficult

for long pendulums. There are clever ways that one can fold a long pendulum in a

compact space, but its thermal stability remains a problem. Another problem associ-

ated with a low frequency passive isolation system is stiffness. The stiffness k is given

by

k = mω2
0. (1.3)
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Since the stiffness is proportional to ω2, the low frequency passive isolation system is

typically very soft, which makes the alignment between different systems very difficult.

In low frequency vertical isolation systems, low stiffness springs have to be used to

support the isolated payload with typical weight of several hundred kilograms, which

implies the stress level of the springs tends to be high. As a consequence, the creep

of the spring could contribute to the vibration noise. Another problem of the high

stress springs is that they they might exhibit high nonlinear stiffness [15].
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Figure 1.5: Isolation performance of passive and active vibration isolation systems

shown in figure 1.4.

We can achieve better isolation performance on the same suspended pendulum by

means of active control as shown in figure 1.4 (b). The inertial sensor measures the

position of the mass, x, in inertial space. The actuator applies a force between the

ground and the mass according to the commands from the controller. The transfer

function from the ground motion to the mass motion in the active isolation system is

Ta(s) =
Tp(s)

1 + KL(s)
, (1.4)
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KL(s) denotes the open loop gain of the feedback control system. In the controlled

band, i.e. frequencies at which |KL(s)| À 1, the active isolation system provides an

isolation factor which is approximately |KL(s)| time larger than that of the passive

system. Figure 1.5 compares isolation performance of the active isolation system

and the passive isolation system. The active system can give low frequency isolation

without lowering the natural frequencies of the system, and thus keep the system

stiff. For this reason, sometimes the passive isolation system is called the soft system

and the active isolation system is called the stiff system. One problem for the active

isolation system is that it depends on the sensitivity of the inertial sensor. One has

to find an inertial sensor whose noise level is lower than the motion of the passively

isolated mass to further reduce its motion by active feedback.

1.5 Vibration Isolation for Advanced LIGO

The proposed vibration isolation system consists of seven stages as shown in figure 1.7

[1] [2] [42]. From ground, the Hydraulically actuated External Pre-Isolator (HEPI)

system [23] is built to attenuate large amplitude disturbances so that systems within

the vacuum tank only need to operate about their centered position. Attached to

HEPI, a six stage vibration isolation system, including a two stage electromagnetic

active vibration isolation system followed by a four stage passive isolation system

(also called the quad pendulum) [40], will be built in the vacuum tank. The last

four stages of the isolation system are designed to be passive because of the lack of

sensors that are sensitive enough to do active isolation. The passive system provides

vibration isolation above 1 Hz. Particularly, it needs to provide an isolation factor of

2× 106 above 10 Hz.

The work discussed in this thesis is about how to build the two stage electromag-

netic active system. Its isolation performance required by Advanced LIGO is shown

in table 1.2 and in figure 1.6.
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0.16 Hz 1 Hz 10 Hz
isolation factor 10 1000 2× 103

ASD (m/
√

Hz) 2× 10−7 10−11 2× 10−13

Table 1.2: Vibration isolation performance of the active isolation system required by
Advanced LIGO
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Figure 1.6: Models of the ground motion measured at LLO and LHO and the re-

quirement on displacement noise for the second stage of the two stage active isolation

system. [1]

.

1.6 Prior Art

Many vibration isolation systems were designed in the past. They are used in many

different areas, including space-based vibration control [49] [21], vibration isolation

for the scanning tunnelling microscope [36], the scanning probe microscope [35] and

atom interferometric measurements [24].

Gravitational wave detectors require their isolation systems to have much higher
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(a) Schematic.

Advanced LIGO BSC

Two stage active

isolation platform

Quadruple

pendulum

Support

table

x
y

z

Hydraulic

system

(b) Actual system.

Figure 1.7: The vibration isolation system proposed for Advanced LIGO.
.
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performance than most of the previous applications. Many research groups have de-

veloped/proposed passive systems to obtain vibration isolation at frequencies starting

from 0.1 Hz. David Blair and his group in Australia developed a series of low frequency

passive isolation systems using various forms of equivalent long period pendulums,

including the Euler buckling spring [58], Roberts linkage [20], and folded pendulum

[29]. An X shaped pendulum was developed by Mark A. Barton and his colleagues

in Japan [5] [6].

Practical vibration isolation systems have been built for each of the existing grav-

itational wave detectors. The group in Australia has developed a multistage passive

vibration isolation system for ACIGA [28]. Groups in Italy and Japan have developed

similar multistage passive vibration isolation systems using inverted pendulums for

VIRGO [30] [3] and TAMA [31][50][51]. Recently, Z. Zhou and his colleagues in China

have also built a multistage passive system [60]. The vibration isolation systems of

the Initial LIGO and the GEO600 is different from the systems above, and do not

provide significant vibration isolation below 1 Hz. Initial LIGO uses a multistage

passive isolation stack followed by a single pendulum [22]. GEO600 uses a triple

pendulum [38].

For Advanced LIGO, active isolation systems are proposed to overcome the prob-

lems of passive systems as discussed in the previous section. In fact, active isolation

for gravitational wave detection has been proposed and studied for more than 20

years [41] [44]. Particularly, the group in JILA [34] [39] developed an active isolation

system that can provide vibration isolation factor of 100 above 1.5 Hz, but it does

not provide much isolation at the ground microseismic peak at 0.16 Hz.

1.7 List of Contributions

The rest of the thesis is structured with a set of individual concepts and tools that are

used in low frequency vibration isolation system, described in chapter 2 to 6, followed

by the experimental results obtained using all these tools together, given in chapter

7. My research contributions includes:

• The study of tilt horizontal coupling problem within the complementary filter
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framework using convex optimization (chapter 2 and 4).

• The development polyphase FIR filter algorithm for reducing the number of

calculations required for FIR filter implementation (chapter 3).

• The development of a set of linear MIMO transfer function and noise measure-

ment tools. I have measured noise levels of seismometers when the background

vibration amplitude spectrum density (ASD) is 5× 104 times higher than that

of the noise (chapter 5).

• The development of MIMO nonlinearity analysis algorithm and its use to study

the relationship of nonlinear tilt horizontal coupling and the surface profile of

the target plate of the capacity sensors (chapter 6).

• Experimental demonstration of vibration isolation performance (chapter 7):

0.16 Hz 1 Hz 10 Hz
isolation factor 10 100 1000

ASD (m/
√

Hz) 10−7 10−10 10−12

Horizontal

0.16 Hz 1 Hz 10 Hz
isolation factor 10 50 150

ASD (m/
√

Hz) 10−7 2× 10−10 2× 10−11

Vertical

Table 1.3: Performance of vibration isolation systems.
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Chapter 2

Complementary Filters

2.1 Introduction

In our experiments, we find need to combine information from different sensors to-

gether. The complementary filters provide a framework for discussing the combina-

tion.

A pair of filters, (H(s), L(s)), are called complementary filters if their transfer

functions sum to one at all frequencies in a complex sense, i.e. the phase is zero and

the magnitude is one.

H(s) + L(s) = 1. (2.1)

The blending frequency, ωb, of H(s) and L(s) is defined as the frequency where the

two filters’ transfer functions have the same magnitude:

|H(jωb)| = |L(jωb)|. (2.2)

Often, it is desirable to have one of the complementary filters be a high-pass filter

and the other be a low-pass filter. For example, the transfer functions of a pair of

complementary filters with blending frequency of 1 Hz are shown in figure 2.1. In

general, a pair of desired complementary filters should have the following properties.

1. Each filter’s transfer function should be close to zero in its stop band;

15
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2. Each filter’s transfer function should be close to one in its pass band;

3. The magnitude of the two filters’ transfer functions should be limited in the

transition bands.
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Figure 2.1: A pair of sample complementary filters with blending frequency at 1 Hz.

It is worth mentioning that a similar kind of filter pair, also-called “magnitude

complementary filter pair”, is widely used in communication systems [54]. The dif-

ference between those filters and the filters discussed in this thesis is that the sum

of the transfer functions of a magnitude complementary filter pair does not have to

have zero phase. In many communication systems, a little bit of time delay will not

damage the system’s performance much, so some phase lag is allowed in the filters.

However, the phase lag could be disastrous for dynamic control systems. Therefore,

only strict complementary filters are studied in this thesis.
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2.2 Sensor Blending

In dynamic control systems, different sensors are often used to measure the same

physical variable in different frequency bands. For example, in a navigation system,

a GPS sensor which has good low frequency performance can be used together with

a high frequency velocity or acceleration sensor, which can have unbounded position

error at low frequencies, to measure the position of vehicle. In that case, comple-

mentary filters can be used to combine the signals from those two sensors: filter the

signal from the GPS sensor by the low-pass filter and filter the signal from the in-

ertial sensor by the high-pass filter, and then sum the two filter outputs together to

generate a “super sensor” signal. Ideally, the super sensor will have superior noise

characteristics than either of the sensors alone over all frequencies. This technique is

called sensor blending.

In our active vibration isolation system, multiple sensors are used to measure the

isolation platform’s motion in different frequency bands in each degree of freedom.

For example, on the first stage of the rapid double stage active isolation prototype,

position sensors are used to measure the platform’s motion from zero frequency to

about 0.5 Hz. Streckeisen STS-2 seismometers are used at frequencies between 0.5

Hz and 10 Hz, and Sercel L-4C geophones are used at frequencies above 10 Hz.

Complementary filters are used to combine the signals from these sensors together.

2.2.1 Effective Noise

Figure 2.2 shows a block diagram of a pair of complementary filters used in a feedback

control system. A high frequency sensor and a low frequency sensor are used together

to measure the plant variable x. For simplicity, the transfer functions of the sensors,

VH and VL, are assumed to be 1 in this section. Desirably, the high frequency sensor’s

noise, NH is low at the high-pass filter’s pass band:

|NH(jω)H(jω)| < nc(jω), (2.3)
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where nc is a certain desired design noise level as a real function of frequency. Simi-

larly, it is desirable to have

|NL(jω)L(jω)| < nc(jω). (2.4)

The transfer function of the super sensor signal is

Ys(s) = X(s)[H(s)VH(s) + L(s)VL(s)] + NH(s)H(s) + NL(s)L(s) (2.5)

Since VH and VL are assumed to be 1, the super sensor response function Ts(s) is

Ts(s) = H(s) + L(s). (2.6)

Given equation 2.1, Ts(s) = 1. The noise of the super sensor signal, Ns is defined as:

Ns(s) = NH(s)H(s) + NL(s)L(s). (2.7)

If equation 2.3 and 2.4 are satisfied,

|Ns(jω)| ≤ |NH(jω)H(jω)|+ |NL(jω)L(jω)| < 2nc(jω). (2.8)

If input command e is zero, the transfer function of the close-loop platform signal

X is:

X(s) =
K(s)G(s)H(s)

1 + P (s)
NH(s) +

K(s)G(s)L(s)

1 + P (s)
NL(s) +

1

1 + P (s)
Np(s), (2.9)

where Np(s) is the platform noise, and P (s) is the open-loop loop-gain:

P (s) = K(s)G(s)[H(s) + L(s)]. (2.10)

In the controlled band, assume |P (s)| À 1.

X(s) ≈ H(s)

H(s) + L(s)
NH(s) +

L(s)

H(s) + L(s)
NL(s). (2.11)
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Figure 2.2: A pair of complementary filters used as sensor blending filters in a feedback
control system. The overall controller consists of H(s), L(s), and K(s), and it is
conceptually divided into blending filters and control filters just to make the design
easier.

If equation 2.1 is satisfied,

X(s) ≈ NH(s)H(s) + NL(s)L(s) = Ns(s), (2.12)

which implies that in the controlled band the platform’s noise is dominated by the

super sensor noise.

2.2.2 Non-Complementary Filters and Stable Normalization

A general pair of stable filters, (H̄(s), L̄(s)), are called stably normalizable, if a pair

of stable complementary filters can be constructed as:

H(s) =
H̄(s)

H̄(s) + L̄(s)
, L(s) =

L̄(s)

H̄(s) + L̄(s)
. (2.13)
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For notation simplicity, denote the sum of the two original filters as

T (s) = H̄(s) + L̄(s). (2.14)

It is obvious that the stability of the constructed complementary filters is determined

by the stability of,
1

T (s)
=

1

H̄(s) + L̄(s)
. (2.15)

The necessary and sufficient condition for equation 2.15 to be stable is: in the Nyquist

plot, Ts(s) does not encircle (0, 0) more than once.

If a general stable filter pair (H̄(s), L̄(s)), are stably normalizable, the overall

controller, including blending filter pair (H̄(s)L̄(s)), and control filter K(s), in figure

2.3(a), can be converted to the overall controller shown in figure 2.3(b), where com-

plementary filters are used as blending filters. Because T (s) = H̄(s) + L̄(s) has no

zeros or poles that are in the right half plane, there is no unstable pole-zero cancella-

tion introduced in the conversion. If only stably normalizable filters are going to be

used in the control system, the conversion shown in figure 2.3 enables the separation

of the overall controller design into two parts:

1. design the complementary blending filters to minimize the noise of the super

sensor based on the noise levels of the two original sensors;

2. given the super sensor transfer function is always one, design the control filter

to handle the stability issues.

2.2.3 System Stability and Sensor Blending Filter Stable Nor-

malization

One might suggest using non-complementary filters for sensor blending and hope to

find filters with better performance within the enlarged design space. However, we

argue that for stable control systems, the benefit of this approach is limited. From

equation 2.10, the sum of the two blending filters contribute directly to open-loop loop

gain P (s). For a stable system, the Nyquist plot of P (s) should not encircle (−1, 0)
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⇐⇒

(a) (b)

Figure 2.3: Stable normalization of non-complementary filters. If a pair of filters
(H̄(s), L̄(s)) is stably normalizable, overall controller (a) can be converted to overall
controller (b) without introducing nonstable pole-zero cancellation.

more than once. In practical designs, most of the dynamic structures of H̄(s) + L̄(s)

lies in the frequency band around ωb. If H̄(s)+L̄(s) encircles (0, 0), it is very likely that

it happens in the blending frequency band. To have the benefit of sensor blending,

the blending frequency of H̄(s) should be in the controlled band where |P (s)| À 1.

So, if the H̄(s) + L̄(s) encircles (0, 0), it is very likely that P (s) encircles (−1, 0),

which will cause the whole system to be unstable. Hence, in practical stable systems,

the blending filter pair (H̄(s), L̄(s)) are very likely to be stably normalizable.

2.2.4 Robust Sensor Blending for Sensors with Transfer Func-

tion Errors

In section 2.2, the transfer functions of the two sensors are assumed to be exactly

one. If a sensor’s transfer function is V (s) 6= 1, an inversion filter V −1(s) can be

used to normalize the sensor’s transfer function. There are two possible problems

with this inversion process. First, there could be an error in the calibration of the

sensor’s transfer function. Second, the sensor’s transfer function may not be stably

invertible. Let V̂ (s) denote the invertible nominal transfer function of the sensor after

calibration. The leftover error, Vδ(s), is defined as.

Vδ(s) = 1− V (s)V̂ −1(s). (2.16)

In a sensor blending control system, the error in the transfer function of the sensors

could cause stability problems. For example, if the high pass sensor’s transfer function



22 CHAPTER 2. COMPLEMENTARY FILTERS

is 0.35 rather than 1, the sensor blending control system will not be stable as shown

in Figure 2.4. The sum of the high frequency branch , H(s)VH(s), and the low

frequency branch, L(s)VL(s), has a phase lag of 360 degrees around the blending

frequency, which will cause the overall controller to be unstable.

Let VHδ and VLδ denote the leftover transfer function errors of the high frequency

sensor and the low frequency sensor respectively. The overall transfer function of the

super sensor is:

W (s) = (1+VLδ(s))L(s)+(1+VHδ(s))H(s) = 1+(VLδ(s)L(s)+VHδ(s)H(s)) (2.17)

The overall error in the super sensor’s transfer function, Wδ(s) = (VLδL(s)+VHδH(s)),

could cause the whole control system to be unstable. Wδ(s) introduces both mag-

nitude and phase errors to the super sensor’s transfer function. Practically, because

|Wδ(s)| has maximum around the blending frequency, where the loop gain of the

whole system is much larger than one, the phase error is more likely to cause the

controller to be unstable. Both the phase error and the magnitude error of W (s) can

be bounded by bounding |Wδ(s)|. When |Wδ(s)| ≤ 1, the phase error,

|Pδ(s)| ≤ arcsin(|Wδ(s)|) (2.18)

|Wδ(s)| can be bounded by bounding the leftover errors and the magnitudes of

the sensor blending filters:

|Wδ(s)| = |VLδ(s)L(s) + VHδ(s)H(s)| (2.19)

≤ |VLδ(s)||L(s)|+ |VHδ(s)||H(s)| (2.20)

For example, if there is 5% error in the sensors’ transfer functions, i.e. |VLδ(s)| ≤
0.05 and |VHδ(s)| ≤ 0.05, and the magnitudes of the blending filter are bounded by

H(s) ≤ 5 and L(s) ≤ 5, we have |Wδ(s)| ≤ 0.5, which guarantees that the phase error

is less than 30 degrees. Bounding the magnitudes of the blending filters makes the

sensing blending control system robustly stable even if there are some small errors in

the sensor nominal transfer function.
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Figure 2.4: Unstable sensor blending. The sum of the high frequency branch and
the low frequency branch has a phase lag of 360 degrees, which will cause the control
system to be unstable.
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Figure 2.5: Sensor correction.

2.3 Sensor Correction

A similar technique for combining sensors is called sensor correction. For example, in

an active vibration isolation system, a relative position sensor can be used to measure

the platform’s position with respect to the ground. From a different point of view,

one can say that the relative position sensor is sensitive to both the platform motion

and the ground motion. If an inertial sensor is set up on the ground to measure

the ground motion, its signal can be used to cancel out the ground sensitivity of

the position sensor. To do so, one has to use a sensor correction filter to match the

gains of the inertial sensor and the position sensor in a complex sense, i.e. both

magnitude and phase. The sensor correction filter also has to take care of noise. For

example, in general, the inertial sensors are noisy at low frequencies. Hence, it is

desirable to process the ground inertial signal with a high-pass sensor correction filter

which can filter out the low frequency noise. In that case, the high-pass filter in the

complementary filter pair can be used as the sensor correction filter.

As shown in figure 2.5, the corrected position sensor signal y(s) is:

y(s) = [x(s)−G(s) + np(s)]P (s) + [G(s) + na(s)]A(s)H(s). (2.21)
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For simplicity, assume the transfer function of the sensors are one, i.e. P (S) = 1,

A(s) = 1.

y(s) = x(s) + np(s) + G(s)[1−H(s)] + na(s)H(s). (2.22)

Note that L(s) = 1−H(s) is the complement of H(s),

y(s) = x(s) + np(s) + G(s)L(s) + na(s)H(s). (2.23)

Equation 2.23 show that the error of the corrected position sensor signal is a combi-

nation of the sensor noises and the ground motion. The design of our optimal sensor

correction filter is a tradeoff between gain match error, G(s)L(s), and noise error,

na(s)H(s). For example, if the filter gain is one, there is no gain match error. but all

the noise will go through the filter and generate a large noise transmission. On the

other hand, if the filter gain is zero, no noise can go through the filter but the gain

match error is huge. The sensor filter’s noise error is determined by the magnitude of

its transfer function, while the filter’s gain match error is determined by the magni-

tude of the complement’s transfer function. Hence, the sensor correction filter design

problem is also a complementary filter design problem, even though only one filter is

actually implemented.

2.4 Complementary Filter Design Problem

Both sensor correction filters and sensor blending filters can be design by solving the

following problem: find a pair of complementary filters that satisfy:

L(ω) + H(ω) = 1; (2.24)

|L(ω)| ≤ ΨL(ω); (2.25)

|H(ω)| ≤ ΨH(ω); (2.26)

Here, ω denotes frequency. Complex functions L(ω) and H(ω) are used to denote the

transfer functions of the low-pass filter and high-pass filter respectively. ΨL(ω) and

ΨH(ω) are known real functions of frequency. In general, the desired complementary
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filters are designed by choosing appropriate values of ΨL(ω) and ΨH(ω) and then

solving the problem given by equations 2.24 through 2.26.

2.4.1 FIR Complementary Filter

For a finite impulse response (FIR) filter, the transfer function, Q(ω), is the Fourier

transform of its filter coefficients in the time domain, q(n):

Q(ω) = F(g(n)) =
∑

n

q(n) cos(nω) + iq(n) sin(nω) (2.27)

The problem given by equations 2.24 through 2.26 becomes finding filter coeffi-

cients l(n) and h(n):

∑
n

l(n) cos(nω) +
∑

n

h(n) cos(nω) = 1; (2.28)

∑
n

l(n) sin(nω) +
∑

n

h(n) sin(nω) = 0; (2.29)

[(
∑

n

l(n) cos(nω))2 + (
∑

n

l(n) sin(nω))2]
1
2 ≤ ΨL(ω); (2.30)

[(
∑

n

h(n) cos(nω))2 + (
∑

n

h(n) sin(nω))2]
1
2 ≤ ΨH(ω); (2.31)

All variables in equation 2.28 through 2.31 are real numbers. Equations 2.28 and

2.29 are linear functions of variables h(n) and l(n). The left sides of 2.30 and 2.31

are quadrature functions of h(n) and l(n). Hence the problem defined by equations

2.28 through 2.31 is a convex optimization problem (specifically, a convex feasibility

problem)[11], which can be solved very efficiently [11].

Note that the convex feasibility problem defined by equations 2.28 through 2.31

is defined in continuous frequency. To solve the problem practically, the frequency

needs to be sampled. A set of frequency points ω1, ω2,...,ωi,...ωM need to be selected in

the frequency band of interest. For each frequency point, ωi, equations 2.28 through

2.31 have to be satisfied. Hence, the convex optimization problem has 2M equality

constraints and 2M inequality constraints. The method of selecting frequency samples

is discussed in the following sections.
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ΨH(ω) and ΨL(ω) are the design parameters. In general, the design procedure is:

1. Select desired ΨH(ω) and ΨL(ω) based on practical needs, for example noise

levels of different sensors, gain error of different sensors, etc.

2. Solve the convex feasibility problem defined by equation 2.28 through 2.31.

3. If a solution is found, stop. Otherwise, relax constraints defined by ΨH(ω) and

ΨL(ω) and repeat step 2.

Because the globally optimized solutions can always be found for the above convex

optimization problem, the search for the feasible solution is complete. If there exists

an FIR filter pair h(n) and l(n) that satisfies the constraints defined by design param-

eter ΨH(ω) and ΨL(ω), the convex optimization solver id guarantees to generate the

solution of the problem, i.e. the filter coefficients. Otherwise, if there is no feasible

solution, the convex optimization solver generates a numerical proof that there is no

solution that meets the requirement.

A general linear time invariant complementary filter pair that satisfies equation

2.24 through 2.26 is called a absolute optimal filter pair. The absolute optimal filters

could be FIR or IIR filters. If the impulse response time and the sampling frequency

of the FIR filter are allowed to approach infinity, the solution of the problem defined

by equations 2.24 through 2.26 approaches the absolute optimal filter limit. Hence, if

there is enough calculation power to solve the convex problem defined by equations

2.28 through 2.31 for long enough FIR filters, the absolute optimal filters can be

approximated.

2.4.2 Simplification of the FIR Complementary Filter Design

Problem

To solve the FIR filter design problem of 2.28 through 2.31, it is simplified in the

following way.

Take the inverse Fourier transform of equation 2.24,

F−1(H(ω)) + F−1(L(ω)) = F−1(H(ω) + L(ω)) = F−1(1), (2.32)
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which gives

l(n) =

{
1− h(n) if n = 0;

−h(n) if n > 0.
(2.33)

Hence l(n) can be eliminated and the optimization problem becomes: find h(n),

such that

[(1−
∑

n

h(n) cos(nω))2 + (
∑

n

h(n) sin(nω))2]
1
2 ≤ ΨL(ω); (2.34)

[(
∑

n

h(n) cos(nω))2 + (
∑

n

h(n) sin(nω))2]
1
2 ≤ ΨH(ω); (2.35)

Because ΨH(ω) and ΨL(ω) can be any arbitrary functions of ω, the design space

is huge. The advantage is that there is a lot of flexibility in the FIR filter design. The

disadvantage is that it is difficult to search through all possible design parameters in

the design space. Hence, it is helpful to search automatically for the best filter in the

design space. One can construct the convex optimization problem for variables h,ΨH

and ΨL:

minimize: V (h, ΨH , ΨL) (2.36)

such that: (2.37)

[(1−
∑

n

h(n) cos(nω))2 + (
∑

n

h(n) sin(nω))2]
1
2 ≤ ΨL(ω); (2.38)

[(
∑

n

h(n) cos(nω))2 + (
∑

n

h(n) sin(nω))2]
1
2 ≤ ΨH(ω); (2.39)

where, V (h, ΨH , ΨL) (called value function), is a convex function of h,ΨH and ΨL.

For example, one can chose

V =
∑
ωi

[ΨL(ωi)NL(ωi)]
2 + [ΨL(ωi)NL(ωi)]

2. (2.40)

The convex optimization problem defined by this value function finds the optimal

filter that minimizes the total noise of the super sensor.



2.4. COMPLEMENTARY FILTER DESIGN PROBLEM 29

2.4.3 Example of FIR Complementary Filter Design Using

SeDuMi

Design Requirement

In our vibration isolation system, we need a high pass sensor correction filter that

has the following properties:

1. Form 0 to 0.008 Hz, the magnitude of the filter’s transfer function should be

less than or equal to 8× 10−4. We chose to have a ”flat” magnitude at very low

frequencies to avoid numerical problems which will be discussed later in this

section.

2. From 0.008 Hz to 0.04 Hz, it attenuates the input signal proportional to fre-

quency cubed. Because the noise level of the horizontal inertial sensor increases

very rapidly (proportional to inverse frequency cubed) at low frequencies, we

need a powerful high pass filter to get rid of the sensor noise;

3. Between 0.04 Hz and 0.1 Hz, the magnitude of the transfer function should be

less than 3. Because the inertial sensor’s noise level is low in this frequency

band, the filter is allowed to magnify the sensor noise here;

4. Above 0.1 Hz, the maximum of the magnitude of the complement filter should

be as close to zero as possible. As mentioned above, the magnitude of the

complementary filter determines the amount of gain match error in the sensor

correction system. In our system, we would like to have the magnitude of

the complementary filter to be less than 0.1. However, to make this problem

an optimization problem, rather than a feasibility problem, we construct this

problem to automatically search for the best filter that satisfies constraints 1

through 3. If the optimal filter solution does not satisfy the design requirement,

i.e. complementary filter’s magnitude less than 0.1, it implies that that there

does not exist a FIR filter that satisfies all of our design requirements, and the

constraints of 1 through 3 need to be loosened. Through this approach, we can
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tradeoff between the gain match error and the sensor noise error as indicated

by equation 2.23.

Frequency Sampling

The sensor correction filter is designed to have a sampling frequency of 1.67 Hz

(sample time is 0.6 second). The length of the filter is 512. How to chose sampling

frequencies and filter length will be discussed in later sections. Let us just assume

that they are fixed numbers now.

The impulse response of the filter is about 300 second long, which implies the

frequency discrimination of this filter is about 0.003 Hz. Hence, in general, the gap

between the neighboring frequency samples should be less than 0.003 Hz such that the

sampled frequency response can represent the actual transfer function of the filter. On

the other hand, the number of frequency samples determines the number of constraints

in the convex optimization problem. If there are too many frequency samples, the

amount of calculations required to solve the problem becomes impractical.

The filter’s transfer function changes dramatically at low frequencies. For example,

at 0.008 Hz the upper limit of the magnitude of the transfer function is 8×10−4, but at

0.0016 Hz it becomes 6.4× 10−3. Hence, more samples are needed at low frequencies

than at high frequencies. For frequencies below 0.04 Hz, the frequency sample rate

is 4.06 × 10−4 Hz per sample. For frequencies above 0.04 Hz, the frequency sample

rate is 8.12 × 10−4 Hz. The fast changing transfer function at low frequencies can

also cause numerical problems for the convex optimization solver program. To avoid

those problems, the upper limit of the magnitude of the filters transfer function were

kept flat as indicated by the constraint 1.

Quadratic Cone Programming and SeDuMi

A quadratic cone is by defined as

Qcone := {(x1, x2) ∈ < × <(N−1)| x1 ≥ ‖x2‖} (2.41)
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where ‖ · ‖ denotes the Euclidean norm.

‖x‖ = (
∑

i

x2
i )

1/2. (2.42)

The quadratic cone is also known as the second order cone or Lorentz cone.

The quadratic cone programming optimization problem is:

minimize: cT x (2.43)

such that: Ax = b, x ∈ Qcone. (2.44)

Its dual problem is:

maximize: bT y (2.45)

such that: c− AT y ∈ Qcone. (2.46)

SeDuMi [48] solves quadratic cone programming and its dual problem at the same

time, i.e., given vector c, b and matrix A, it generates solution x and y at the same

time.

We format our FIR filter design problem to the dual problem. The magnitude

constraints can be easily converted into quadratic cone constraints in the format

as equation 2.46. For example, inequality constraint 2.31 at frequency ω can be

formatted as:

‖[νc(ω); νs(ω)]h‖ ≤ ΦH(ω) (2.47)

where

h = [h(0), h(1), ..., h(N − 1)]T (2.48)

νc = [1, cos(ω), ..., cos((N − 1)ω)] (2.49)

νs = [0, sin(ω), ..., sin((N − 1)ω)] (2.50)
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Construct

c = [ΦH(ω), 0, ..., 0]T (2.51)

AT = [0, ... ,0; νc(ω); νs(ω)] (2.52)

and we have

c− AT y ∈ Qcone. (2.53)

The other constraints can be formatted into Qcone format in similar ways. To convert

the convex feasibility problem to a convex optimization problem, introduce a new

variable, t, as the maximum gain match error above 0.1 Hz, i.e. the maximum

magnitude of ΦL. The FIR filter design problem is formatted as:

for variable vector y = [t, h(1), h(2) ,..., h(N − 1)]T (2.54)

maximize: − t = [ -1 0 0 ... 0]T y (2.55)

such that:

for constants ω = 0, 4.06× 10−4, ... , 0.008 Hz :

‖[0 νc(ω); 0 νs(ω)]y‖ ≤ 8× 10−4; (2.56)

for constants ω = 0.008, 0.008 + 4.06× 10−4, ... , 0.04 Hz :

‖[0 νc(ω); 0 νs(ω)]y‖ ≤ 8× ω3; (2.57)

for constants ω = 0.04, 0.04 + 8.12× 10−4, ... , 0.1 Hz :

‖[0 νc(ω); 0 νs(ω)]y‖ ≤ 3; (2.58)

for constants ω = 0.1, 0.1 + 8.12× 10−4, ... , 0.83 Hz :

‖[1 0]T − [0 νc(ω); 0 νs(ω)]y‖ ≤ t (2.59)

Note that when these formulas are applied, the unit of frequency, ω, needs to be

converted to radians:

ω (rad) =
ω (Hz)

sample frequency (Hz)
. (2.60)
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Results

Totally, there are 513 variables and about 1500 constraints in this convex optimization

problem. It takes about 10 minutes for a PC with 1 gigabyte of memory and one

Pentium 4 CPU to solve the problem.

Figure 2.7 shows the transfer functions of the FIR complementary filter pair.

The high pass filter satisfies all the magnitude constraints at low frequencies. Its

complement, the low pass filter, shows that the gain match error is about 0.05 above

0.1 Hz.

Figure 2.6 shows the time domain impulse response of the high pass filter. It looks

like the impulse response of a damped oscillator. The oscillation period is about 0.04

Hz to 0.1 Hz, where the transfer function of the filter in the frequency domain has a

large overshoot.

−50 0 50 100 150 200 250 300 350
−0.5

0

0.5

1

time (second)

highpass

−50 0 50 100 150 200 250 300 350
−0.5

0

0.5

1

time (second)

lowpass

Figure 2.6: Time domain impulse response of the FIR complementary filter pair

designed using SeDuMi convex optimization tool.

The Effect of Filter Length and Sampling Frequency of the FIR Filters

The impulse response time of an FIR filter is given by its sample time ts and its filter

length (number of filter coefficients) N .

T = Nts. (2.61)
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Figure 2.7: Transfer functions of a pair of FIR complementary filters designed using
SeDuMi convex optimization tool.
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The impulse response time determines its frequency resolution: δf .

δf =
1

T
. (2.62)

The filters with longer impulse response have better performance, but on the other

hand, they requires more calculation to design and to implement. The effect of filter

length and sample time on complementary FIR filter performance is studied in this

section.

A set of FIR complementary filters are designed with different filter length. All the

other design parameters for those filters were kept the same as the previous example.

The transfer functions of the complementary filters are shown in figure 2.8. Their

time domain impulse responses of the low pass filters of the complementery filter

pairs are shown in figure 2.9. In general, filters with more coefficients have better

performance, which is measured by the gain match error (magnitude of the low pass

filter above 0.1 Hz). Because the sample frequencies were kept the same (at 1.67 Hz),

for all these filters, filters with more coefficients have a longer impulse response time,

which implies better frequency resolution. As shown in figure 2.8, the filter with 1024

coefficients has much sharper transfer function than the filter with 64 coefficients

has. Because the filters with sharper transfer function can make a better use of the

frequency band of 0.04 Hz to 0.1 Hz, where overshoot is allowed, they tends to have

less gain match error above 0.1 Hz. However, as shown in figure 2.10, when filter

length is longer than a certain level, its significance becomes much less. For example,

the gain match error of filter with 1024 coefficients is only 5% better than that of the

filter with 512 coefficients. This implies that the optimal FIR filter is approaching the

absolute optimal filter and that the absolute optimal filter’s impulse response after

1024 second is close to zero. In the time domain, all the filters have a similar response

in the first several seconds. Another similarity is that all the filter’s time response is

close to zero at the end. One intuitive explanation of this phenomenon is that the

optimization solver tried to avoid a sudden turnoff of the filter’s impulse response,

because it will cause bad frequency domain behavior. The peak to peak value of the

impulse response of the 1024 coefficient filter in the last 200 seconds is less than 2%



36 CHAPTER 2. COMPLEMENTARY FILTERS

of the max peak to peak value, which is also an indication that the optimal FIR filter

is approaching the absolute optimal filter.

Another way to change the impulse response time is to change the sample time.

The effect of sample time is similar to that of the filter length. The set of transfer

functions of the complementary FIR filters are shown in figure 2.11. The time domain

impulse response of the low pass filters are shown in figure 2.12. These set of FIR

filters with different sample times have the same values of impulse response time as

the set of FIR filters with different filter length. Figure 2.13 compares the gain match

errors of these two set of filters. The effect of the sample time and filter length are

similar, but there are till some realizable difference. For example, the filter with 1024

coefficients and sample time of 0.6 seconds and the filter with 512 coefficients and

sample time of 1.2 seconds has the sample impulse response time, but the latter has

less gain match error. The reason for this difference can be explained by the frequency

domain transfer function. In figure 2.11, the transfer function of the filter with 1.2

second sample time has a peak around 0.83 Hz. Because the sampling frequency of

this filter is at 0.83 Hz, the peak comes from the reflection of the filter’s transfer

function below 0.41 Hz. On the other hand, the transfer function of the filter with

1024 coefficient in figure 2.8 does not have such a peak. Hence, the filter with longer

sample time achieves better performance in the range of 0.1 to 0.85 Hz, but the at

cost of worse performance at 0.86 Hz. The same theory can be used to explained

the other gain error difference between these two different sets of filters. Details of

tradeoff between gain match error and the frequency reflection peak will be discussed

in the next chapter.

Tradeoff Between Gain Match Error and Overshoot

The convex optimization FIR filter design method can also be used to study the

engineering tradeoff between different design parameters. Figure 2.14 shows transfer

functions of a set of complementary filters with different magnitude constraint on the

highpass filter between 0.04 Hz and 0.1 Hz (also called overshoot). Figure 2.15 shows

the relationship between overshoot and gain match error. One can realize that when

overshoot is more than 3, its contribution in minimizing the gain match error is not
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Figure 2.8: Optimal FIR complementary filters for different filter lengths. The details
of the transfer function between 0.03 Hz and 0.12 Hz are shown in the lower plots.
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Figure 2.10: Gain match errors (magnitudes of the lowpass filters above 0.1 Hz) as
a function of filter length. It seems that after the filter length is longer than some
threshold, increasing the filter length does not reduce the gain match error any more.

very significant. For this reason, an overshoot of 3 was chosen for the previous filter.

Changing the Shape of the Gain Match Error

In previous sections the magnitude of the low pass filter above 0.1 Hz is almost

constant because the constraint of equation 2.59 is constant with respect to frequency.

Filters with different gain error shape can be designed by introducing a shape function

to the constrain:

‖[1 0]T − [0 νc(ω); 0 νs(ω)]y‖ ≤ W (ω)t (2.63)

For example let W (ω) = ω−1, we can design a filter whose gain match error decreases

as the inverse of the frequency. The transfer function of the designed complementary

filter pair is shown in figure 2.16
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Figure 2.11: Optimal FIR complementary filters for different filter lengths. The
details of the transfer function between 0.03 Hz and 0.12 Hz are shown in the lower
plots.
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Figure 2.15: Gain match errors (magnitudes of the lowpass filters above 0.1 Hz) as a
function of sample time.

2.5 IIR Complementary Filters

For an infinite impulse response (IIR) filter, the transfer function, K(ω), can also be

easily obtained from its time domain numerator coefficients kN(n) and denominator

coefficients kD(n):

K(ω) =

∑
kN(n)e−inω

∑
kD(n)e−inω

. (2.64)

However, finding kN(n) and kD(n) that satisfy equations 2.24 through 2.26 is not a

convex problem, and hence very difficult to solve.

For the most of the IIR complementary filters used in this thesis, they are designed

using the following procedure:

1. Design a pair of desired highpass and lowpass filter.

2. Check to make sure that the sum of these two filters is invertible.

3. Normalize the two filters such that they are complementary.

For example, the filter shown at the beginning of this chapter in figure 2.1 is
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Figure 2.16: Complementary filter with the gain match error (magnitude of the low
pass filter at high frequencies) decreases as the inverse of the frequency.
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designed by normalizing the highpass filter and the lowpass filter shown in figure

2.17. The transfer function of the sum does not have overall phase lag, so it is

invertible.

2.6 Summary

Because the IIR complementary filters can only be designed by trial and error, their

performance is not as good as the optimal FIR filters. Figure 2.18 shows the difference

of the optimal FIR filters and a typical IIR filter designed using the above procedure.

The FIR filter and the IIR filter have similar overshoot and gain match error (at 0.16

Hz), but the FIR filters have much better low frequency performance.

The difference between FIR and IIR complementary filters is summarized in table

2.1.

FIR IIR
design convex, easy non-convex, difficult

implementation complex simple
computation much little
performance great ok

Table 2.1: Comparing FIR and IIR complementary filters.
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Figure 2.17: Complementary IIR filters can be constructed by normalizing a pair of
IIR filters. The transfer function of the sum does not have overall phase lag, so it is
invertible.
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Figure 2.18: Compare the performance of FIR and IIR filter. The FIR filter and
the IIR filter have similar overshoot and gain match error (at 0.16 Hz), but the low
frequency performance is very different. The sharp noise reduction of the FIR filters
is essential for the low frequency isolation systems.
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Chapter 3

Polyphase FIR Filter

Implementation

3.1 Introduction

In chapter 2, it is shown that FIR complementary filters have superior performance

than the IIR filters. However, the amount of calculations required to implement the

FIR filters is too large to be practical if they are implemented in the traditional way

with today’s computer technology.

In a standard FIR filter with filter coefficients q, at each time step, the output, y,

is calculated from the input, x, by

y(n) =
N−1∑
m=0

q(m)x(n−m). (3.1)

So, at each time step, 2N(N multiplications and N additions) FLoating Point Op-

erations(FLOPs) need to be calculated. Hence, the number of FLOPs per second

(FLOPs/sec) for a FIR filter with sampling frequency fs is

N = 2Nfs. (3.2)

From chapter 2, it is known that to obtain a sharp transition between a stop-band

49
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and pass-band for FIR filters, the filter has to have high frequency resolution, which

is determined by the filters impulse response time T . Since

T =
N

fs

, (3.3)

we have

N = 2Tf 2
s . (3.4)

In our vibration isolation system prototype, the sampling frequency of the digital

control system is at 2500 Hz. If a FIR filter with 300 second impulse response time is

implemented directly, the required FLOPS is 3.75×109 operations per second, which

is too large for most processors today.

3.2 Down Sampling

To reduce the FLOPs/sec for FIR filters, the sampling frequency of the low pass FIR

filters can be reduced by down sampling as shown in figure 3.1. The down sampling

block with down sampling ratio of D just select one data sample from every D data

samples from the incoming data stream and send it to its output and throws the rest

of the data points away. The up sampling block does the opposite, it interpolates

zeros inbetween the input data points and then sends them to output. [54].

A low pass anti-aliasing filter is used before the down sampling to reduce the

amount of high frequency signals aliased to the low frequencies when the signal is

down sampled. Similarly another low pass interpolation filter is used to avoid the

low frequency signal from aliasing to the high frequencies. The introduction of the

anti-aliasing filter and the interpolation filter has two effects on the FIR filter. First,

they reduce the aliasing noise of the filter. Second, they contribute to the overall

transfer function of the whole filter. Figure 3.2 shows a low pass filter with cutoff

frequency of 0.5 Hz. In the following examples in this section, this filter is used as

both the anti-aliasing filter and the interpolation filter in a down sampling FIR filter

system with the original FIR filter shown in figure 2.7.
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Figure 3.1: To reduce the number of floating point calculation per second (FLOPS)

by reducing the sampling frequency of the FIR filter. An anti-aliasing filter is used

before down sampling to reduce the amount of high frequency signals aliased to the

low frequencies when the signal is down sampled. Similarly an interpolation filter is

used to avoid low frequency signal to alias to high frequencies.
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Figure 3.2: Low pass filters with cutoff frequency of 0.5 Hz, as an example of the

anti-aliasing filter or interpolation filter in figure 3.1.

Let D denote the down sampling ratio between the sampling frequency of the

outside digital system fs0 and the sampling frequency of the FIR filter fs. Suppose

the input signal (in the frequency domain) is x(f), the aliasing noise due to down

sampling of the signal before entering the FIR filter between zero frequency and fs/2
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is

xDn(f) =
D∑

d=1

x(dfs − f)A(dfs − f), (3.5)

where A(·) denotes the frequency response of the anti-aliasing filter. If the amplitude

spectral density (ASD) of the input signal is assumed to be 1 m/
√

Hz, and the low

pass filter shown in figure 3.2 is used as the anti-aliasing filter, the ASD of different

aliasing components are shown in figure 3.3. Because A(s) is a low pass filter, the

first term in the summation of equation 3.5 dominates the down sampling noise. To

reduce the down sampling noise, we need to increase the sampling frequency of the

FIR filter or to decrease the cutoff frequency of the anti-aliasing filter.
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Figure 3.3: Signal aliasing due to down sampling. The signal coming out of the

anti-aliasing filter is shown as the original signal. The sampling frequency of the FIR

filter, fs, is 1.67 Hz. The high order aliasing components contributes to the down

sampled signal between zero and fs/2. The down sampling aliasing noise is about 1%

in this plot.

Similarly, up sampling aliasing noise is introduced to the signal when the output

of the FIR filter is interpolated to match the sampling frequency of the outside digital
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system. If the output signal of the FIR filter is z(f) at frequencies between 0 and fs,

the signal after up sampling and interpolation filtering is:

y(f) = z(mod(f, fs))I(f), (3.6)

where I(·) denotes the frequency response of the interpolation filter and mod(·, ·) is

the modular function defined as

mod(a, b) = a− nb, n is the largest interger that satisfies n ≤ a

b
. (3.7)

If the ASD of the input of the FIR filter is assumed to be 1, the ASD of the output of

the interpolation filter is shown in figure 3.4. The aliasing noise introduced by down

sampling and up sampling appears as sensor noise in the sensor blending and sensor

correction systems. Hence, the aliasing noise directly contributes to the platform

noise of the controlled system. It also needs to be realized that the aliasing noise is

not independent of the sensor signal, too much aliasing noise could cause the control

system to become unstable. In the vibration isolation system design requirement

for Advanced LIGO, the ASD of the motion of the controlled platform should be

10−11 m/
√

Hz at 1 Hz. However, the ground motion is about 10−6 m/
√

Hz at 0.16

Hz. This implies the up sampling aliasing from 0.16 Hz to 1 Hz should be 10−5 times

smaller than the signal at 0.16 Hz. Obviously, the performance of the example shown

in figure 3.4 will not meet the requirement. Hence if the down sampling FIR filter

is used in the vibration isolation system for Advanced LIGO, either the sampling

frequency fs needs to be increased, or the cutoff frequency of the interpolation filter

needs to be decreased.
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Figure 3.4: Signal aliasing due to up sampling.

At frequencies between 0 to fs, the anti-aliasing filter and the interpolation filter

contribute to the transfer function of the overall down sampling FIR filter system,

which could degrade the performance of the overall FIR filter. For example, the

transfer functions of a down sampling FIR complementary filter pair is shown in figure

3.5. The gain match error of the overall high pass filter is about 9 times larger than

that of the original filter at 0.3 Hz. If this filter is used as the sensor correction filter,

the isolation performance will not meet LIGO’s requirement. To address the problem

for down sampling FIR filters, we need to increase either the sampling frequency of

the FIR filter or the cutoff frequencies of the anti-aliasing filter and the interpolation

filter.
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Figure 3.5: The anti-aliasing filter and interpolation filter contributes to the transfer

function of overall down sampling FIR filter system. As result, the gain match error

of the overall high pass filter is about 9 times larger than that of the original filter at

0.3 Hz.

In conclusion, in a down sampling FIR filter system, if the sampling frequency

of the FIR filter is fixed, the cutoff frequencies of the anti-aliasing filter and the

interpolation filter determines the tradeoff between signal aliasing noise and transfer

function error. In our examples in this section, these two problems can not be solved

at the same time unless the sampling frequency is dramatically increased. However,

increasing the sampling frequency will cause two other problems. First, the run time

FLOPS will increase proportional to f 2
s . Second, the number of coefficients in the FIR

filter will increase proportional to fs, which will cause the FLOP used to solve the

FIR filter design problem to increase proportional to f 3
s . Either of the these problems

could make the design impractical.
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3.3 Polyphase FIR Filter Implementation

A technique called polyphase FIR filtering, as shown in Figure 3.9, is designed to

reduce the the calculation load of traditional down sampling FIR filters. The incoming

data stream is divided into m sub-streams by a cyclic distributer according to the

data samples’ arrival time. Hence, each sub-stream has the sample rate of fs/m (in

Figure 3.9, m = 3). The FIR filters on each sub-stream are identical traditional FIR

filters which work at frequency ff = fs/m. At each time step, the cyclic collector

picks up an output sample from the FIR filter that is working in that phase and sends

it to the output. Hence, the output sample rate is fs, which is the same as the input

sample rate.

FIR

FIR

FIR

In Out

Cyclic

Distributor
Cyclic

Collector

012 1 10

00

2 2

012

Figure 3.6: Polyphase FIR filter implementation. The three FIR filters have identical

filter coefficients and each operates at frequency ff , but are offset in phase. The cyclic

distributor distributes the incoming data samples to different FIR filters according

to the samples’ arriving time phase. At each time step, the cyclic collector picks up

an output sample from the FIR filter with the appropriate phase and sends it to the

output. Hence, the overall sampling frequency is fs = m · ff , where m is the number

of cyclic phases.
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The total amount of calculation that is required by the polyphase FIR filter is

given by the total of m parallel FIR filters:

Np = 2mTff
2 = 2Tfsff = 2

N
m

, (3.8)

which is m times smaller than what the traditional FIR filter requires.

This polyphase FIR filter is used to replace the FIR filter in the down sampling

system shown in figure 3.1. The down sampling polyphase FIR filter is shown in

figure 3.7. Because the signal sampling frequency is allowed to be higher than the

filter sampling frequency in polyphase filters, the anti-aliasing and interpolation filter

design becomes easier. As shown in figure 3.8, the signal sampling frequency is at

50 Hz and the signal below 1 Hz only aliases to frequencies above 50 Hz as shown in

figure 3.3.

Figure 3.7: Polyphase FIR filter with down sampling.

3.4 Transfer Function Compensation

The output of the polyphase FIR filter is given by

y(n) =

Nf−1∑
q=0

x(n− qm)f(q), (3.9)

where x(n) denotes the nth input signal, y(n) denotes the nth output signal, Nf is

the number of coefficients of each FIR filter and f(q) denotes the qth filter coefficient

of the FIR filter.

If the transfer function of each FIR filter is f(ω), ω ∈ [0, ff ], the transfer function
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Figure 3.8: Interpolation filter for polyphase down sampling FIR filter.

of the polyphase FIR filter is given by:

P (ω) = f(mod(ω, ff )), ω ∈ [0, fs]. (3.10)

At low frequencies, when ω ∈ [0, ff ], P (ω) is exactly the same as F (ω). However,

is obvious that P (ω) is not perfect at higher frequencies. In fact, P (ω) is a periodic

repetition of the function of F (ω) with a frequency period of ff . An example of the

transfer function of a polyphase FIR filter is shown in figure 3.9.
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Figure 3.9: Transfer function of the high pass polyphase FIR filter based on the high-

pass FIR filter shown in Figure 2.7. The sampling frequency of the FIR filter, fs, is

1.67 Hz. The the peaks at around fs, 2fs, 3fs and so on are the frequency reflection

of the low frequency component below 0.1 Hz.

Additional filters could be used to compensate the non-ideal transfer function of

the polyphase FIR filter at frequencies above the filter sample frequency. First, a

low pass IIR filter, La, as shown in figure 3.10(a), can be used to compensate the

high frequency transfer function of a low pass polyphase FIR filter. The high pass

complement can be simply implemented as in figure 3.10(b). After the compensation,

the transfer function of the overall complementary filter pair (Lcp, Hcp) becomes:

Lcp(ω) = Lp(ω)La(ω) (3.11)

Hcp(ω) = 1− Lcp(ω) (3.12)

= 1− (1−Hp(ω))(1−Ha(ω)) (3.13)

= Hp(ω)− Lp(ω)Ha(ω), (3.14)

where the Ha denotes the complement of La. Equation 3.11 and 3.14 show that the

compensation filter design problem is also a complementary filter design problem:
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|La| is preferred to be low at high frequencies such that the high frequency peaks of

Lp is attenuated; |Ha| is prefer to be low at low frequencies. In general, one would

like to have

|Lcp| ≤ ΨLc (3.15)

|Hcp| ≤ ΨHc, (3.16)

where ΨLc and ΨHc are magnitude constrains for the overall complementary filters. If

La and Ha are FIR filters, equation 3.16 and 3.15 defines an other convex optimization

problem for fixed Lp and Hp. Practically, one can design the compensation filters

which satisfies

|Lp(ω)Ha(ω)| ¿ |Hp(ω)| (3.17)

(3.18)

, such that Hp dominates the overall transfer function Hcp. For example,

|Lp(ω)Ha(ω)| ≤ 0.2|Hp(ω)|. (3.19)

The frequency resolution of the compensation filters do not need to be as high as the

original FIR filters. Hence, simple IIR filters can meet the requirement. It worth

mentioning that it is easier to compensate the low pass FIR filter than to compensate

the high pass FIR filter using a low pass IIR filter because we do not care about the

phase of the low pass filter at high frequencies. To further simply the structure of

the whole filter, the compensation low pass filter can also be used as the anti-aliasing

filter.

Similarly, a high pass filter can be used to compensate the transfer function of the

high pass polyphase FIR filter. In the original FIR filter design, the magnitude of the

transfer function of the high pass filter is flat below 0.008 Hz because the FIR filter

has not enough frequency resolution below that frequency. A high pass filter Hb can

be applied to make the magnitude of the transfer function continue to decrease as a

function proportional to frequency cubed below 0.008 Hz as shown in figure . The
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final implementation of the complementary filter pair is shown in figure 3.12 (c) and

(d).
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Figure 3.10: Low pass IIR filter La for compensating the high frequency transfer

function of a low pass FIR polyphase filter in a complementary filter pair.
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Figure 3.11: High pass IIR filter Hb for compensating the low frequency transfer
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function of the high pass FIR polyphase filter in a complementary filter pair. At low

frequencies, the final transfer function of the high pass filter is no longer flat.

Figure 3.12: Transfer function compensation of polyphase FIR filter. (a) A low pass

filter La is used with the low pass FIR filter to attenuate its peaks at high frequencies.

(b) The high pass filter is simply built as the complement of (a). (c) A high pass

filter is use to compensate the low frequency transfer function of (b). (d) The final

low pass filter is implemented as the complement of the high pass filter in (c)
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3.5 Summary

The polyphase FIR filter 1 decouples the noise problem and the transfer function

problem in a FIR filter design by allowing different filter sampling frequency and

signal sample frequency. Practically ff could be much smaller than fs, which saves a

lot of calculation operations.

The transfer function design of the polyphase FIR complementary is separated

into three frequency bands:

1. In the transition band, where the high pass filter and the low pass filter have

comparable magnitude, there are a lot of structures in the transfer functions

which requires high frequency resolution to implement. Hence, a lot of design

effort and run time calculation capability is used to build the FIR complemen-

tary filter pair which dominates the whole transfer function in this frequency

band.

2. At high frequencies, there is not much structure in the transfer functions: all

we need to do is to allow the high pass filter to pass and the low pass filter

to stop. Hence, it make sense to use simple (both simple to design and simple

to implement) IIR filter, such as La, to dominate the transfer function in this

band. Of course, it is possible to use another FIR filter to replace the IIR filter

for even better performance.

3. Similarly at low frequencies, a simple IIR filter Hb is used to dominate the

transfer functions.

Similar FIR filter structures, called multi-phase FIR filters, are widely used in

digital signal processing systems [54]. There are two differences between that multi-

phase FIR filter and the polyphase filter in this chapter. First, the parallel FIR filters

1During the final editing of this thesis, it was realized that a mathematically equivalent FIR filter
structure, called the interpolated FIR filter, was independently developed by other researchers [33].
However, there are still two differences between the interpolated FIR filter in [33] and the polyphase
FIR filter in this thesis. 1, We studied the polyphase FIR filter structures for complementary filters.
2, The polyphase FIR filter structure in this thesis can be easily generalized to construct polyphase
IIR filters.
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are not identical to each other in the multi-phase filters. Second, the multi-phase FIR

filter sums all the FIR filter outputs together, rather than using a cyclic collector.

Interestingly, there is a duality relationship between these two kinds of filters in the

ways that they reduce the number of calculations of a traditional FIR filter as shown

in equation 3.1: the multi-phase decimation filter decimates the signal, while the

polyphase filter decimates the filter coefficients.



Chapter 4

Tilt Horizontal Coupling

4.1 Introduction

To reach the design sensitivity of the proposed Advanced LIGO detectors, the seismic

isolation system is required to isolate the interferometer mirrors from ground motion

in the observing band above 10 Hz and to reduce the RMS motion in the range of

0.1 Hz to 10 Hz to simplify the stabilization of the laser interferometer. At the LIGO

observatories, the seismic motion has peaks near 0.15 Hz. These microseismic peaks

dominate the seismic motion above 0.1 Hz. The isolation system needs to reduce the

magnitude of those seismic peaks by at least a factor of five in all three translational

degrees of freedom at same time.

Tilt-horizontal coupling is the most challenging problem that needs to be solved

in low frequency seismic isolation. Tilt-horizontal coupling is a result of the principle

of equivalence: inertial horizontal sensors cannot distinguish horizontal acceleration

from tilt motion. The magnitude of tilt-horizontal coupling goes up very rapidly at

low frequencies, which makes low frequency vibration isolation extremely difficult.

65
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4.2 Tilt Horizontal Coupling Problem

4.2.1 Inertial Sensor

An inertial sensor senses its motion with respect to inertial space by measuring the

apparent force acting on its proof mass in the sensor’s sensitive direction. When the

sensor is operating in the Earth’s gravitational field, the apparent force on the sensor

is:

F = m(
d2

dt2
x− g cos Θ), (4.1)

where m denotes the mass of the proof mass, x denotes the sensor’s position in

inertial space, g is the gravitational acceleration constant on Earth, and Θ denotes

the angle of sensor’s sensitive direction with respect to the local vertical, defined

by the gravitational field. Hence, the sensor’s output is not only a function of the

sensor’s position, but also a function of the sensor’s orientation. The sensor’s sensitive

direction, Θ, can be decomposed as the sum of its nominal direction, Θ0, and its

incremental change, θ:

Θ = Θ0 + θ. (4.2)

Then, the incremental change of the apparent force, f , is given by

f = m(
d2

dt2
x + gθ · sin Θ0). (4.3)

For vertical inertial sensors, Θ0 = 0, therefore, they are not sensitive to small orien-

tation changes. However, for horizontal sensors, Θ0 = π
2
, and

f = m(
d2

dt2
x + gθ), (4.4)

which implies that the horizontal inertial sensors are sensitive to both horizontal

motion and tilt motion. This is called inertial sensor tilt-horizontal coupling. In fact,

equation 4.4 shows that the tilt-horizontal coupling effect can be directly explained by

the principle of equivalence: a local observer can not distinguish between acceleration

and a gravitational field. For this reason, the tilt-horizontal coupling is universal for
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Figure 4.1: Simple pendulum in a box as a horizontal inertial sensor. The sensor is
sensitive to both horizontal acceleration (a) and tilt motion (b), which demonstrates
the intrinsic tilt-horizontal coupling problem for inertial horizontal sensors.

all horizontal inertial sensors, independent of the sensors’ specific implementation[27].

Conceptually, a horizontal inertial sensor can be implemented as a simple pendu-

lum mounted inside a rigid box as shown in figure 4.1. The apparent acceleration of

the box can be measured by observing the angle of the pendulum in the rigid box. In

figure 4.1(a), when the platform is accelerating horizontally, the pendulum will rotate

an angle, α, thus the sensor can sense the horizontal acceleration. On the other hand,

if the sensor is tilted by an angle, θ, as shown in figure 4.1(b), the pendulum will also

rotate with respect to the rigid box, which demonstrates the tilt sensitivity of the

sensor. An observer sitting inside the rigid box cannot distinguish between these two

situations. Therefore, the tilt-horizontal coupling problem is an intrinsic problem for

the inertial horizontal sensor.

In the frequency domain, the inertial sensor’s response function, P (s), is given by

the Laplace transform of equation 4.4:

P (s) = β(s)[x(s)s2 + gθ(s)], (4.5)

with some scaling β(s) to account for sensor dynamics and electronics. The ratio

between the sensor’s tilt sensitivity and horizontal sensitivity is g
s2 . At high frequen-

cies, the sensor’s tilt sensitivity can be ignored and the sensor behaves as a normal

horizontal sensor. However, at low frequencies, the sensor’s tilt sensitivity dominates

and the horizontal inertial sensor behaves more like a tilt sensor.
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4.2.2 Actuator and Tilt-Horizontal Coupling Zero

The tilt-horizontal coupling problem is made worse by imperfections in the actuators

and the plant. When the horizontal actuator is commanded to drive the platform

horizontally, it will typically cause the platform to tilt slightly as well. At low fre-

quencies, because the horizontal inertial sensors are very sensitive to tilt motion, even

small tilts can create problems.

Denote the transfer function from horizontal actuator command, hc(s), to hori-

zontal motion of the platform, x(s), as H(s), i.e.,

x(s) = H(s)hc(s). (4.6)

The tilt-horizontal coupling can be represented by

θ(t) = γ(x, t)x(t). (4.7)

The tilt-horizontal coupling coefficient, γ(x, t), is, in general, time varying and non-

linear. However, if γ is assumed to be constant, the systems’s horizontal transfer

function from the actuator command to the inertial sensor’s output is:

G(s) =
P (s)

hc(s)
= β(s)H(s)(s2 + gγ). (4.8)

The tilt-horizontal coupling of the actuators is directly related to the curvature of

the platform’s horizontal moving path. For example, in the conceptual system shown

in figure 4.2, the cart tilts when it moves back and forth on the bottom of a circle

with radius R. The tilt horizontal coupling coefficient is given by:

γ =
1

R
. (4.9)

Hence, the system’s horizontal transfer function is

G(s) = β(s)H(s)(s2 +
g

R
). (4.10)
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R 

Figure 4.2: Tilt-horizontal coupling and curvature of the system’s horizontal path.
When the cart goes into free body motion along the path at frequency ω0 =

√
g
R
, the

pendulum does not move with respect to the rigid box.

Figure 4.3 shows an example of a transfer function measured from the horizontal

actuator to the horizontal inertial sensor in our prototype system (which is described

in more detail in later chapters). The zero at about 120 mHz is not from the natural

mechanical modes of the system but an effect that comes from tilt-horizontal cou-

pling. From equation 4.10, the system’s horizontal transfer function has two zeros at

s0 = ±√
g
R
, where the tilt component and the horizontal component have the same

magnitudes. Define

ω0 =

√
g

R
(4.11)

as the tilt-horizontal coupling zero frequency. Therefore,

R =
g

ω0
2
. (4.12)

At frequencies below ω0, the system’s horizontal transfer function is dominated by

the tilt component, while at frequencies above ω0, it is dominated by the horizontal

component.

The existence of the tilt-horizontal coupling zero can be directly explained by the

conceptual cart-pendulum model in figure 4.2. When the cart goes into the free body

motion along the curved path, the apparent force acting on the proof mass is zero,

thus the pendulum remains perpendicular to the roof of the rigid box, which means

the sensor’s output is zero. The frequency of the free body motion along a path with
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Figure 4.3: A transfer function from a horizontal actuator to a horizontal inertial
sensor in our prototype. The zero at 120 mHz is called the tilt-horizontal coupling
zero.
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radius R (also called pendulum motion) is exactly the same as the tilt-horizontal

coupling zero frequency given by equation 4.11.

The frequency of the tilt-horizontal coupling zero is critical for low frequency

horizontal vibration isolation systems. In an active isolation system, if low frequency

inertial sensors are used directly in the feedback control loop (called direct feedback

system), the sensor’s output is driven to be zero by the control system. (Of course,

we have to assume that the control system is stable and has enough loop gain.) This

means the active controller will force the system to follow the free body motion on the

system’s horizontal path. As result, the system will only have horizontal isolation at

frequencies above the tilt-horizontal coupling zero frequency. To achieve an isolation

factor of 10 above 0.1 Hz and have robust performance with a relatively simple control

law, the system’s tilt-horizontal coupling zero frequency should be around 0.01 Hz or

below. For passive vibration isolation systems, the situation is similar. In a passive

system, the tilt-horizontal coupling frequency is equivalent to the natural pendulum

frequency.

4.2.3 Curvature

Equation 4.12 shows the radius of the horizontal path is inversely proportional to the

tilt-horizontal coupling zero frequency squared as shown in the table 4.1. The rapid

2πω0 (Hz) 0.01 0.1 1
R (meter) 2,480 24.8 0.248

Table 4.1: Radius of the horizontal path for different tilt-horizontal coupling frequen-
cies.

growth of the path radius R as ω → 0 creates one of the most challenging problems

in reducing the tilt-horizontal coupling in low frequency active isolation systems. For

example, to have the tilt-horizontal coupling zero frequency below 0.01 Hz, the radius

of the path should be larger than 2.5 km. Nominally the total RMS of the ground

seismic vibration below 1 Hz is about 10−6 meter, which implies that the change in the

platform tilt over this stroke length should be less than 10−6 m/2.5 km = 0.4 nrad!
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Figure 4.4: Horizontal motion path with negative curvature.

Another problem comes from the shape of the horizontal path. Figure 4.2 shows

a path with constant positive curvature, but the actual path shape is typically more

complicated. For example, the path could have a negative curvature, which would

change the sign of the tilt-horizontal coupling coefficient and result in non-minimum

phase zeros, or the path could be non-linear, as discussed in the next section.

Figure 4.5 shows a typical horizontal transfer function for a system with negative

horizontal path curvature. Comparing to figure 4.3, the phase of the transfer function

is changed by 180 degrees at frequencies below 0.12 Hz, which indicates the sign

change in the tilt-horizontal coupling coefficient.

One problem associated with the negative horizontal path curvature is stability,

because the free body motion on such a path is not stable. In a direct feedback system,

the controller forces the platform to follow the free body motion and fall down along

the path. For a passive system, negative horizontal path curvature means that the

system is mechanically nonstable and will collapse.

4.2.4 Nonlinear Coupling

The real difficulty of handling the tilt-horizontal coupling problem comes from its

nonlinearity. In practical mechanical systems, the horizontal motion path does not

always have constant curvature as discussed in section 4.2.3. It could have mountains

and valleys as shown in figure 4.6, which means that the tilt-horizontal coupling

effect is nonlinear. Figure 4.7 shows the horizontal transfer functions for our system

measured using a random driving signal at different RMS levels. The tilt-horizontal

coupling zero frequency moved from 0.06 Hz to 0.18 Hz as the RMS drive level

changes from 0.011 volt to 0.13 volt, which is a clear indication of the nonlinearity of

the system.
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Figure 4.5: Transfer function from horizontal actuators to horizontal inertial sensors.
The non-minimum phase tilt-horizontal coupling zeros are at 0.12 Hz
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Additional evidence of nonlinearity came from the harmonic analysis of the system,

as shown in figure 4.8. The three horizontal actuators are driven with a sine signal,

at three different frequencies: 0.0527 Hz, 0.0625 Hz, and 0.0793 Hz. The drive levels

are the same for the three actuators. The platform moves about 80 µm horizontally

in this test. In the spectrum of the STS-2 inertial sensor’s output, many high-order

harmonics generated by the nonlinear coupling of the system are visible.

Actually, it should not be surprising to see the high nonlinearity in the tilt-

horizontal coupling. Because the inertial sensors are very sensitive to tilt motion

at low frequencies, even very small nonlinear tilt couplings will be evident. As dis-

cussed in section 4.2.3, if the tilt-horizontal coupling zero is at 0.01 Hz, the total

amount of tilt allowed is less than 0.4 nrad. If the horizontal stiffness is similar to the

vertical stiffness and the vertical springs are separated by 1 meter, the magnitude of

nonlinear vertical forces generated at the vertical springs only need to be 4× 10−10 of

the magnitude of the horizontal force to generate the total allowed tilt. Many com-

ponents in a practical mechanical system can contribute nonlinearity at this level.

Examples include the nonlinearity of the spring stiffness, the nonlinearity of the actu-

ators, the nonlinearity from the stiffness of the wires for various instruments mounted

on the platform, etc.

One problem associated with nonlinear tilt-horizontal coupling is that the hori-

zontal motion path could have multiple valleys. The free body motion on such paths

will have multiple equilibrium points. The platform could move from one equilibrium

point to another due to seismic excitations. In addition, the system can not sense

such horizontal motions by itself! For these reasons, it is extremely difficult, and

perhaps impossible, to build direct feedback or passive systems to achieve the low

frequency horizontal vibration isolation required by Advanced LIGO using only local

inertial sensors.

More details of nonlinear tilt horizontal coupling will be discussed in later chapters.
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 Figure 4.6: Horizontal motion path with non-constant curvature.
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Figure 4.7: The tilt-horizontal coupling zero frequency changes from 0.18 Hz to 0.06
Hz as the RMS drive level changes from 0.13 volt to 0.011 volt.

4.2.5 Tilt Horizontal Coupling Noise

The tilt-horizontal coupling effect not only changes the system’s horizontal transfer

function but also adds noise to the horizontal sensors. Figure 4.9 shows the ground

motion measured by the STS-2 inertial sensor. The horizontal direction and the

vertical direction have similar signals above 0.04 Hz. For example, the micro-seismic

peaks show up in both directions at about 0.15 Hz. However, at frequencies below

0.04 Hz, the signals in the two directions are very different: the ground motion seen

by the horizontal inertial sensor is about 40 times larger than that seen by the vertical

sensor! The difference can be explained, again, by tilt-horizontal coupling. Because

the horizontal inertial sensor is very sensitive to tilt motion at low frequencies, the

tilt noise of the ground and the sensor itself are magnified. As shown in figure 4.9,
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Figure 4.8: Harmonic analysis of the nonlinearity of the open loop system. The three
horizontal actuators are driven by three sine signals with frequencies, f1 = 0.0527 Hz,
f2 = 0.0625 Hz, and f3 = 0.0793 Hz. This plot shows the FFT of the signal from
one of the horizontal STS-2 sensors.

the tilt noise is proportional to inverse frequency cubed at frequencies below 0.04 Hz.

Because the vertical inertial sensor is not sensitive to tilt motion its noise level is much

lower at low frequencies. However, the noise level of the vertical sensor also goes up

proportional to inverse frequency cubed at frequencies below 0.015 Hz, which could

be explained by the vertical STS-2 having a little horizontal sensitivity. Because of

the existence of the low frequency tilt noise in horizontal inertial sensors, aggressive

high pass FIR filter have be designed to attenuate it.

4.3 Reduction of Tilt Horizontal Coupling

4.3.1 Actuator Correction

One way to reduce the tilt-horizontal coupling is to add an additional torque to

correct the tilt motion. This is equivalent to changing the actuation point of the



4.3. REDUCTION OF TILT HORIZONTAL COUPLING 77

10
−3

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

gr
ou

nd
 m

ot
io

n 
(m

/r
tH

z)

freq (Hz)

horizontal motion
vertical motion

Figure 4.9: Ground motion measured by the STS-2 inertial sensor.

horizontal actuators along the vertical direction. The hope is that if the horizontal

actuator could operate just at the correct point, there would be no tilt horizontal

coupling. This is called actuator correction and can be done either mechanically or

electronically. In fact, the transfer function of figure 4.5 was obtained by electronically

moving the equivalent horizontal actuator up by 1 cm in the system that normally

has a transfer function as shown in figure 4.3. As result, the sign of the tilt-horizontal

coupling is changed. One might suggest that if the actuator is just moved up by 0.5

cm, the tilt-horizontal coupling could be much reduced.

One of problems of actuator correction is the alignment accuracy. Because the

tilt-horizontal coupling coefficient is proportional to the square of the tilt-horizontal

coupling zero frequency, to have the tilt-horizontal coupling zero frequency below

0.01 Hz and keep the curvature positive is very challenging. For example, to move

the zeros in figure 4.3 down by a factor of 10, the error of the alignment of the

horizontal actuators should be less than

0.5 cm

2× 102
= 25 µm, (4.13)
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where the the factor of 2 comes from the fact that we have to stay on the side of

the perfect cancellation for which the zeros are minimum phase, i.e., to keep positive

curvature in the positive path. In general, if a system’s horizontal stiffness is the

same as the vertical stiffness and vertical springs are separated by a distance L, the

maximum allowed error for actuator correction alignment is:

ε =
L2

2R
, (4.14)

where R is the radius associated with the remaining tilt-horizontal coupling zero fre-

quency. Another problem of the actuator correction is that it does not reduce the

nonlinear tilt-horizontal coupling. One might suggest introducing nonlinear correc-

tion terms, but correction with enough accuracy and repeatability is very difficult to

achieve in practice.

4.3.2 Tilt Correction by Inertial Tilt Sensors

One might suggest using a low frequency absolute inertial tilt sensor to measure the

tilt motion and thus remove the tilt sensitivity of horizontal inertial sensors by sensor

correction. Here absolute inertial tilt sensor refers to tilt sensors that are only sensitive

to tilt motion in inertial space but not sensitive to horizontal motion in inertial space.

Because of the principle of equivalence, the absolute inertial tilt sensors have to be

non-local sensors: they have to use moments to differentiate horizontal motion from

tilt motion.

For example, a gyroscope uses rotational momentum to measure absolute rotation

in inertial space. However one difficulty of this tilt correction approach is that it is

hard to build an absolute inertial tilt sensor that is sensitive enough. At 0.04 Hz the

tilt horizontal noise of an STS-2 seismometer is about 5 × 10−7m/
√

Hz. To correct

this tilt noise, the noise level of the absolute inertial tilt sensor should be less than

3×10−9 rad/
√

Hz at 0.04 Hz. A tilt sensor with this level of sensitivity is very difficult

to build. For example, the precision Hemispherical Resonator Gyro (HRG) built by

D. A. Bauer [32] has noise level about 2× 10−8 rad/
√

Hz at 0.04 Hz.

A dumbbell tilt sensor [12] [59] [61] [46] uses moments of inertia to separate tilt
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from horizontal motion. The difficulty for the dumbbell sensors is that it is hard

for them to reduce the ratio between the sensor’s horizontal sensitivity Th and tilt

sensitivity Tt to the necessary level [46]:

Th

Tt

=
d

r2
<

ω2
0

g
, (4.15)

where d is the distance from the suspension point to the center of gravity of the

dumbbell, r is a average radius (such that moments of inertia is M = mr2, and

m is the mass), ω0 is the frequency of the tilt horizontal coupling zero, and g is

gravity acceleration constant. For example, if we would like to have the tilt horizontal

coupling zero frequency to be less than 0.01 Hz, for a dumbbell with average radius of

0.5 meter, the suspension point should be at most 0.1 mm above the center of gravity

of the dumbbell, which is quite a challenge for its mechanical design.

One could also use two vertical inertial sensors separated by a distance l to measure

the tilt. Assume the horizontal sensor and the vertical sensors to have the same noise

level N . The noise that is introduced to the horizontal direction by tilt correction is

NTc =

√
2g

ω2l
N. (4.16)

The NTc will be larger than N at frequencies below ωTc =
√

l√
2g

. Note that ωTc is

independent of N and thus the same for all inertial sensors. For l = 1.4 m, ωTc ≈ 0.5

Hz. And for STS-2 sensors, NTc is larger than that of the ground tilt noise.

For the lack of inertial sensors that are good enough at low frequencies, tilt cor-

rection is not applied in our system.

4.3.3 High Gain Control Loop in Tilt Directions

We used high gain feedback control loops in the two tilt directions to reduce tilt

horizontal coupling. Figure 4.10 shows the open loop gain of one of the tilt controllers.

The controller has very high loop-gain at low frequencies–about 103 at 0.1 Hz and

above 2 × 104 below 0.02 Hz. When the control loops are closed, the controller

commands the platform to move in a path such that the tilt sensor super sensor,
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dominated by differential position sensors at low frequencies, goes to output zero.

Hence, the tilt motion generated by the imperfection of actuators and the platform is

automatically reduced. The reduction factor is about the open loop gain–more than

1000 below 0.1 Hz.

In the frequency band where the loop gains are high, the platform can be driven

by injecting offset signals to the sensors’ outputs. The harmonic analysis of the

closed loop system is shown is figure 4.11. The offset signals of the three horizontal

position sensors are driven by three sine signals with frequencies, f1 = 0.033 Hz,

f2 = 0.0357 Hz, and, f3 = 0.0390 Hz, such that the platform moves a similar distance

as it moved in figure 4.8. Compared to the open loop response shown in figure 4.8, the

high order harmonics generated by nonlinearity are dramatically reduced. A detail

analysis of the nonlinearity of the system when it is controlled is in chapter 6.

4.3.4 Sensor Alignment

Once the control loops are closed through the super sensors, the remaining tilt-

horizontal coupling comes from the position sensors. At low frequencies, the position

sensors are the dominant feedback sensors. The high loop-gain of the controllers forces

the platform to follow the motion defined by the position sensors. If the target plates

of the three vertical position sensors are not perfectly parallel, they will cause the

platform to tilt when it moves horizontally. In fact, the parallelism can be calculated

by measuring the frequency of the tilt-horizontal coupling zero. Correction terms

can then be implemented in the controller by commanding a small tilt proportional

to the horizontal displacement. The transfer function from the horizontal position

sensor offset signal to the horizontal feedback STS-2 sensor on stage 1 of the corrected

system is shown in figure 4.12. The tilt-horizontal coupling zero frequency is below

0.02 Hz, which indicates that the minimum radius is larger than 500 m. When the

platform is moving horizontally at 0.1 Hz, the ratio between the tilt component and

the horizontal component in the inertial sensor’s signal is given by:

η =
R0.1

R
<

1

20
, (4.17)



4.4. SUMMARY 81

where R0.1 is the radius associated with tilt-horizontal coupling zero frequency of

0.1 Hz, and R is the actual curvature of the horizontal path.

Another effect that needs to be considered is vertical-tilt coupling. If the gain

of the vertical position sensors are not same, tilt motion will be generated when

the platform is moved vertically. Similar to tilt-horizontal coupling, the amount of

tilt-vertical coupling can be measured by the amount of tilt signal generated by the

horizontal inertial sensors while the platform is driven to move vertically.

4.4 Summary

Because a horizontal inertial sensor is dominantly sensitive to tilt motion at low

frequencies, solving the tilt horizontal coupling problem is inevitable for low frequency

vibration isolation systems. Since a low frequency absolute inertial tilt sensor below

0.04 Hz is very difficult to build, tilt correction is not practical in most cases. This

implies that tilt motion and horizontal motion are not distinguishable below 0.04 Hz

in these systems.

The tilt horizontal coupling problem presents a fundamental performance limit

for the vibration isolation system where absolute tilt sensor are not used. At low

frequencies when the ground tilts, the isolated platform is preferred not to move

horizontally with respect to ground to compensate the apparent acceleration. Because

the whole system can not distinguish horizontal from tilt motion at low frequencies,

when the ground moves horizontally the platform should not move with respect to

ground either. The transfer function T (ω) from horizontal ground motion in inertial

space to horizontal platform motion in inertial space is desired to be as close to 1 as

possible at low frequencies (Note that we are discussing a single stand alone vibration

isolation system here. Global control using the interferometer signal, in chapter 9 of

LIGO could be different. ):

|1− T (ω)| ≤ Tt(ω). for ω < 0.04 Hz, (4.18)

where Tt(ω) is a real function which denotes the tilt horizontal coupling reduction
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performance. For frequencies above 0.1 Hz, the platform is preferred not to move

with respect to inertial space when the ground moves such that vibration isolation is

achieved. Hence T (f) should satisfy

|T (ω)| ≤ Th(ω). for ω > 0.1 Hz, (4.19)

where the real function Th denotes the desired horizontal isolation performance.

Hence, the complementary filter design problem given by inequality 4.18 and 4.19

presents the fundamental tradeoff between tilt horizonal coupling reduction and hor-

izontal vibration isolation: increasing the horizontal isolation performance is at the

cost of increasing tilt horizontal coupling. The performance limit for low frequency

horizontal isolation system can be studied by solving the complementary filter design

problem using the FIR complementary design algorithms described in previous chap-

ters. This performance limit is true for any systems as long as the tilt and horizontal

motion is not distinguished below ω0, no matter whether the system is a passive sys-

tem or an active system, no matter whether the system is a single stage system or

a multi-stage system. For example, in our system, either sensor correction or sensor

blending can be used to reduce the tilt horizontal coupling with the optimal FIR fil-

ters. One might suggest to use both of these techniques at the same time to get better

performance. However, the best overall performance is determined by inequality 4.18

and 4.19. If using one technique can achieve the overall best possible performance,

adding another technique in will not bring much benefit.

The advantage of active vibration isolation systems is that the fundamental per-

formance limit can be approached by the active control by two means. First, reduce

the tilt motion when the system is moved horizontally, which can be achieved very

efficiently with high gain active tilt control. Second, optimal FIR filters with high

frequency resolution can be used to separate tilt noise below 0.1 Hz from horizontal

motions above 0.1 Hz in the frequency domain.
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Figure 4.10: Open loop gain of the tilt controller. The high loop gain at low frequen-
cies helps linearize the system.
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Figure 4.11: Harmonic analysis of the closed loop system. The offset of the three
position sensors are driven by three sine signals with frequencies, f1 = 0.033 Hz,
f2 = 0.0357 Hz, and, f3 = 0.0390 Hz. This figure shows the spectrum of the signal
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Figure 4.12: Closed loop transfer function from the horizontal position sensor offset
signal to the feedback horizontal STS-2 sensor on stage 1. The data below 0.02 Hz in
this figure is dominated by measurement noise. Hence, it shows that the tilt-horizontal
coupling zero frequency is below 0.02 Hz.
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Chapter 5

Linear MIMO System analysis

5.1 Introduction

The vibration isolation and alignment system proposed for LIGO is a multi-input

multi-output (MIMO) system with 12 degrees of freedom, 12 actuators and about 42

sensors. To efficiently study the behavior of such complicated systems, a set of MIMO

linear and nonlinear analysis tools are developed. In this chapter, we will discuss the

tools to measure the transfer function and the spectral densities of different signals

when the system is assumed to be linear.

5.2 Frequency Resolution of the Fourier Transform

The Fourier transforms are frequently used in the system analysis tools that are going

to be discussed in this chapter. For a time domain digital signal x with sampling time

ts, the Fourier transform is conducted in two steps:

1. Collect N equally spaced points of data (x(n), n = 0 , 1, ..., N) from the signal

x. Hence the data collection time is T = Nts is also called the integration time

of the Fourier transform.

2. Calculate the digital Fourier transfer of x(n): X(f), f = 0 , f0, 2f0, ... ,

(N−1)f0, where f0 = 1/T is called the frequency step of the Fourier transform.

87
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5.2.1 Integer Number Frequency

For a finite time Fourier transform, the frequency resolution is limited. In general,

the Fourier transform of a sinusoid signal contains nonzero elements not only at its

nominal frequency, but also at other frequencies. This is called frequency leaking,

which is shown in Figure 5.1. The only set of sinusoid signals that do not have such

a problem are those whose frequencies are multiples of frequency step f0, i.e., 0, f0,

f1, ..., and so on. We call this set of frequencies integer frequencies because we can

label them with integer numbers according to its multiple of f0.

Definition 5.2.1. Particularly, for integration time T , define the frequency number

of frequency n/T as n.
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Figure 5.1: Frequency leakage problem for finite integration time Fourier transform.

The integration time, T , is one second. Only when the frequency is a multiple of

1/T = 1 Hz, the signal does not leak from its nominal frequency to the neighboring

frequencies. As shown by the solid line in the picture, when the frequency is 20 Hz,

there is no leakage. As a counter example shown by the dash line, where the frequency
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of the signal is 10e ≈ 27.18 Hz. The fourier transform of the signal leaks from the

nominal frequency at 27 Hz to neighboring frequencies.

For signals that complete integer number of cycles in the integration time T , all of

their frequency components have integer frequencies and hence does not have the

frequency leaking problem.

5.2.2 Non-Integer Number Frequency

For the signals that contains non-integer number frequency components, frequency

leaking is not avoidable. However, there are two ways to reduce the leakage. First, a

window function can be applied to the signal before the Fourier transform. Second,

one use a long integration time when it is possible.

5.3 MIMO Transfer Function Measurement

The transfer function of a linear system is measured in the following sequence:

1. Apply the drive signals to the system’s actuators.

2. Wait for a settling time Tw, until the system is in steady state.

3. Collect data from the sensors and process it.

4. Repeat from step one with different drive signals if necessary.

5.3.1 Step Sine Drive Signal and Random Drive Signal

There are two kinds of signal that are commonly used for drive signals: step sine

signal and random signal.

The step sine drive signal measurement is done in multiple steps. In each measure-

ment step (i.e. steps 1 to 3 in procedure 5.3) a sinusoid signal of a certain frequency

is used as the drive signal to measure the system’s transfer function at that frequency.

The advantage of step sine measurement includes
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1. The integration time can be chosen as the integer multiple of the sine function

period to avoid frequency leakage.

2. The magnitude of the sine function can be adjusted at each step such that

sensors or actuators have large enough signal level within their dynamic range.

3. For each step sine measurement, high order harmonics can be observed to test

the nonlinearity of the system.

4. For MIMO systems sine signals with different frequencies can be used for differ-

ent actuators to achieve channel multiplexing (measure multiple transfer func-

tions at the same time).

The disadvantage of step sine is that we have to wait for settling time for the system

to go to steady state for each measurement cycle. For systems with low resonant

frequency and low damping the total wait time could be so long that it becomes the

dominate time consumption for the whole measurement procedure.

In random drive signal measurement, a band limited, white or colored, random

signal is used as the drive signal. The advantage of random drive signal is that a whole

frequency band, rather than a frequency point, is measured every measurement cycle.

Hence, the system only need to settle down once and a lot of waiting time can be

saved. The drawback of random drive measurement is obvious:

1. Because the drive signal is not a periodical signal, frequency leakage is in-

evitable. Hence one needs to depend on a long integration time to achieve high

frequency resolution.

2. It is difficult to monitor if the system is nonlinear or not.

3. Channel multiplexing can be achieved by driving independent random signals

on different actuators. However, high orthogonality of different drive signal

channels can only be obtained by a long integration time.
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5.3.2 Comb Frequency Random Signal

To overcome the disadvantages of step sine and random drive signals, a comb fre-

quency random signal (CFRS) is proposed as the drive signal. All frequency com-

ponenta of CFRS are integer frequencies for the integration time, so no frequency

leaking happens during the Fourier transform.

signal construction

The CFRS is designed in the frequency domain in three steps.

1. Decide the magnitude of drive level for each frequency number m(n).

2. Randomly choose phase φ(n) for each frequency number.

3. Construct the time domain signal by the inverse Fourier transform.

To keep the drive signal a real function in time domain the magnitude and the phase

has to satisfy:

m(n) = m(−n) and φ(n) = −φ(−n). (5.1)

Hence, we only need to choose the magnitude and phase for the non-negative fre-

quency numbers, and the rest is determined by equation 5.1. One problem of con-

structing the drive signal in the frequency domain is that the signal in the time domain

could have high peaks, which appears when many different frequency components add

up constructively at a certain time. To find a set of optimum phases for each fre-

quency component such that the magnitude of the time domain peak is minimized is

not a convex optimization problem and hence very difficult to solve. Practically, this

problem is addressed by randomizing the phases of different frequency components

such that the probability of many of them adding up constructively in the time do-

main is low. One can also do a Monte Carlo optimization along this approach: design

the drive signal for many times and chose the one with the minimum time domain

peak.
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Noise Measurement

We can choose a certain frequency components to have zero magnitudes to measure

the noise at those frequencies. Those zero magnitude frequency components are called

noise traps. For example, we can choose to have nonzero magnitude components to

be at the frequency numbers of 0, k, 2k,..., where k is an integer, and zero magnitude

components on other frequency numbers, as shown in figure 5.3
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Figure 5.2: Choose some frequency components in the comb frequency random sig-

nal to have zero magnitudes to measure the noise at those frequencies. Those zero

magnitude frequency components are called noise traps.

Nonlinearity Monitoring

Similar to the noise traps, we can also use zero magnitude frequency components to

monitor nonlinearity of the system, which are called nonlinearity traps. For example,

we can put the nonzero magnitude components in frequency numbers of an odd

multiple of integer k, i.e., k, 3k, 5k,..., etc. The zero magnitude components at even

multiple of k, i.e. 0, 2k, 4k, ..., etc., becomes the nonlinearity traps. The rest of

zero components are noise traps. If the system is linear, if the input of a certain

frequency is zero, the output should also be zero except noise. For nonlinear systems,

this is not true. For example if the system has a second order nonlinearity, and
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the nonzero input frequency components are at frequency numbers of k and 3k, the

output could have nonzero frequency components at frequency numbers of 2k and 4k.

If the nonzero magnitude frequency numbers are multiple of k, the nonzero frequency

component generated by nonlinearity of the system in the output signal should also

have frequency numbers that are multiples of k. If the system is nonlinear, the

nonlinear traps will have larger magnitudes than the neighboring noise traps. If the

system shows signs of nonlinearity, it should be studied using the nonlinear analysis

tool that is going to be discussed in chapter 6.
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Figure 5.3: Choose some frequency components in the comb frequency random sig-

nal to have zero magnitudes to monitor the nonlinearity of the system. Frequency

numbers of 0 4 8 ... are nonlinearity traps. Frequency numbers of 1 3 5 ... are noise

traps.

Channel Multiplexing

Channel multiplexing using CFRS can be achieved by choosing different nonzero

components for different input channels. For example in a two input system, we can

choose nonzero components to be at even frequency numbers for the first actuator

and at odd frequency numbers for the second actuator.

In conclusion, the three different methods of measuring MIMO transfer functions
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are compared in table 5.1.

step sine random CFRS
settling time multiple once once

nonlinear monitor yes no yes
frequency leak no yes no

noise measurement yes yes yes
channel multiplexing yes yes yes

Table 5.1: Comparing different drive signals for MIMO transfer function measure-
ment.

5.4 Spectrum Measurement

Daniell’s periodogram [14] [47] frequency averaging method is used to estimate the

power spectral density (PSD), amplitude spectral density (ASD), and cross spectral

density (CSD) of different signals. In general, a spectral density (including PSD,

ASD, and CSD), is measured in six steps:

1. Collect N points of data from each of the signal channels.

2. Detrend the time domain signal of each channel by subtracting the best fitted

polynomial, which is obtained by least-squares fitting. Order 5 polynomials are

used in our experiments.

3. Apply window functions to time domain data. Hanning windows are used in

our experiments.

4. Calculate the FFT of windowed time domain data.

5. For each of signal channels, divide the frequency domain data into F frequency

bins. Each bin has n frequency data points. Hence, N = Fn. The frequency

band width of the frequency bin is denoted as fb.

6. Calculate the average spectral density and average frequency of each frequency

bin. In each frequency bin, the average frequency is defined as the arithmetic
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average of the frequencies of the data points. The n data points in each fre-

quency bin of each channel are represented by a column vector. The elements

of each vector are assumed to be random variables with the same probability

distribution function and independent of each other.

For the frequency bin with average frequency ω, the frequency domain data points of

sensor channel x is denoted as a vector x(ω). The PSD of signal x is defined as

Px(ω) = lim
n→∞

x(ω)x†(ω)

fb

. (5.2)

The ASD of x is Ax(ω) =
√

Px(ω). The CSD of signal x and signal y is defined by

Cxy(ω) = lim
n→∞

y†(ω)x(ω)

fb

. (5.3)

Note that Cxx(ω) = Px(ω). Cxy(ω) is estimated with finite n, i.e.

Cxy(ω) ≈ C̄xy(ω) =
y†(ω)x(ω)

fb

. (5.4)

Note that C̄xy(ω) is a unbiased estimation, i.e. the expectation value of C̄xy is

EC̄xy(ω) = Cxy(ω). (5.5)

Another method, the Welch’s periodogram, is widely used for spectral density

measurement [57] [47]. For example, Matlab uses Welch’s method to calculated PSD,

CSD and ASD. The advantage of Daniell’s method is that it offers higher frequency

resolution than Welch’s method [25][8].

5.4.1 Back to Back Sensor Noise Measurement

In an active vibration isolation system, the sensor noise dominates the platform’s

vibration noise in the controlled band. Hence, it is very important to measure the

noise levels of different sensors in the system.
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Back to back sensor noise measurement is one of the ways to measure the noise

levels of the sensors [7] [37]. For example, to measure the noise levels of two seismome-

ters, one could put them back to back along a straight line, and use the difference

of the two outputs to estimate the noise level of the sensors. One problem with this

approach is: because the common mode motion signal is often much larger than the

sensor noises, the gain of the two sensors have to be accurately matched. To obtain

a good gain match, the following automatic gain matching algorithm [7] [37] can be

used.

For the frequency bin with average frequency ω, the frequency domain data points

of the two sensors are denoted as vectors x(ω) and y(ω). The motion that these two

sensors are measuring is denoted as m(ω).

x(ω) = gx(ω)m(ω) + nx(ω); (5.6)

y(ω) = gy(ω)m(ω) + ny(ω), (5.7)

where gx(ω) and gy(ω) denote the gains of the two sensors, and nx(ω) and ny(ω)

denote the noise of the two sensors. Denote the motion portion of the sensor signals

as mx(ω) and my(ω):

mx(ω) = gx(ω)m(ω); (5.8)

my(ω) = gy(ω)m(ω). (5.9)

m(ω), nx(ω) and ny(ω) are assumed to be independent complex Gaussian inter-

element independent random vector variables (CGIEIRVV), which is defined as fol-

lows.

Definition 5.4.1. A complex random vector variable with n elements

A =




A1r + A1ij

A2r + A2ij
...

Anr + Anij




(5.10)
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is defined as complex Gaussian inter-element independent random vector variable, if

all the real and imaginary parts of the elements, i.e. A1r, A1i, A2r, A2i, ..., Anr, Ani

are independent real random variables with identical Gaussian distributions.

Px(ω) = g†x(ω)gx(ω)Pm(ω) + Pnx(ω); (5.11)

Py(ω) = g†y(ω)gy(ω)Pm(ω) + Pny(ω); (5.12)

Cxy(ω) = g†y(ω)gx(ω)Pm(ω) (5.13)

The relative gain between the two sensors

kxy(ω) =
gx(ω)

gy(ω)
(5.14)

is estimated by solving the optimization problem with variable k̄xy(ω):

min Pεx(ω) (5.15)

subject to εx(ω) = x(ω)− y(ω)k̄xy(ω) (5.16)

. The basic idea behind this automatic gain matching method is to remove the part

that is coherent with the reference sensor, y(ω)k̄xy(ω), from the signal of the target

sensor, and treat the residue , εx(ω), as sensor noise. The optimal solution is:

k̄xy(ω) =
Cxy(ω)

Py(ω)
=

g†y(ω)gx(ω)Pm(ω)

g†y(ω)gy(ω)Pm(ω) + Pny(ω)
, (5.17)

εx(ω) = nx(ω)− k̄xy(ω)ny(ω) + (gx(ω)− gy(ω)k̄xy(ω))m(ω), (5.18)

Pεx(ω) = Pnx(ω) + |k̄xy(ω)|2Pny(ω) + |gx(ω)− gy(ω)k̄xy(ω)|2Pm(ω) (5.19)

The PSD of the motion portion of the sensor signals are.

Pmx(ω) = |gx(ω)|2Pm(ω) (5.20)

Pmy(ω) = |gy(ω)|2Pm(ω) (5.21)
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In terms of Pmx and Pmy , the optimal solution becomes:

k̄xy(ω) = kxy(ω)
Pmy

Py

, (5.22)

εx(ω) = nx(ω) +
Pmy

Py

kxy(ω)ny(ω) +
Pny

Py

gx(ω)m(ω), (5.23)

Pεx(ω) = Pnx(ω) + (
Pmy(ω)

Py(ω)
)2|kxy(ω)|2Pny(ω) + (

Pny(ω)

Py(ω)
)2Pmx(ω) (5.24)

Pεx(ω) can be used as an estimation of Pnx(ω). Since Pεx(ω) ≥ Pnx(ω), Pεx(ω) is

actually an upper limit of the PSD of the noise of sensor x. The estimation becomes

unbiased when the other two terms on the right side of equation 5.24 are zero. The

second term on the right side of equation 5.24 is the amount of noise of the sensor

y that was introduced to Pεx(ω) when the two sensor two sensors channels were

combined together. When the signal to noise ratio of sensor y is high, i.e.
Pny

Pmy
À 0,

Pmy

Py
≈ 1, this term becomes |kxy|2Pny , which can be interpreted as the equivalent

PSD of the noise of sensor y if it is measured by sensor x. Hence, even if the sensor

to noise ratio of y is high and the gain match error is low, the noise of sensor y can

not be separated from the noise of sensor x. The third term, denoted as Pεxk
, is the

contribution from the common mode motion due to the error in gain matching. When

the signal to noise ratio of y is high, Py(ω) ≈ Pmy ,

Pεxk
≈ P 2

ny
(ω)Pmx

P 2
my

(ω)
=

P 2
ny

(ω)|gx|2
|gy|4Pm

(5.25)

Equation 5.25 shows that the contribution due to gain match error is proportional to

the inverse of the PSD of the common mode motion. The estimation of the sensor

noise level is better when the common mode motion is higher.

The Effect of Finite Data Points

In the above analysis, the number of frequency points in each frequency bin, n, is

assumed to be infinity, which is practically impossible. If n is finite, the relative gain
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between the two sensors is obtained by solving the optimization problem: k̃xy(ω):

min P̄εx =
ε†xεx

fb

(5.26)

subject to εx(ω) = x(ω)− y(ω)k̃xy(ω) (5.27)

. The optimal solution is:

k̃xy(ω) =
y†(ω)y(ω)

y†(ω)y(ω)
(5.28)

P̄εx(ω) =
x†(ω)x(ω)

fb

(1− |x†(ω)y(ω)|2
x†(ω)x(ω)y†(ω)y(ω)

) = P̄x(ω)(1− ρ̄xy(ω)), (5.29)

where ρ̄xy(ω) denotes the estimation of the coherence between x(ω) and y(ω).

If x(ω) and y(ω) are independent CGIEIRVV, the expected value of ρ(ω) is 1/n

[25] [8]. Hence, for finite n, the noise level estimated by the optimal gain matching,

P̄εx , is, on average, 1− 1/n of the noise measured directly, P̄x.

For the case that x(ω) and y(ω) are not independent, consider the optimization

problem with variable k̂xy:

min P̄εx =
ε†xεx

fb

(5.30)

subject to εx(ω) = x(ω)− y(ω)(k̂xy(ω) + k̄xy(ω)), (5.31)

where k̄xy(ω) is the solution of the optimization problem defined by equation 5.33 and

5.34 when there are infinite number of data points in each frequency bin. Note that

the optimal value P̄εx(ω) for the optimization problem defined by equation 5.33 and

5.34 is the same as the optimal value of the optimization problem defined by equation

5.30 and 5.31. Construct new variable

x̀(ω) = x(ω)− k̄xy(ω)y(ω). (5.32)

(Note that Px̀(ω) is the estimation of the PSD of the portion of signal of x that is not

correlated to y when k̄xy is known.) The optimization problem defined by equation
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5.30 and 5.31 becomes:

min P̄εx =
ε†xεx

fb

(5.33)

subject to εx(ω) = x̀(ω)− y(ω)k̂xy(ω) (5.34)

.

For any two corresponding elements, x̀i(ω) and yi(ω), in the vectors x̀(ω) and

y(ω), the expected value:

Ey†i (ω)x̀i(ω) = Ey†i (ω)xi(ω)− k̄xy(ω)Ey†i (ω)yi(ω) (5.35)

Note that

k̄xy(ω) =
Ey†i (ω)xi(ω)

Ey†i (ω)yi(ω)
. (5.36)

We have

Ey†i (ω)x̀i(ω) = 0. (5.37)

So, since x̀(ω) and y(ω) are assumed CGIEIRVV, they are independent vector vari-

ables. Hence, for finite n, the optimal value P̄εx for the optimization problem defined

by equation 5.33 and 5.34 is:

P̄εx = (1− 1

n
)Px̀(ω) (5.38)

For conclusion, if n is finite, the expected value of the estimated noise level is

about 1− 1/n the estimated noise level when n is infinite.

Discussion

From the analysis above, the automatic gain matched back to back noise measurement

method has some attractive properties. However, when the noise levels of the sensors

are low, there are some practical difficulties for this approach. First, because ground

vibration is orders of magnitudes higher than the noise level of sensors, the dynamic

ranges of the sensors, electronic readouts and the analog to digital (DA) converters
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are often not high enough for an accurate measurement of the sensors’ noise levels.

Hence, the two seismometers have to be put on a vibration isolated platform to

reduce the total signal levels. Secondly, because the motion of the platform on which

the two sensors are mounted has more than one degree of freedom, the two sensors

have to be aligned along a line to ensure that they are sensing the same motion.

Thirdly, even though a sensor’s noise level can be measured using such a method,

the sensor’s actual noise level could be different when it is installed in the actual

system. For example, the noise levels of capacitive position sensor might depend on

their electrical environments.

5.4.2 Measure Noise Level of Sensors on Platform With Mul-

tiple Degrees of Freedom

The idea of automatic gain matching for back to back noise measurements can easily

be generalized for measuring the noise of multiple sensors on a platform with multiple

degrees of freedom. For example, on the second stage of our ETF vibration isolation

system (the details of the system will be discussed in chapters 7), there are 6 vertical

GS-13 seismometers (3 of them are feedback sensors and 3 of them are witness sen-

sors). The second stage platform has 3 degrees of freedom associated with vertical

motion: vertical translation and the two tilt rotations. Any three of the six sensors

are enough to measure all three DOF motion. We can pick one of the six sensors as

the target sensor and call the rest reference sensors.

In general, the data points of the target sensor x in a frequency bin is denoted as

x(ω). The data points of the k reference sensors y1, y2, ..., yk are denoted as a matrix

y(ω) = [y1(ω), y2(ω), ..., yk(ω)]. (5.39)

Note that x and yi are not X and Y axes but different sensor names.

x(ω) = m(ω)gx(ω) + nx(ω), (5.40)

y(ω) = m(ω)gy(ω) + ny(ω), (5.41)
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where matrix m(ω) denotes the motion of the platform in d degrees of freedom,

m(ω) = [m1(ω),m2(ω), ..., md(ω)],

matrix ny(ω) denotes the motion of the noise of the sensors,

ny(ω) = [ny1(ω), ny2(ω), ..., nyk
(ω)],

and d by k matrix gy(ω) denotes the gain of reference sensors to the motion of the

platform. The CSD matrix of the reference channels Cyy(ω)

Cyy = g†yPmgy + Pny . (5.42)

The CSD between the target sensor and the reference sensors is

Cxy = g†yPmgx. (5.43)

Conceptually, we can construct a virtual sensor, x̌, by the linear combination of

the reference sensors such that the virtual sensor and the target sensor measures the

same motion:

x̌(ω) = y(ω)kxy(ω), (5.44)

where kxy is a gain matching vector. The noise of the target sensor can be estimated in

a similar way to the back to back measurement that was discussed in the last section.

The gain matching vector can be estimated by solving a optimization problem:

min Pεx (5.45)

subject to εx(ω) = x(ω)− y(ω)k̄xy(ω) (5.46)

.
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The optimal solution is:

k̄xy = C−1
yy Cxy (5.47)

εx = nx − nY k̄xy + m(gx − gyk̄xy), (5.48)

Pεx = Pnx + k̄†xyPny k̄xy + (gx − gyk̄xy)
†Pm(gx − gyk̄xy) (5.49)

Note that for simplicity of the notation the variables in equation 5.47 through 5.49

are not written explicitly as a function of ω. The third term on the right side of

equation 5.48 is the platform motion leaked to the noise estimation due to an error

of the gain matching.

m(gx − gyk̄xy) = m(gx − gy(Cyy)
−1Cxy)

= m(I − gy(g
†
yPmgy + Pny)

−1g†yPm)gx (5.50)

Comparing to equation 5.23, I − gy(g
†
yPmgy + Pny)

−1g†yPm can be interpreted as the

generalized ratio between the noise and the total signal of y, which vanishes if Pny = 0

and Rank(gy) ≥ Rank(Pm). Equation 5.49 shows the Pεx is an estimation of the

upper bound of noise level of the target sensor. The second term on the right side

of equation 5.49 is the amount of reference sensor noise that is introduced into the

target sensor noise estimation. Since Pny is diagonal,

k̄†xyPny k̄xy =
∑

|k̄xyi|2Pnyi
. (5.51)

The Effect of Finite Data Points

Similar to the two sensor case in section 5.4.1, the effect of finite data points for

multiple sensors can be analyzed by a sequence of equivalent optimization problems.

Construct new variable

x̀ = x− yk̄xy. (5.52)

We have

Ey†x̀ = Ey†(x− yk̄xy) = Ey†yk̄xy − Ex†x = 0. (5.53)
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Since x̀ and all the columns of y are CGIEIRVV, x̀ and y are independent. The

expected value of the PSD of the residue is

P̄εx = (1− h

n
)Px̀(ω). (5.54)

Hence for h reference sensors, the expected value of the final estimated noise level

is about (1− h/n) of the estimated noise level when n is infinite.

5.4.3 Noise Measurement Experiment

There are 39 sensors used on the ETF vibration isolation platform: on the first stage

there are 6 capacitive position sensors, 6 L-4C seismometers and 9 STS-2 seismome-

ters; on the second stage, there are 6 capacitive sensors, 9 GS-13 seismometers and 3

STS-2 seimometers. For details of the sensor setup please refer to chapter 7.

Time domain signal from all these sensors are collected for 1000 seconds with

sampling frequency of 250 Hz. The time domain data are then transformed to the

frequency domain by FFT and then divided into frequency bins. In each frequency

bin there are 100 data points. The upper limit of the noise level of each sensor is

obtained using the other 38 sensors as reference sensors. The PSD of the residue is

then divided by 1− 38/100 to compensate the effect for finite number of data points

in each frequency bin. As an example, the ASD of the signal and noise of one of

the witness GS-13 sensors on the second stage is shown in figure 5.4. At 2 Hz and

10 Hz, where the signal has peaks, ASD of the sensor noise is obtained while the

ASD of the signal is about 5× 104 times higher. Due to the reason discussed before,

the high signal to noise ratio actually helps to get a better measurement of the noise.

Because of the high frequency resolution of the Daniell’s frequency averaging method,

the peaks in the signal at high frequencies are removed from the noise measurement.

The fact that the noise curve is smooth through all the frequency range gives us

confidence about this measurement. This measurement shows that the sensor’s noise

level at 1 Hz is about 1× 10−10 meter per root Hz, which is too high for us to reach

the performance requirement at 1 Hz for Advanced LIGO. More detailed study shows

that the noise above 20 Hz is dominated by analog to digital ADC noise and the noise
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below 20 Hz is dominated by sensor noise.
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Figure 5.4: The ASD of the background signal and the noise of the GS-13 witness

sensor on the second stage.

5.4.4 Measure the Noise Levels of Individual Sensors

One Degree of Freedom Case

Equation 5.24 shows that the noise of the two back to back sensors cannot be separated

even if the signal to noise ratio of the sensors are high and the relative gain between

the two sensors is exactly known. However, if there are three sensors that are used in

the back to back measurement and the signal to noise ratios are high for every sensor,

the noise of each individual sensors can be measured. When the signal to noise ratios

of all the sensors are high, equation 5.24 becomes

Pεx(ω) = Pnx(ω) + |kxy(ω)|2Pny(ω) (5.55)
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Similarly, we obtain

Pεy(ω) = Pny(ω) + |kyz(ω)|2Pnz(ω); (5.56)

Pεz(ω) = Pnz(ω) + |kzx(ω)|2Pnx(ω). (5.57)

The noise of each sensor can be obtained by solving the linear equations 5.55 through

5.57. Note that there are 4 signal sources: the motion of platform and 3 sensor noises,

but there are only 3 sensors. Although we can not measure the signals exactly, we

can estimate theire PSD’s.

Multi Degrees of Freedom Case

In a back to back noise measurement, the noise levels of individual sensors can be

measured if three sensors are used on the single DOF platform. Similarly, on a plat-

form that has multiple DOF’s, we can measure the noise of an individual sensor if two

independent virtual-gain-matched sensors can be constructed by linear combination

of the reference sensors. For the example above, the platform has three degrees of

freedom. Hence, if there are six reference sensors, we can divide the six reference

sensors into two three-sensor groups and construct two independent virtual sensors

from each group. Hence if the platform has d DOF, we need 1+2d sensors to measure

the noise of each individual sensor. There is a way to use fewer sensors.

Consider all the sensors, including the target sensor and the reference sensors

together. Denote the data point of all the sensors in a frequency bin as

z(ω) = [x(ω) y(ω)]. (5.58)

Hence,

z = mgz + nz, (5.59)

where gz is the gain of the sensors, and nz is the noise of the sensors. gz can be

factored as:

gz = gggt, (5.60)
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where gg is a real matrix that maps the platform motion m to the sensitive direction

of the sensors, and gt is a full rank complex diagonal matrix that represents the

transfer functions of the sensors. The null space of gg is denoted as a real matrix Dg.

Dz = g−1
t Dg is the null space of gz.

ggDg = 0 ⇒ (5.61)

gggtg
−1
t Dg = 0 ⇒ (5.62)

gzDz = 0 (5.63)

Use h to denote the total number of sensors. The rank of Dz and Dg are both l = d−h.

From equation 5.48 we have

εx = [nx nY ]

[
1

−k̄xy

]
+ m[gx gy]

[
1

−k̄xy

]
. (5.64)

Denote

q1 =

[
1

−k̄xy

]
. (5.65)

We have

εz1 = nzq1 + mgzq1. (5.66)

Considering all the sensors, have

εz = nzq + mgzq, (5.67)

where, q = [q1, q2, ..., qh], and

εz =




εz1

εz2

...

εzh




. (5.68)
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If the signal to noise ratio of the sensors are high, from equation 5.51, we have:

Pεz1 = Pεx = [|q11|2 |q12|2 . . . |q1h|2]




Pnz1

Pnz2

...

Pnzh




. (5.69)

Define

Q1 = q
˜|2|
1 = [|q11|2 |q12|2 . . . |q1h|2], (5.70)

where operator · ˜|2| denotes element-wise norm square.

V =




Pnz1

Pnz2

...

Pnzh




, (5.71)

Similarly, we can repeat the process for each sensor and obtain q1,..., qh−1. We have:

U = QV, (5.72)

where U is defined as

U =




Pεz0

Pεz1

...

Pεzh




. (5.73)

and matrix Q is defined as

Q = q
˜|2| =




|q11|2 |q12|2 . . . |q1h|2
|q21|2 |q22|2 . . . |q1h|2

...
...

. . .
...

|qh1|2 |qh2|2 . . . |qhh|2




(5.74)
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If Q has rank h, the individual noise levels U can be obtained by solving equation

5.72. First, let us study the rank of the Q when the noise levels of the sensors are

zero. When there is no sensor noise, from equation 5.66,

mgzq1 = 0, (5.75)

which has to be true for any m. Choose m = I, we have

gzq1 = 0. (5.76)

From equation 5.60 and that Dg is the null space of gg,

gtq1 = Dgα1. (5.77)

where α1 is real a vector with l elements. Similarly, we have

gtq = Dgα, (5.78)

where α = [α1, α2, ..., alphah]. Since gt is diagonal,

(gtq)
˜|2| = g

˜|2|
t q

˜|2| = g
˜|2|

t Q. (5.79)

Define

Qg = (gtq)
˜|2| = (Dgα)

˜|2|. (5.80)

Since gt is full rank, Qg has the same rank as Q. Since Dgα is real, the element of Qg

is given by

Qgij = (
∑

w

Dgjwαiw)2

=
∑

w

∑
u

αiwαiuDjwDgju (5.81)

Hence Qg can be factored as

Qgij = ABT (5.82)
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A =




D2
g11 Dg11Dg12 . . . Dg11Dg1l Dg12Dg11 D2

g12 . . . D2
g1l

D2
g21 Dg21Dg22 . . . Dg21Dg2l Dg22Dg21 D2

g22 . . . D2
g2l

...
...

. . .
...

...
...

. . .
...

D2
gh1 Dgh1Dgh2 . . . Dgh1Dghl Dgh2Dgh1 D2

gh2 . . . D2
ghl




(5.83)

B =




α2
11 α11α21 . . . α11αl1 α21α11 α2

11 . . . α2
l1

α2
12 α12α22 . . . α12αl2 α22α22 α2

22 . . . α2
l2

...
...

. . .
...

...
...

. . .
...

α2
1h α1hα2h . . . α1hαlh α2hα1h α2

2h . . . α2
lh




(5.84)

A and B are both h by l2 matrices. There are l(l+1)
2

different columns in each matrix.

There exist α ∈ <h×l such that Rank(B) = min(h, l(l+1)
2

). For example let

αiw = α2i−1

1w (5.85)

and

α1w 6= 0; α1w 6= α1v unless w = v. (5.86)

and B becomes,

B =




α20+20

11 α20+21

11 . . . α20+2l

11 α21+20

11 α21+21

11 . . . α2l−1+2l−1

11

α20+20

12 α20+21

12 . . . α20+2l

12 α21+20

12 α21+21

12 . . . α2l−1+2l−1

12
...

...
. . .

...
...

...
. . .

...

α20+20

1h α20+21

1h . . . α20+2l

1h α21+20

1h α21+21

1h . . . α2l−1+2l−1

1h




(5.87)

In the first row of B, all the elements are powers of α11. In binary format, the powers

are sum of two l digits numbers. For each of the two binary numbers, one digit is 1 and

rest of digits are 0. From Vandermonde matrix theory, the rank of B is min(h, l(l+1)
2

).

Hence, it is possible to measure the noise level of each individual sensor if

h ≤ l(l + 1)

2
⇒ l ≥ 1 +

√
1 + 8d

2
(5.88)

For d = 3, we have l ≥ 3. So on a platform with 3 DOF, we need 6 sensors to
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measure the noise of each of them. Practically, we do not construct the matrix α and

Dg by equation 5.85. We just observe the singular value of matrix Q to make sure

that it can be reliably inverted. An experiment to demonstrate this idea will make

an interesting future project for sensor noise measurement.

5.4.5 Discussion

One of the advantages of measuring noise levels of multiple sensors simultaneously on

a multiple DOF platform is that it can be used directly on the isolation system itself.

In fact, the vibration isolation system itself can be used to control the amplitude

sensor signals such that they would not go out of the dynamic ranges of the sensors.

Equation 5.25 and 5.50 show that if the sensors have enough linear dynamic range

it might be beneficial to drive the platform to increase the signal to noise ratio such

that a better measurement of sensor noise level can be obtained.

It should be noted that there are some problems with this noise measurement

method. First, it assumes that the noise of different sensors are incoherent. However,

practically it might not be true. For example, if all the seismometers are sensitive

to the electromagnetic noise generated from the same noise source, that noise will be

considered as signal by the algorithm and thus not counted as sensor noise. Secondly,

the sensors are assumed to be linear over the dynamic ranges. If they are not, the

noise measurement will have an error. So, linearity of the sensors should be evaluated

when this linear noise measurement technique is used.
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Chapter 6

Nonlinear MIMO System Analysis

6.1 Introduction

The vibration isolation and alignment system proposed for LIGO is a complicated

multi-input multi-output (MIMO) system. To fully understands its behavior, MIMO

nonlinear analysis is necessary. For example, the nonlinear tilt horizontal coupling

at low frequencies needs to be carefully studied. In this chapter, we will discuss the

tools to analyze the nonlinearity of MIMO the systems.

A model of MIMO nonlinear system is shown in figure 6.1. The whole system is

composed of the actuators, the sensors, and the plant. The actuators and the sensors

are single-input-single-output(SISO) systems. An actuator takes commands from an

input and acts accordingly on the plant. A sensor observes the plant in a certain

direction and generates an output signal. Any part of the system can be nonlinear.

It might seem that the problem is made unnecessarily complicated when we sep-

arate the actuators and the sensors from the MIMO plant, rather than considering

everything as a whole MIMO system together. However, it is worth the effort for two

reasons. First, in many practical situations, the sensors and actuators are naturally

separated from the plant. Keeping them separated in the model helps us to maintain

good intuition about the real system. For example, in a satellite control system, the

plant is the satellite body, the actuators are the thrusters, and the sensors are, for

113
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Figure 6.1: A three-in-two-out nonlinear system

example, gyroscopes. Each of these parts has its unique physical characters. Sec-

ond, the actuators and sensors are often the dominating nonlinear parts of the whole

system. In those cases, keeping them as separate SISO systems helps to isolate the

problem.

When we drive a nonlinear system with a set of sine functions at different fre-

quencies, the output contains not only those driving frequency components but also

some harmonic frequency components. For example, in the system shown in figure

6.1, if we use frequency f1, f2 and f3 to drive actuator 1,2 and 3 respectively, the

sensor outputs may contain any frequency component F that satisfies:

F = a1 · f1 + a2 · f2 + a3 · f3, where a1, a2, a3 ∈ Z. (6.1)

When (a1, a2, a3) = (1, 0, 0), F = f1, which is the first driving frequency. When

(a1, a2, a3) = (0, 0, 2), F = 2f3, which is the second order harmonic of driving fre-

quency f3. When (a1, a2, a3) = (0, 0, 0), F = 0, which is DC component.

Definition 6.1.1. The collection of all input frequencies is defined as the input fre-

quency vector f = (f1, f2, ..., fn), f ≥ 0.

Each actuator’s input signal is a linear combination of sinusoidal functions whose

frequencies come from the input frequency vector. In general, the qth input signal is

Uq(t) =
∑

n=1,...,np

βqncos(2πfqnt + φqn) = R(
∑

n=1,...,np

λqnei2πfqnt), (6.2)
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where λqn = βqneiφqn is a complex number.

Definition 6.1.2. Define Λq = (λq1, ..., λqn) as the input coefficient vector of the qth

input.

In general, the pth sensor’s output Yp can be written as a linear combination of

all possible harmonics, which are shown as spikes in the frequency spectrum plot.

Yp = R(
∑

j=0,...∞
γpje

i2πFjt). (6.3)

Definition 6.1.3. Each harmonic has four properties which are defined as follows.

1. Fj called the frequency of jth harmonic.

2. γpj is the coefficient of jth harmonic in pth output.

Each harmonic frequency is a linear combination of the input frequencies with

integer coefficients.

Fj =
∑

m=1,...n

amjfm, amj ∈ Z (6.4)

3. Aj = (a1j, ..., anj), amj ∈ Z is defined as the harmonic number vector of jth

harmonic.

4. O(A) =
∑

m=1,...,n |am| is defined as the order of the harmonic vector A, or

simply, the order of the harmonic. The order of a harmonic indicates the level

of the system’s nonlinearity that the harmonic represents. The harmonics with

order zero and one are related to the zero frequency and the linear terms of

the system. The higher order harmonics betray the nonlinear properties of the

system. The highest order of the harmonics with nonzero coefficients indicates

how nonlinear the system is.

Two harmonics are the same iff all these four properties are the same.

The nonlinear system identification is done in five steps.

1. Construct the input signal by selecting the appropriate input frequency vector

and input coefficient vectors.
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2. Find an appropriate maximum harmonic order, Omax, based on the physical

characteristics of the system. Construct all possible harmonic number vectors

whose harmonic order is less than or equal to Omax. Find the frequency of each

harmonic using equation 6.4.

3. Drive the system and observe the outputs of all sensors. Find the coefficient of

each harmonic frequency for each output by Fourier transform.

4. Associate the harmonic number vectors with the harmonic coefficients by com-

paring their frequencies generated in step two and three. Thus all four properties

off each harmonic are identified.

5. Use the properties of all the harmonics to identify the physical model of the

system.

In the above procedure, we might have some trouble in step four if two harmonics

have the same associated frequency. For example, if the input frequency vector is

(f1, f2) = (2, 3), then Aj1 = (3, 0) and Aj2 = (0, 2) will have the same frequency

Fj1 = Fj2 = 6. Only one coefficient can be identified for the shared frequency, F = 6,

and it is not clear which of the two different harmonic number vectors it should

be associated with. This is called the harmonic frequency overlapping problem

(HFOP). It should be mentioned that if the input frequency vector contains only one

frequency, f , HFOP do not exist. In that case, the harmonic frequency is given by:

Fj = j ∗ f. (6.5)

So, Aj is a scaler,Aj = (j), and no two harmonics share the same associated fre-

quency. However, for nonlinear MIMO system identification, in which multiple input

frequencies are often needed, HFOP can easily happen if the input frequency vector

is not carefully selected.

In this chapter, we are going to propose an algorithm using linearly prime integer

number frequencies (LPINF) to construct the input frequency vector so that HFOP

can be avoided. The basic theory of LPINF is shown in section 6.2. Following that,

three examples about how to use LPINF in MIMO nonlinear system identification are
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demonstrated in section 6.3, 6.4, and 6.5. Note that nonlinear analysis using Voltera

kernals has been thoroughly studied for SISO systems [10] [13] [17]. Efficient ways to

measure Voltera kernals at multiple frequency points using number theory has been

proposed [10], [17]. In this chapter, we focus on nonlinear analysis for MIMO systems.

We are not trying to measure the full Voltera kernals. Rather, we just try to analyze

some aspects of the whole systems. Interestingly, the linearly prime integer numbers

can be used to measure the SISO Voltera kernals with high order nonlinearity in ways

similar to [10], [17].

6.2 Linearly Prime Integer Number Frequencies

To prevent HFOP, the input frequencies have to be carefully selected such that it can

be guaranteed that if two harmonics have the same frequency then they must have

the same harmonic number vector, i.e.,

F1 = F2 =⇒ A1 = A2. (6.6)

This implies if ∑
m=1,...n

am1fm =
∑

m=1,...n

am2fm, ami ∈ Z, (6.7)

i.e., ∑
m=1,...n

(am1 − am2)fm = 0, (6.8)

then

(am1 − am2) = 0, i.e., am1 = am2. (6.9)

If another harmonic number vector, Ad = A1−A2, is introduced, then the statement

above becomes: ∑
m=1,...,n

amdfm = 0, amd ∈ Z =⇒ amd = 0. (6.10)

In this section,we are going to discuss how to select the input frequencies so that the

statement in equation 6.10 is assured.
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6.2.1 Linearly Prime Harmonics

If only integer number frequencies are used as input frequencies, i.e. fi = ωi/T , the

statement 6.10 becomes a statement about integer numbers:

∑
m=1,...,n

amdωi = 0, amd, ωi ∈ Z =⇒ amd = 0. (6.11)

In vector form,

AdF
T = 0, Ad, F ∈ Zn =⇒ Ad = 0. (6.12)

If no other constraints are applied to the harmonic number vector, the statement

6.12 is not true, because a1 = ω2, a2 = −ω1, ai = 0 for i > 2, is an obvious counter

example. First, we can constrain the order of the harmonic number vector.

Definition 6.2.1. If

AdF
T = 0, O(Ad) ≤ σ, Ad, F ∈ Zn =⇒ Ad = 0, (6.13)

then F is called linearly prime up to order σ.

Note that σ indicates the F ’s ability to avoid HFOP. If the order of nonlinearity

of the system is denoted as ρ, and σ > 2ρ, then HFOP can be avoided. Since

Fd = F2 − F1, (6.14)

the order of them satisfies

Od ≤ O2 + O1 ≤ 2ρ = σ. (6.15)

In practice, the range from which we can choose input frequency numbers is also

constrained. Typically, ωi < ωmax. Thus the input frequency vector construction

problem becomes the following integer optimization problem:

max σ ‖ ωi ≤ ωmax. (6.16)
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Or equivalently,

max
Ω

(min
A

∑
i

|ai| ‖AΩT = 0, A 6= 0, ωi ≤ ωmax, A, Ω ∈ Zn). (6.17)

For n = 1, the solution of this problem is simply ω1 = ωmax. For n = 2, the solution is

also simple: ω1 = ωmax, ω2 = ωmax − 1. Since ω1 and ω2 are relatively prime to each

other, a1 = ω2, a2 = −ω1 is the optimal solution for 6.17. However, for n > 2, the

optimal solutions of 6.17 are much harder to find. The brute force algorithm takes

about (fmax)
n calculations to solve this problem.

So far, the optimal solution for 6.17 remains unknown to us. Here, we propose a

suboptimal approach based on following theorem.

Theorem 6.2.2. If n positive integer numbers, p1 < p2 < ... < pn, are relatively

prime to each other, then the frequency numbers given by

ωi =
∏

j 6=i

pj (6.18)

are linearly prime up to order p1 + p2.

Proof. Suppose AtΩ = 0, we have

∑
i=1,...,n

aiωi = 0 (6.19)

−
∑

i=2,...,n

aiωi = a1ω1 (6.20)

−p1

∑
i=2,...,n

(ai

∏

j 6=i,1

pj) = a1

∏

j 6=1

pj. (6.21)

Because the left side of equation 6.21 is a multiple of p1, the right side must also be a

multiple of p1. Because p2, ..., pn, are relatively prime to p1 by the assumption above,

a1 must be a multiple of p1. Similarly, ai must be a multiple of pi for i = 2, ..., n.

If one term in a1, ..., an is nonzero, then there must be another term that is also
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nonzero. Otherwise equation 6.19 is not true. Hence, if A 6= 0,

O(A) ≥ p1 + p2. (6.22)

Note that when n = 2, ω1 = p2 and ω2 = p1. Hence, the ‘linearly prime numbers’

can be considered as a generalization of the ‘relative prime numbers’ to the case with

more than two numbers.

Using theorem 6.2.2, the input frequency vector can be easily constructed by

finding a set of appropriate relative prime numbers. For example, when n = 3 and

ωmax = 100, we can choose p1 = 7, p2 = 9, and p3 = 10. Therefore, the input

frequency number vector is Ω = (63, 70, 90), which is linearly prime up to order 15.

Approximately, this suboptimal approach generates input frequency numbers that

are linearly prime up to order 2 n−1
√

ωmax.

6.3 Isolate the Nonlinearities to Actuators in MIMO

System

In a feedback control system, accuracy requirement on actuators are generally less

than that on sensors. Therefore, in many practical nonlinear systems, the dominat-

ing nonlinear parts are the actuators. In this section, we are going to study the

characteristic pattern of harmonics of such systems.

For a SISO system, it is impossible to isolate the nonlinearity to any specific part.

The input signal goes through a single path in the system: from the actuator to the

plant, and then to the sensor. Any one of these three parts can be nonlinear, and

the harmonic generated by such nonlinearities can not be distinguished from that

generated by another.

It might be surprising that for more complicated MIMO systems, nonlinearity

isolation is possible. The idea is actually very simple: we can ‘color’ the input signals

using different frequencies and by observing those ‘colors’ at the output, we can find
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Figure 6.2: A two-in-one-out nonlinear system. The two actuators are nonlinear:
they saturate when the magnitude of the drive signal is larger than 0.7. The plant
and the sensor are linear.

where the nonlinearity is. Particularly, use a sinusoidal signal of frequency f1 to drive

actuator 1, frequency f2 to drive actuator 2, and so on. These frequencies, f1,f2, etc.,

are linearly prime frequencies. Because each actuator is a SISO system, no matter

what kind of nonlinearity it has, it can only generate harmonics of its own input

frequency. For example, actuator 1 can only generate harmonics with frequency 0,

f1, 2f1, 3f1, and so on. If the plant and the sensors are linear, no other harmonics

can be generated. Thus the sensors can only observe harmonics whose frequencies

can be expressed as nfi, where n is an integer. This feature of output harmonics can

be used as a signature to identify actuator nonlinearity.

Let us study an example. Figure 6.2 shows a two input one output system. Actu-

ators are the only nonlinear parts in this system: they saturate when the magnitude

of the drive signal is larger than 0.7. The plant is a simple second order linear time in-

variant (LTI) system whose frequency responses are shown in figure 6.3. The sensor is

a simple proportional observer with unit gain. The frequencies of the sinusoid signals

are f1 = 23 Hz and f2 = 17 Hz. The magnitude of each is one. Figure 6.4 shows the

time history of the sensor’s output. The data collection time is one second. Figure 6.5

shows the magnitude of the Fourier transform of the output signal. The spikes at 17

and 23 Hz come from the driving frequencies. The other spikes at higher frequencies

are the harmonics of higher orders. Note that because all the harmonics are integer

number frequencies, all the spikes are very sharp. Using the procedure described in

section 6.1, we can obtain the four properties of all the harmonics. Figure 6.6 is a
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plot of the log magnitude of harmonic coefficients of different harmonic orders. The

high magnitude harmonics show up only in the first row and the first column because

those frequencies are harmonics of either f1 or f2, but not any combination of them.

This signature is just what we are looking for.

6.4 Isolating the Nonlinearities to Sensors

If the actuators and the plant are linear, then the inputs to the sensors are a linear

combination of sinusoid signals with the same frequencies as the input signals. For

example, if the input the frequencies are f1 and f2, then the input signal to the first

sensor has the form:

g(t) = α1 cos(f12πt + φ1) + α2 cos(f22πt + φ2). (6.23)

In general, the combination coefficients αi and the phases φi are not known. We

assume the sensor’s output output signal is a scalar function of its input signal which

can be represented by a mth order Taylor series:

Y = Y (g) =
∑

i=0...m

νig
i. (6.24)

It is a little more difficult to isolate nonlinearity to the sensors than to the actu-

ators. From equation 6.23 and 6.24, we can see that nonlinear sensors can generate

many more number of harmonics than nonlinear actuators. Furthermore, the order

vectors of those harmonics do not have an obvious structure that can be used to

distinguish sensor nonlinearity from plant nonlinearity.

Fortunately, a rather simple algorithm exists to identify sensor nonlinearity given

by equation 6.23 and 6.24. In order to simplify the notation, introduce two variables
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Figure 6.4: Time history of the sensor’s output.
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and the first column indicates actuator nonlinearity.

to represent the two frequency components in the input signal g.

g1 = α1 cos(f12πt + φ1), (6.25)

g2 = α2 cos(f22πt + φ2). (6.26)

(6.27)

Thus, we have

g = g1 + g2; (6.28)

Y (g1, g2) = Y (g1 + g2). (6.29)

Note that the level curves (contour plot) of Y (g1, g2) are straight lines on the (g1, g2)

plane.

From equation 6.23 and 6.24, it can be easily identified that the first order har-

monics in Y have the same phase as g1 and g2. By measuring the two phases, we can
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Figure 6.7: Scalar nonlinear function of the sensor.

construct two sinusoid signals:

g′1 = cos(f12πt + φ1), (6.30)

g′2 = cos(f22πt + φ2). (6.31)

(6.32)

Thus, we can construct function Y (g′1, g
′
2). Because Y (g′1, g

′
2) is obviously a linear

transform of Y (g1, g2), its level curves are also straight lines. Therefore, sensor non-

linearity can be identified by those straight equal-level lines.

The upper algorithm is applied to a simulated example, in which α1 = 0.7,φ1 =

0.2, α1 = 0.3, φ1 = −0.5. The nonlinear scalar function of the sensor is

Y = g − g3 + 0.7g5 − 0.25g7, (6.33)

which is plotted in figure 6.7. The time history of steady state output from the sensor

is shown in figure 6.8.
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Figure 6.8: Time history of the sensor output.

The level curves of the sensor output as a function of the two frequency compo-

nents of the sensor input, i.e. Y (g′1, g
′
2), is plotted in figure 6.9. As we can see, the

level curves are straight lines up the accuracy determined by the sensor noise.

One remark that we want to make is that the accuracy of the phase measurement

is critical in this algorithm. Figure 6.10 shows the equal-level of sensor output as a

function of actuator output. Because the phases of the actuator inputs are different

from the phase of the sensor inputs, the level curves are not even close to straight

lines in figure 6.9. In fact figure 6.10 is a typical picture of plant nonlinearity. Also,

we would like to note that the linear prime number frequencies prevent higher order

harmonics from falling on the frequency of the first order harmonics, and thus keep

the phase measurement of the first order harmonics accurate.

6.5 Nonlinear Tilt-Horizontal Coupling

In previous chapters, it was shown that nonlinear tilt horizontal coupling of low

frequency isolation system can be dramatically reduced by high gain feedback loops in
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Figure 6.11: Nonlinear tilt horizontal coupling caused by the non-flat target plates of
the vertical capacitive position sensors.

the tilt direction. In that situation, the tilt horizontal coupling effect is dominated by

the capacitive position sensors. A capacitive position sensor measures the electrical

capacity between a sensor head and a target plate and then deduces the relative

distance between them. If the target plate of a vertical capacitive position sensor

is not flat, the sensors output will not only be a function of the distance between

the sensor heads and the target plate in the vertical direction, but also a function of

the sensor head’s horizontal position relative to the target plate. Hence, nonlinear

tilt motion could be generated when the platform is moved horizontally, as shown in

figure. 6.11.

For example, an experiment to study the nonlinear tilt horizontal coupling when

the system is controlled in done on the ETF vibration isolation system. The two

stage system is controlled in all 12 degrees of freedom. The open loop gains of the tilt

controllers are more than 104 below 0.1 Hz. The blending frequencies between the

position sensors and inertial sensors are at about 2 Hz. Hence, the position sensor

signal will dominate the feedback signal below 2 Hz. The choice of this blending

frequency is to simplify the platform dynamics at low frequencies where the tilt-

horizontal coupling is studied. When the platform is in vibration isolation mode,

the blending frequency will be moved lower. The local coordinates of the target

plates of the three vertical position sensors on the first stage are shown in figure 6.12.
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Figure 6.12: Local coordinates of the target plates of the three vertical capacitive
position sensors.

There is one horizontal position sensor and one horizontal STS2 inertial sensor at

each corner. Both of them are sensitive along the x direction. The platform of the

first stage is driven to move horizontally by injecting three sinusoidal signals at the

offset of the horizontal position sensors. The frequency numbers of the drive signals

are 11 × 12, 11 × 13, and 12 × 13 for sensor 1, 2 and 3. The common period of

the three signals is 2000 seconds. Hence, the frequencies of the sinusoid signals are

f1 = 0.066 Hz, f2 = 0.0715 Hz and f3 = 0.078 Hz. The magnitudes of the drive signals

are 150 µm (i.e. peak to peak value of 300 µm). The data collection time is 4000

seconds. The Fourier transforms of the outputs of three horizontal STS2 sensors are

shown in figure 6.13. The second order harmonics at frequencies of f2 − f1 = 0.0055

Hz, f3 − f2 = 0.0065 Hz, and f3 − f1 = 0.012 Hz are generated by tilt horizontal

coupling. The sum of the three identical inertial sensors measures the rotation of the

platform along the vertical axis and it is not sensitive to tilt motion. The fact that

this signal’s second order harmonics vanish in the background noise indicates that

the three sensors are quite linear and the second order harmonics in the individual
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Figure 6.13: The output of the STS-2 inertial sensors when the platform is driven to
move by three sinusoidal signals at frequencies f1 = 0.066 Hz, f2 = 0.0715 Hz and
f3 = 0.078 Hz. The first and second order harmonics are marked with little circles
in the plots. The second order harmonics are at frequencies of f2 − f1 = 0.0055 Hz,
f3 − f2 = 0.0065 Hz, and f3 − f1 = 0.012 Hz. The signal generated by summing up
all three STS2 sensors is shown at the lower right of the figure.

sensors are tilt motion.

If the horizontal sensors are considered tilt sensors, (as we discussed before, they

are much more sensitive to tilt motion than horizontal motion at low frequencies),

the Fourier transform of the sensors are shown in figure 6.14. The magnitudes of

second order harmonics generated by the tilt horizontal coupling in these signals are

less than 0.4 nrad. The noise level of the magnitudes of the harmonics is about 0.1

nrad in the frequency range of the second order harmonics.



132 CHAPTER 6. NONLINEAR MIMO SYSTEM ANALYSIS

10
−3

10
−2

10
−110

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

freq (Hz)

m
ag

ni
tu

de
 o

f f
re

qu
en

cy
 c

om
po

ne
nt

s 
(r

ad
) horizontal STS2 corner 1

harmonics

10
−3

10
−2

10
−110

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

freq (Hz)

m
ag

ni
tu

de
 o

f f
re

qu
en

cy
 c

om
po

ne
nt

s 
(r

ad
) horizontal STS2 corner 2

harmonics

10
−3

10
−2

10
−110

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

freq (Hz)

m
ag

ni
tu

de
 o

f f
re

qu
en

cy
 c

om
po

ne
nt

s 
(r

ad
) horizontal STS2 corner 3

harmonics

10
−3

10
−2

10
−110

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

freq (Hz)

m
ag

ni
tu

de
 o

f f
re

qu
en

cy
 c

om
po

ne
nt

s 
(r

ad
) sum of three horizontal STS2s 

harmonics

Figure 6.14: The output of the STS-2 sensors if they are considered as tilt sensors.
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6.5.1 Reconstruction the Profile of the Position Sensor Tar-

get Plates

Denote the tilt motion measured by the three inertial sensors as T1, T2 and T3. The

second order tilt horizontal coupling can be represented by second order polynomial

functions of the platform’s horizontal motion measured by x1, x2, and x3.

Ti = aix
2
1 + bix

2
2 + cix

2
3 + dix1x2 + eix2x3 + gix3x1, ai, bi, ci, di, ei, gi ∈ <. (6.34)

The coefficients di, ei and gi can be obtained by comparing the magnitudes and phases

of the second order harmonics of the tilt motion to the magnitudes and phases of the

horizontal drive signals. For the signals shown in figure 6.14, we have




d1 d2 d3

e1 e2 e3

g1 g2 g3


 =



−0.0045 0.0182 −0.0193

−0.0192 −0.0015 0.0139

0.0197 −0.0108 −0.0098


 (6.35)

In each local coordinate, i, the height, Hi, of the target plate surface can be

represented by a second order polynomial of xi and yi

Hi = mix
2
i + niy

2
i + kixiyi, mi, ni, ki ∈ <. (6.36)

Realize that

y1 =
1√
3
(x3 − x2) (6.37)

y2 =
1√
3
(x1 − x3) (6.38)

y3 =
1√
3
(x2 − x1). (6.39)
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Hence,

H1 = m1x
2
1 +

1

3
n1(x3 − x2)

2 +
1√
3
k1x1(x3 − x2) (6.40)

H2 = m2x
2
2 +

1

3
n2(x1 − x3)

2 +
1√
3
k2x2(x1 − x3) (6.41)

H3 = m3x
2
3 +

1

3
n3(x2 − x1)

2 +
1√
3
k3x3(x2 − x1) (6.42)

The tilt motions can be obtained by:

T1 =
1

L
(H3 −H2)

T2 =
1

L
(H1 −H3) (6.43)

T3 =
1

L
(H2 −H1)

where L is the distance between two vertical capacitive position sensors. ni and ki

can be obtained by comparing equations 6.43 with the terms associated with di, ei

and gi in equation 6.34:




n1 k1

n2 k2

n3 k3


 =




0.0043 −0.0064

0.0150 −0.0138

0.0146 −0.0058


 (6.44)

Note that there are 9 constraints and 6 variables and a least square fit is done to

obtain the variables. With the Assumption mi = 0, the heights of the target plates

are shown in figure 6.15.

The coefficients mi are not determined by this experiment. mi can be determined

by another experiment. For example, we can choose

x1(t) = 150× 10−6(sin(2πf1t) + sin(2πf2t)) (6.45)

x2(t) = 0; (6.46)

x3(t) = 0; (6.47)
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Figure 6.15: The contour map of the reconstructed position sensor target plates.
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and measure m1 by observing the magnitude and phase of the harmonic at frequency

f2 − f1. In general, to measure other higher order coupling coefficients, the drive

signals can be designed to make the desired harmonic to be in the sensitive band of

the sensors, i.e. frequencies between 0.001 Hz and 0.1 Hz. Once those coefficients are

obtained, the surfaces of the sensor target plates can be reconstructed. Because the

inertial horizontal sensors are very sensitive to tilt at low frequencies as shown in figure

6.14, nanometer level accuracy can be expected by this method. The experiment to

do the measurement is one of future works along this approach.



Chapter 7

Experiments and Results

7.1 Systems

Two double stage prototype vibration isolation systems were built based on the the-

ories discussed in the previous chapters.

7.1.1 The Rapid Prototype

The first prototype was call the Rapid Prototype, which was a relatively simple

system. There were two aims for this prototype. First, study the interaction between

the two active stages and develop stable controllers for this 12 DOF system. Second,

achieve vibration the isolation requirement of Advanced LIGO at 0.16 Hz, i.e. get an

isolation factor of 10 and reach a noise level of 2× 10−7 m/
√

Hz.

The two stages of the Rapid Prototype are shown in figure 7.1. Each stage is

based on an equilateral triangle. Three cantilever springs are used to hang stage 1

from the support structure and three more are used to hang stage 2 from stage 1.

The cantilever springs support the static load of the system.

Figure 7.1(b) shows the top view of stage 1. The stage has three-fold rotational

symmetry. There are three different kinds of sensors used on this stage. ADE capac-

itive relative position sensors with dynamic range of ±1 mm are used to measure the

relative position between the support structure and stage 1. These sensors measure

137
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the distance between the sensor head and an aluminum “target plate” by monitoring

the capacitance between them. Two position sensors are used at each corner: one for

vertical motion and one for horizontal motion. One Streckeisen STS-2 seismometer is

used at each cornor. Each STS-2 sensor provides inertial information in three transla-

tional directions. The three horizontal STS-2 channels along the tangential directions

are used as the feedback sensors. The three along the radius directions are used as

horizontal witness senors. Each corner also has two Sercel L-4C geophones as high

frequency horizontal and vertical inertial sensors. There are two BEI linear voice coils

at each corner to provide the horizontal and vertical forces between the supporting

structure and stage 1. The setup of stage 2 is identical to stage 1 with two excep-

tions: first, stage 2 does not have the STS-2 sensors; secondly, the dynamic range of

ADE position sensors on the stage 2 is ±0.25 mm, which offers higher sensitivity than

those used on stage 1. While stage 1 is referenced to the support structure, stage 2

is referenced to stage 1.
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Figure 7.1: The Rapid Prototype vibration isolation system. (a)The two stages and

the support structure. (b) The top view of stage 1. For scale, the structure is 1.34

meter tall and the STS-2 sensors are 0.91 meter apart.
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Figure 7.2: Stage 1 of the ETF Prototype.

Figure 7.3: The ETF Prototype. For scale, the structure is 0.83 meter tall and 1.78

meter in diameter.
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Figure 7.4: The ETF Prototype disassembled. The two stages are nested together

with the centers of mass aligned to save space and to reduce coupling between the

stages.

7.1.2 The ETF Prototype

The second prototype was called the ETF Prototype. The aims of this prototype

are: 1, meet the vibration isolation requirement at all frequencies; 2, make the size of

prototype close the size of the actual system and provide a vibration isolated platform,

i.e. an optical table, to support up to 600 kilograms of instrument payload, similar

to the Advanced LIGO HAM payload. The BSC playload is 800 kilograms.

The topology of the ETF Prototype, as shown in figure 7.2, 7.3 and 7.4, is the

same as the Rapid Prototype, but the mechanical structure of the ETF Prototype

is more complicated. The two stages are nested together, which offers two benefits:

first, it makes the whole system more compact; second, it allows the mass centers of

the two stages to be close to each other to reduce coupling between the stages. The

sensors are identical to those of the Rapid prototype except that Teledyne Geotech

GS-13 seismometers are used for feedback and witness inertial sensors on stage 2 for

their low noise levels in the frequency range between 1 Hz and 10 Hz.

7.2 Control

Similar control algorithms are used in both systems. The details of several techniques

used to control the twelve DOF systems are discussed in this section.

7.2.1 Modular Control

The signals from the sensors are mapped to the mass center of the relevant stage

to measure three translational and three rotational motions in Cartesian space. The

control commands in each of these six normal directions are then mapped back to the

commands of the individual actuators. SISO controllers are designed for each of these

normal directions. There are several benefits with this modular control approach:
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1. Because of the tilt-horizontal coupling problem, the vertical direction is funda-

mentally different from the horizontal directions. Hence, it is natural to separate

them.

2. It helps to decouple the system. Because the stages are three fold rotationally

symmetric, the coupling between the two normal horizontal directions is small,

whereas the coupling between the 3 horizontal actuator directions is large.

3. Since the sensors and actuators all have finite size, they cannot be located at

the same physical location, (as seen in figure 7.1, 7.2 and 7.4.). The geometric

re-projection helps ensure that each set of sensors measures the same physical

variable. This simplifies the design of sensor blending and sensor correction

that will be discussed in the following sections.

7.2.2 Sensor Blending

As discussed in the previous section, multiple sensors are used to measure the stages’

positions in each degree of freedom. Complementary filters are used to blend the

signals from different sensors together and is called a super sensor. For example, figure

7.5 shows the sensor blending configuration and the feedback controller of stage 1 in

one degree of freedom. First, complementary filter pair (H2, L2) (note that H2 is the

high pass filter and L2 is low pass filter) is used to blend the two inertial sensors, i.e.

the STS-2 seismometer and the L-4C seismometer together. Then, (H1, L1) is used to

combine the position sensor and the inertial sensors. A key feature of this technique

is that the position sensors are used as the dominate sensors at low frequencies. The

reasons for this approach include:

1. Because the super-sensor has zero frequency sensitivity, the feedback control

loop does not have a low frequency cross-over.

2. Position sensors do not have tilt-horizontal coupling, so the nonlinear tilt-

horizontal coupling problem that the direct feedback systems suffer at very

low frequencies can be avoided.
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Figure 7.5: Block diagram of sensor blending and feedback control.

3. The position sensors provide alignment information and make alignment control

possible;

4. This technique enables sensor correction in which the ground motion is measured

externally and subtracted from the position sensors.

5. It linearizes the system at low frequencies.

7.2.3 Multi Layer Control

The control laws which were used for the system were relatively simple. The overall

MIMO controller is constructed with a set of unconditionally stable SISO controllers

which can be conceptually separated into several layers. The basic idea is to turn on

these layers of SISO controllers sequentially. The existence of the early controllers

and our experience with them have made the later controllers easier to design.

Damping Layer

The first layer of controllers are simple dampers. The velocity signals from the inertial

sensors are fed back to the voice coil actuators to create electronic damping such that

the Q of the vibrational modes is reduced. In the Rapid Prototype, the L-4C sensors

are used on both stages. In the ETF Prototype, the L-4C sensors are used on stage

1 and the GS-13 sensors are used on stage 2. These dampers help to:
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• Make the transfer functions smooth. Since the mechanical system itself does

not provide much damping, the system’s transfer functions vary dramatically in

the frequency range where the systems’s natural vibration modes are. To design

a high gain unconditionally stable control loop directly on the original system,

one has to invert the system’s dynamics to smooth out the transfer function,

which makes the controller non-robust. Hence, the dampers helps to make the

next layer of high gain controllers easier to design.

• Reduce the cross coupling between different directions. In the original system

without the dampers, the major cross coupling is caused by the coupled natural

vibration modes. For example, consider a vibration mode that involves a little of

horizontal motion but a lot of tilt motion. When the platform is driven horizon-

tally at frequencies around the natural frequency of that mode, the vibration

mode will be excited and thus a lot of tilt coupling is generated. Hence, by

damping out the natural vibration modes of the system, cross coupling between

different directions is significantly reduced.

It should be noted that because inertial sensors are used to provide the velocity signal

for damping, the dampers do not add noise to the system other than the noise of the

sensors. In contrast, if relative velocity between ground and the stages is used for

damping, ground noise would be introduced to the system.

Feedback Layer

The second layer of controllers is a set of 12 SISO controllers on the 12 modular

directions. The aim of this set of controllers is to achieve the isolation performance

requirement. Hence, they must have high open loop gain and high cross over (unity

gain) frequency. The controllers for the tilt directions are also responsible for low

frequency tilt reduction. Hence, their loop gain at frequencies below 0.1 Hz should

be very high, typically 103 to 104. Because the low frequency loop gain is very high,

the controllers have to be turned on by increasing the gains gradually. Hence, they

are designed to be unconditionally stable controllers such that they are kept stable

during the turn on process. Successive loop closure is important for this system. The
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Figure 7.6: Gain enhancer. The overall loop gain is |E(s) + 1| times larger than the
original loop gain.

two tilt loops improve the horizontal plant - the high loop-gain and low-noise, linear

displacement sensors dramatically reduce the tilt-horizontal coupling, the nonlinearity

of the plant, and the tilt noise generated by the actuators. Hence, it is essential that

those loops be closed before the horizontal translation loops are closed.

The major challenge of the feedback controller design is to obtain a high cross over

frequency. For example, at 10 Hz, the vibration isolation requirement is to obtain an

isolation factor if 2000. In the vertical direction the mechanical passive isolation of

the system provides a factor of 10 isolation, which implies that the open loop gains

of the two vertical controllers should be more than 14 in order that a total factor of

200 active isolation can be achieved. However, the mass stages of the ETF Prototype

have resonant frequencies starting from about 120 Hz. Even with aggressive notch

filters, we can only make the cross over frequency of the controllers about 40 Hz.

Consequentially, the open loop gain of the controllers at 10 Hz is about 5 to 7.

Gain Enhance Layer

To increase the gain of the controllers, a set of gain enhancement loops could be

added as shown in figure 7.6. As a result, the overall open loop gain is |E(s) + 1|
times larger.

The gain enhancer can be designed by considering the super sensor offset as the

virtual actuator. The overall controller including the gain enhancer and the original
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feedback controller is not unconditionally stable. However, through this layered design

approach it is separated into two unconditionally stable controllers. The problem

with this approach is that typically the original feedback controller magnifies the

magnitudes of the resonant vibration modes, thus more aggressive notch filters are

needed in the gain enhancer.

7.2.4 Control Procedure

As a summary, the whole system should be controlled in the following steps.

1. Design and turn on all of the 12 dampers.

2. With the blending frequency between the position sensors and the inertial sen-

sors at 2 Hz, design and turn on the 12 feedback controllers. At each step of

the sequence, turn on the tilt controllers before the horizontal controllers.

3. Measure the transfer function from the position sensor signal to the horizontal

inertial sensor output. Align the coordinate defined by the position sensors to

the coordinate defined by the gravity field using the method discussed in section

4.3.4 in chapter 4.

4. Check the nonlinear tilt horizontal coupling and make sure that the nonlinearity

of the system is small.

5. Determine sensor correction gain if sensor correction is going to be used

6. Lower the blending frequencies between the inertial sensors and position sensors

such that desired vibration isolation can be achieved.

7. If it is necessary, design and turn on the gain enhancers.

8. Turn on sensor correction if it is used.
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Figure 7.7: Block diagram of the whole control system of stage 1 of the Rapid Pro-
totype. The block ‘SC’ stands for the sensor correction filter. The sensor correction
signal drives the position sensor offset input shown in figure 7.5.

7.3 Results

7.3.1 Vibration Isolation by Sensor Correction on the Rapid

Prototype

In our experiment, the blending frequency between the position sensors and the in-

ertial sensors is at 0.3 Hz in the horizontal directions and 0.07 Hz in the vertical

direction. Hence, there is no vibration isolation from the feedback loop below those

frequencies. Instead, low frequency vibration isolation is achieved by sensor correc-

tion. The diagram of sensor correction is shown in figure 7.7.

The transfer function of the horizontal sensor correction filter is shown in figure

7.8. It reduces the tilt noise with a magnitude proportional to frequency’s third power

below 0.04 Hz and has a gain match error less than 0.04 in frequencies above 0.1 Hz.

In the vertical direction, because there is much less tilt noise, a less aggressive sensor

correction filter is used, as shown in figure 7.9.

The performance of our vibration isolation system is shown in figure 7.10, 7.11 and

7.12. The figure compares the ground motion measured by the STS-2 sensors on the

ground with the platform motion measured by STS-2 sensors on stage 1. One might
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Figure 7.8: Transfer function of the optimal polyphase FIR filter as the horizontal
sensor correction filter for the Rapid Prototype.

worry that the same STS-2 sensors are used both as feedback sensors and witness

sensors. Actually, this is not a problem in this measurement for two reasons: first,

the noise level of the STS-2 sensors are lower than the isolated platform motion in

the experiment and second, the horizontal STS-2 sensors are not used as feedback

sensors below 0.3 Hz. Broadband isolation above 0.1 Hz is achieved in three directions

simultaneously. Particularly, the isolation factors are at least 10 at 0.15 Hz and the

vibration level of 2 × 10−7 m/
√

Hz is achieved in all directions. This result meets

the isolation requirements for Advanced LIGO at low frequencies. In the horizontal

directions, the vibration is magnified by three times between 40 mHz and 100 mHz,

which is a result of the overshoot of the sensor correction filter shown in figure 7.8.

In the vertical direction, the sensor correction filter does not have as much overshoot,

so there is less noise-magnification at low frequencies.
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Figure 7.9: Transfer function of the vertical sensor correction filter for the Rapid
Prototype.

7.3.2 Vibration Isolation by Feedback Only on the ETF Pro-

totype

The sensor correction technique shown in previous section demonstrated good perfor-

mance at 0.16 Hz. However, because practically it is very difficult to match the gain

of the inertial sensor and the position sensor on the platform with an error less than

5%. So, even if there is no additional gain match error from the sensor correction

filters, it is very difficult to achieve an isolation factor more than 20 just by sensor

correction. At 1 Hz, we would like to have an isolation factor of 1000. It is obvious

that a significant part of the isolation has to come from feedback.

From the previous chapters, we learned that we have to address the same fun-

damental trade-off between the low frequency tilt noise reduction performance and

the high frequency isolation performance. Either sensor correction or feedback or any

combination of them is used. The convex optimization complementary filter design

tool is used to study this trade-off. It is learned that the trade-off is quite tight: to

increase the vibration isolation by a factor of 1000 at 1 Hz must be at the cost of
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Figure 7.10: Low frequency isolation performance in horizontal x direction.
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Figure 7.11: Low frequency isolation performance in horizontal y direction.
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Figure 7.12: Low frequency isolation performance in vertical z direction.

adding a significant amount of tilt noise below 0.12 Hz. On the other hand, it is also

learned that the vibration isolation performance at 10 Hz does not have much to do

with tilt noise reduction performance at low frequencies.

The transfer functions of the polyphase FIR complementary filters used for sensor

blending on stage 1 is shown in figure 7.13. Compared to the filters used for sensor

correction in figure 7.8, over shoot at low frequencies is higher and wider. If the

loop gain is enough, this pair of filters could offer a factor of 7000 isolation at 1 Hz.

It is higher than the 1000 requirement because we would like to have other noise

sources dominate so they can be easily identified. Once the other noise sources are

eliminated, we could design a pair of filters that is less aggressive at 1 Hz and reduce

the overshoot at low frequencies.

The performance of the ETF platform is shown in figure 7.14, 7.15 and 7.16.

1. At 0.16 Hz, we obtained an isolation factor of 5 and kept the noise levels to be

less than 2× 10−7 m/
√

Hz on both stages in all three DOF.

2. At 1 Hz, the noise levels of the second stage seen by the witness sensors are

about 2 × 10−10 m/
√

Hz in all 3 DOF, which is believed to be limited by the
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Figure 7.13: ployphase FIR complementary filters used for sensor blending on stage
1 of the ETF platform.

GS-13 sensor noise. The noise levels of the stage 2 feedback GS-13 sensors are

about 10−11 m/
√

Hz which is 1000 times lower than the ground motion. This

implies that there is enough loop gain in the controllers and that the polyphase

FIR filters behave very well in the feedback system.

3. At 10 Hz, in the horizontal direction, the feedback GS-13 sensors indicate a

motion of 10−12 m/
√

Hz which is about 1000 times lower than that of the

ground. The sensor noise of the GS-13 is about 4 × 10−13 m/
√

Hz at 10 Hz as

shown in chapter 5. Hence we think the GS-13 output is a good measurement of

the platform motion. In the vertical direction, the platform motion seen by the

witness GS-13 is about 2× 10−11 m/
√

Hz and the isolation factor is about 150.

Since the natural vibration frequencies for the vertical modes are higher than

that of the horizontal modes, the passive isolation is less in the vertical direction,

which explains the relatively poorer performance in the vertical direction.
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Figure 7.14: ETF performance by feedback only: horizontal x direction
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Figure 7.15: ETF performance by feedback only: horizontal y direction
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Figure 7.16: ETF performance by feedback only: horizontal z direction
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Chapter 8

Summary and Conclusions

The purpose of the work described in this thesis is to investigate the active low fre-

quency seismic vibration isolation and alignment system for Advanced LIGO. The

system that we proposed is fairly complicated: it has 12 degrees of freedom, 12 actu-

ators and more than 30 sensors. However, we demonstrated that it can be controlled

by a set of relatively simple unconditionally stable SISO controllers to nearly satisfy

the performance requirement of Advanced LIGO.

The tilt-horizontal coupling problem is of one the most challenging problems for

a low frequency vibration isolation system below 1 Hz. If not properly addressed, it

could cause the system to be unstable and/or add a tremendous amount of noise to

the system.

In this work, the tilt-horizontal coupling problem is attacked by two means. First,

feedback tilt controllers with very high loop gains at low frequencies are used to reduce

both the linear and the nonlinear tilt-horizontal coupling caused by the mechanical

system. With these controllers running, the remaining tilt-horizontal coupling is

dominantly caused by the position sensors, which can be calibrated by the linear and

nonlinear MIMO analysis tools developed in this work. Secondly, FIR complementary

filters are used to reduce the noise caused by tilt-horizontal coupling at low frequen-

cies. The global optimal FIR complementary filters can be designed very efficiently

using convex optimization. We have developed a computationally efficient polyphase

FIR filter structure which makes high order FIR complementary filters practical.
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Since there are more than one sensor for each degree of freedom on the ETF

Prototype, the very complexity of the system can be used to calibrate the relative

gains between different sensors and to measure the noise levels of them, which offers

essential information for sensor blending filter design and for system performance

analysis.

We have successfully demonstrated the concepts necessary to make the Advanced

LIGO Vibration Isolation and Alignment System a practical system. We have achieved

the required performance below 1 Hz, and nearly achieved necessary performance

above 1 Hz. The work on the ETF prototype makes clear the modification necessary

for the Advanced LIGO system.



Chapter 9

Future Work: Global Control

9.1 Introduction

In previous chapters, signals only from the local sensors were used to control the

vibration isolation systems. In this chapter we are going to study the possibility of

using the signals from the gravitational wave detection interferometer for better iso-

lation performance. It is called the global control since it involves multiple individual

vibration isolation systems. The basic motivations for doing this includes:

1. The interferometer is much more sensitive than any of the sensors used in the

vibration isolation system.

2. The interferometer measures relative positions and it does not have the tilt

horizontal coupling problem.

3. The ultimate goal of the vibration isolation is to make the interferometer work

properly. Hence, if the vibration of the whole system in some direction impacts

the interferometer performance, it implies that the interferometer works as a

sensor for the vibration of the system in that direction (for the frequencies below

the observation band). On the other hand, if the interferometer is not sensitive

to the vibration of the system in some direction, the vibration isolation perfor-

mance in that direction is not important. Hence, although the interferometer

159
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does not provide information in all the degrees of freedom of the whole system,

in principle, it provides the information in the directions that are important.

9.2 The signal from the Interferometer

The LIGO interferometer generates many signals as functions of the positions of the

mirrors. To make use of these signals, the whole vibration isolation system, involving

many individual local isolation systems, has to be studied together. For simplicity,

we will study a single interferometric cavity with two vibration isolation systems as

shown in figure 9.1. The interferometer measures the changing in distance between

the two mirrors. The block diagram of the signal flow is shown in figure 9.2. The

output of the interferometer is not only a function of the difference of the positions

of the mirrors, but also a function of the incoming gravitational wave:

C(s) = w(s) + ma(s)−mb(s) = w(s) + x2a(s)Pa(s)− x2b(s)Pb(s), (9.1)

where w(s) is the displacement generated by the gravitational wave, x2a and x2b are

the positions of the second stages of the two active isolation system in horizontal

direction, Pa and Pb are the transfer functions of the two passive isolation systems.

Note that this is an over simplified model. For example, the motion of the platforms in

other directions are not considered. To consider the contributions from the platform

motion in all degrees of freedom is an important part of future work.

The transfer function of the passive vibration isolation system proposed for Ad-

vanced LIGO [40] is included in figure 9.3.

9.3 Global Control

The controller using the interferometer signal is shown in figure 9.4. The interferom-

eter can be used in frequency below the gravitational wave observation band starting

at 10 Hz.

The global interferometer signal and the local inertial sensor signal are blended
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Figure 9.1: A interferometric cavity, 4 km long.

Figure 9.2: The block diagram of the signals in a interferometric cavity.
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Figure 9.3: The transfer function of the passive vibration isolation system proposed
for Advanced LIGO.
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Figure 9.4: The global controller using the interferometer signal. (H1, L1) and (H2,
L2) are two complementary filter pairs. The transfer functions of the position sensor
and the inertial sensor are assumed to be 1, i.e. Vi = 1 and Vp = 1.
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together and fed back to the super sensor offset of the original controller on stage

2 of isolation system a. The transfer function of the passive isolation system, Pa

is compensated by qa. If the compensation is perfect, we would have Paqa = 1.

Practically, we could just compensate the first two resonant frequencies for the sake

of robustness. Let Ec denote the error of compensation

Ec = 1− Paqa. (9.2)

The transfer function of the global super sensor is given by

VsG = PaqaL2 + H2 = 1− EcL2. (9.3)

If we have

|EcL2| < 1 (9.4)

the phase error of VsG will be less than 90 degrees and thus the global controller can

be kept stable with enough gain around the blending frequencies. Since the transfer

function of the passive vibration isolation system is very well studied and can be

easily calibrated online, the requirement of equation 9.4 should be easily satisfied.

The compensation of the passive system and its error is shown in figure 9.5. At the

first resonant frequency about 0.45 Hz, the frequency of zeros of the compensator is

intensively misaligned by about 2% and the damping ratio is set to be about 50%

less. As a result the compensation error Ec has a peak with magnitude of about 1

at 0.45 Hz. In practice, the compensator could be easily more accurate than this.

The complementary filter pair H2 and L2 are shown in 9.6. The transfer function of

the super sensor of the global control is shown in figure 9.7. The ripples of the super

sensor transfer function comes from the error of the compensation.

The cross over frequency of the global controller is about the same as the original

stage 2 controller, which is at about 40 Hz. Hence, its loop gain below 1 Hz should

be quite high (higher than 100 at 1 Hz and 1000 below 0.1 Hz).
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The motion of stage 2 of the isolation system a is given by

X2a =
L1K2Af2 + Ag

1 + GL

X1a

+
(qaL2KG)K2Af2

1 + GL

mb

+
−(qaL2KG)K2Af2

1 + GL

w

+
−(H1 + H2KG)K2Af2

1 + GL

T (9.5)

where GL denotes the open loop gain of the whole control system:

GL = ((H2 + PaqaL2)KG + 1)K2Af2. (9.6)

Also, denote G2 as the open loop gain of the stage 2 without the global control and

GG as the open loop gain of the global control,

G2 =K2Af2 (9.7)

GG =(H2 + PaqaL2)KG (9.8)

GL =(GG + 1)G2. (9.9)

The contribution of the stage 1 motion to the stage 2 motion is

L1K2Af2 + Ag

1 + GL

X1a. (9.10)

When GL À 1, it becomes

L1K2Af2 + Ag

GL

X1a =
1

1 + GG

L1K2Af2 + Ag

GL

X1a. (9.11)

So, with the global control the vibration noise from the ground of system a will be

further reduced by 1+GG (larger than 100 below 1 Hz). When GL À 1 and GG À 1,
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the contribution from the position of the mirror b is

(qaL2KG)K2Af2

1 + GL

mb ≈ L2qamb. (9.12)

Since qamb is approximately the motion of stage 2 of system b, equation 9.12 shows

that the global control will force stage 2 of system a to follow the motion of stage 2

of system b at low frequencies as we expected. Similarly, the contribution from the

gravitational wave signal w is,

(qaL2KG)K2Af2

1 + GL

w ≈ L2qaw, (9.13)

which implies that the platform motion will be “sensitive” to gravitational waves at

low frequencies. The noise of the horizontal inertial sensor T is a combination of the

instrumental noise and the tilt noise. When the GL À 1, the contribution from T to

Xa2 is
−(H1 + H2KG)K2Af2

1 + GL

T ≈ −H1

1 + GG

T −H2T. (9.14)

The −H1T is the contribution of the noise of the horizontal sensor to the stage 2

motion without the global control, which is attenuated by (1 + GG) times by the

global controller. Hence, the dominant contribution from the noise of the inertial

sensor is −H2T . Since the magnitude of H2 is about 20 time lower than H1 at

low frequencies, the contribution from inertial sensor noise, mostly tilt noise at low

frequencies, is much reduced.
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The output of the interferometer is

C =PaX2a −mb + w

=
(L1K2Af2 + Ag)Pa

1 + GL

X1a

+ (
PaqaL2KGK2Af2

1 + GL

− 1)mb

+ (
−(qa + L2KG)K2Af2

1 + GL

+ 1)w

+
−(H1 + H2KG)K2Af2Pa

1 + GL

T (9.15)

The contribution from the mirror of isolation system b to the interferometer output

is:

(
PaqaL2KGK2Af2

1 + GL

− 1)mb

=− H2KGK2Af2

1 + GL

mb − 1

1 + GL

mb

≈− H2

H2 + L2Paqa

mb

≈−H2mb, (9.16)

where the first approximations assumes |GL| À 1, and the second approximation

assumes H2 + L2Paqa = 1. Similarly the contribution from the gravitational wave is

approximately H2w when the loop gains are high. Since H2 is very close to 1 above 10

Hz, the interferometer is still sensitive to gravitational waves in the Advanced LIGO’s

sensitive band. When the loop gains are high,

C ≈ (
L1

GG

+ Ag)PaX1a −H2PaT −H2mb + H2w. (9.17)

The term H2mb = H2PbX2b will dominate the noise of C. Comparing the case when

there is no global control, contribution from X2b is attenuated by H2.

One could further reduce the noise by means of sensor correction as shown in

figure 9.8. Then the contribution from the motion of stage 2 of isolation system b
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Figure 9.8: The global controller using sensor correction.

will become H2(Pb − Pa)X2b. Since we design Pb ≈ Pa and thus |Pb − Pa| < |Pb|, the

noise can be reduced.

9.4 Discussion

The advantage of this sensor blending global control approach are the follows:

1. It allows a relatively high cross over frequency. Because the interferometer signal

is not used at high frequencies, the controlled band can extend to Advanced

LIGO’s observe band.

2. It enables sensor correction as shown in figure 9.8.
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3. It is an add-on loop to the local control loop. Hence, it enables us to turn on

the local control to lock the interferometer first and then turn on the global

control using the interferometer signal.

For the simplicity of this discussion, we ignored the transfer functions from the

motion of the platforms in other directions to the interferometer output. For example,

vertical motion of the mirrors in their local inertial space will change the length of

interferometer cavity, because the vertical directions in the two inertial space are not

exactly parallel due to curvature of the round earth. Noise caused by the motion of

the platforms in directions other than horizontal directions can be reduced by means

of sensor correction or general feed forward similar to the sensor correction approach

shown in figure 9.8.

The basic idea of the global control can be generalized to higher stages (stage

1 and the hydraulic system) of the isolation systems. It can also be generalized to

other degrees of freedoms of the interferometer. The global control concept also offers

us the opportunity to optimize the design of the whole vibration isolation system

together. For example, the design of the complementary filter pair (L2, H2) in the

global controller introduces a tradeoff between the robustness of the compensation

of the passive isolation system and the low frequency noise reduction. For another

example, the complementary filter pairs (L1, H2) and (L2 and H2) can be designed

together to achieve better overall performance.
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