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Atechnique is described for removing interference from a signal of interest (“channel 1”) which is one of a set
of N time-domain instrumental signals (“channels INt). We assume that channel 1 is a linear combination
of “true” signal plus noise, and that the “true” signal is not correlated with the noise. We also assume that part of
this noise is produced, in a poorly-understood way, by the environment, and that the environment is monitored
by channel2 to N. Finally, we assume that the contribution of channetb channell is described by an
(unknown!) linear transfer functioR,, (¢ — t'). Our technique estimates ttf& and provides a way to subtract
the environmental contamination from channel 1, giving an estimate of the “true” signal which minimizes its
variance. It also provides some insights into how the environment is contaminating the signal of interest. The
method is illustrated with data from a prototype interferometric gravitational-wave detector, in which the channel
of interest (differential displacement) is heavily contaminated by environmental noise (magnetic and seismic
noise) and laser frequency noise but where the coupling between these signals is not known in advance. Note: a

I. INTRODUCTION

There are many situations of interest in which data are contaminated by the environment. Often this contamination is un-
derstood, and by monitoring the environment it is possible to “clean up” or “reduce” the data, by subtracting the effects of the
environment from the signal or signals of interest. Examples include measurements of the earth’s magnetic field contaminated
by harmonics 060 Hz, or a telephone conversation carried on a transmission line, which has been corrupted by electro-magnetic
cross-talk from nearby lines. The work in this paper was motivated by another example: the data stream from an interfero-
metric gravitational radiation detectd_r: [1]. In this instance, the signal of interest is the differential displacement of suspended
test masses. A small part of this displacement arises from gravitational waves, but there are also large contributions arising
from contaminating sources, such as the shaking of the optical tables (seismic noise) and forces due to ambient environmental
magnetic fields. Particularly at low frequencies, these types of ambient environmental noise are the fundamental effects limiting
the sensitivity of the instrumen'g:[Z]. The key point here is that the gravitational waves are not correlated with any of these
environmental artifacts.

In many such situations, it is possible to monitor the environment, offering the hope of removing from the signal of interest
the contaminating effects of the environment. For the prototype gravitational wave detector used as an example in i_his paper [3],
about a dozen of these environmental signals were monitored, including components of the magnetic field, acoustic pressure,
acceleration of the optical suspension, and so bn [4]. It is not hard to see that in many cases, these environmental fields add
directly into the signal of interest, after convolution with some (unknown) response function. For example the suspension of the
optical elements of the interferometer may be physically modeled by a coupled set of masses, springs, and frictional elements
(dashpots), and thus acts as a mechanical filtering device. The displacement of the ground is filtered through this suspension
and the resulting displacement is added into the one arising from any gravitational waves. Thus if the ground displacement were
monitored, and if we knew the exact transfer function of the suspension, we could remove from the differential displacement
signal the part due to ground motion.
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The difficulty here is that these transfer functions are not known, and can not be accurately calculated from first principles.
For example the mechanical filters which isolate the suspension from the ground contain non-ideal springs, damping elements
whose restoring forces are not proportional to velocity, and so on. It might in principle be possible to measure these transfer
functions (for example by shaking the ground in a controlled way) but in many cases this is not practical.

II. NOTATION

Although our methods could be generalized to the case of continuous-in-time signals, we will assume from here on that all
the signals are discretely sampled in time. We will assume that the raw data (chatm®lsare time series, sampled at regular
intervalsAt. We donotassume that these sample rates are the same for all the channels, so in padigylavill denote the
sample rate of the'th channel. TheM/,, (assumed even) different sample values of chanralregular time intervals will be
denoted by

Y, (j) = value of channel n at time ¢ = j(At), (2.1)
for j = 0,-+, My — 1.

We assume that each of the channels has been sampled over the entire timetirmtdtvdl] and thus thal” = M,,(At),, has

the same invariant value for all channels- 1, - - -, N. Because the primary goal of our technique is to extract an approximation
of the “true” or “uncontaminated” values of chanriele adopt a special notation for this channel, and use
X () =110) (2.2)

to denote the signal of interest.

Our methods assume that the contamination of channel 1 by the other channels is described by linear filters or transfer
functions. The action of a linear filter (convolution in the time domain) is most simply represented in the frequency domain
(where it is just multiplication), and thus much of our work will take place in the frequency domain. The Discrete Fourier
Transforms (DFT) of the channels will be denoted by

; £y jk .

)= - e (2ri ) ¥t 23)
fork=—-M,/2,---, M,/2.

The indexk labels frequency bins, and in particular #ith bin of channeh corresponds to a frequency

fney = k/T. (2.4)

Note that throughout this paper, the wdrahdis used to denote a collection of adjacent frequeriog We assume that the raw
signals (channels) are real values, i.e. thafithg) are real, which implies that, (k) = Y, (—k) where “%” denotes complex
conjugate.

Ill. MODEL (TWO-CHANNEL CASE)

We begin by examining thelc_a_se of only two channels. This is a good way to introduce the main ideas of the analysis and the
principal techniques. In Sectien VIl we generalize this method ta\tkehannel case.
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FIG. 1. The case where the instrument’s output consists of only two chan¥iedsidY") is quite simple. The “true” value which the
channel of interest is designed to measure is denoted [jhe actual instrument output for the channel of interest is denoted.bl is a
linear combination of and the environmental variabje = Y>, convolved with the response functidty. By assuming that andy» are not
correlated, we can estimate the valug®fand thus estimate the value of

Our model may be though of in terms of the diagram in Figure 1. The output of the instrument, in other words, the actual
sample values produced by the experiment, are denoted ApdY>, in the notation introduced earlier. These values are to
be thought of as “imperfect” representations of some true values which are the variables that the experiment or instrument is
attempting to measure. However the actual instrumental outputs are not exactly equal to these values, because they have bee
contaminated by the environment. We denote the true value which the instrument is attempting to measanel tlye actual
output of the instrument byX'. In the two-channel case, the environmental monitor channel is denotEg yithout loss of
generality we may assume that it is equal to the actual value of some environmental wariable

In our model, we assume that the true vatuef the desired signal is not present at the output, because it is contaminated
by the environment. We assume that this contamination may be represented by a linear filter applied to the environmental
variabley,. For example, suppose thais the temperature of a sample of material (if that material is surrounded by a constant
temperature environment) but in fact the temperature of the environrhésmnot constant, and varies with time. The influence
of the environment on the measured temperaltief the sample is complicated by the fact that the heat from the environment
must diffuse through a thermal insulator before reaching the sample, so that a change in the temperature of the environment is
not immediately reflected in a change in the temperature of the sample. In this example, the effect of the environment on the
sample temperature may be modeled by a first-order linear filter, whose impulse response decays exponentially in a thermal
diffusion time.

In the example that served to motivate this paper, the desired signal is the differenogtical phase between two paths
of a suspended interferometer produced by gravitational waves. However the instrument contains steering magnets, which are
sensitive to the ambient magnetic fields in the laboratory: these magnetic fields result in forces on the optical elements which
also change the optical phase. Assuming that the geometry of the laboratory and of the instrument (which serves to convert
magnetic fields into magnetic gradients) is not changing with time, one would expect to find a linear filter relationship between
some component of the laboratory magnetic field and the outpaf the relative optical phase channel. Similar effect arise
from seismic motion and from other sources.

IV. METHOD (TWO CHANNEL CASE)

The basic idea of our method is to estimate the transfer funcfign$his is most easily illustrated in the two-channel case.

The situation of interest is one in which the transfer function does not change with time, or changes slowly with time. This is the
case if it is defined by spring constants (i.e. mechanical coupling) or mutual inductances (electrical cross-talk) or other quantities
that depend upon geometrical and mechanical properties which change slowly (adiabatically) with time.

To estimate the transfer function requires an averaging process. It might seem natural to average in time, but the calculations
are easier to understand and express if the averaging is carried out in frequency space instead. For this reason, we imagine the
the frequency space occupied by our signal (which fortttechannel isR~) is broken up into subspaces that span frequency
bands. To introduce the notation, we first consider the channel of intéfegtor future convenience we will assume that the
Nyquist frequency binX (1, /2) does not contain any useful information (i.e. that an anti-aliasing filter was used in taking the
data) and that we can project our signal onto ¥~ —! dimensional subspace that does not include this frequency bin. For
notational purposes, write this frequency-space representation as the vector



X = [X(O),X(1),-.-,X(M1/2—1)] (4.1)
- [Xm),...,xwl—l)]

where we have decomposed tR&'~! into a set of B; orthogonal vector spaces, each of which contains only the fre-
guencies in a particular barid= 0,---, B; — 1. The number of individual frequency “bins” contained in one of the fre-
quency bands is (the dimensionless integér)and B,F' = M, /2 forn = 1,---,N. The number of frequency bands
M,,/2F doesdepend upon the channel number (or sample rate) but the number af’bima given band does not. Thus,

the vectorX(®) = [X(O),X(l),~-~,X(F— 1)]. In general, the vector associated with frequency barabnsists of

X0 = [X(bF), X(OF +1),---,X((b+1)F — 1)]. The frequency band labeled by the dimensionless indgpans a range
of physical frequency (in cycles/unit-time) given by the half-open interval

bF

I € [fo, fo1) with fp = T 4.2)

Later, we will discuss how we choose the number of frequency bands. This is related to the question of how much averaging is
needed to accurately estimate the transfer functions.

This notation generalizes in the obvious way to the other charinels -, Y. Note that the number of real degrees of
freedom of thex'th channel isM,,. The complex coefficient¥}, (i) fori = 1,---, M, /2 — 1 containM,, — 2 of those real
degrees of freedom. The coefficiedtg(0) andY,, (M,,/2) are both real and contain the remaining two real degrees of freedom.

As before (with no significant loss of generality) we will assume tat),,/2) is zero, because an anti-aliasing filter has
eliminated any signal contributions near the Nyquist frequency.

To express the correlation between two channels (or the auto-correlation of a channel with itself) it is useful to introduce a
bi-linear inner product. This is defined by

(Y0¥ = 3 VL), (43)
bF<k<(b+1)F
This is just the ordinary Cartesian inner product between the two vectors, after they have been projected into the subspace
spanned by th&'th frequency band. The quantit&X(’”,X(”)) is the power spectrum of chann&l, summed over th&'th

frequency band: the total power in thi¢h frequency band. Notice that the inner produatigy defined if both channels; and

no are sampled quickly enough so that both of them extend up t@tth&requency band. If the frequency band lies above the
Nyquist frequency of either channel, the inner product is not defined. Note also that we could define another inner product, which
is the ordinary Cartesian one (with no projection) by sumrr(iﬁ’éf’l) , Yf{’z)) overtherangé =0, - -, Byin = min(B,,, By, ),

but this is used so little that it's not worth the trouble.

We are now prepared to estimate the transfer funcitetif) shown in Figure 1. Our goal in doing this is to estimate the
“true” channel of interest. We denote the estimate of this quantity with an overtzakVe also use the overbar to denote our
estimates of derived quantities, for examgle

We assume thaR, (f) is complex constantithin each frequency bard in other words that the transfer function does not
vary rapidly over the frequency bandwidttyf = F/T. For notational convenience, let us denote the constant valle(gh in
a given frequency band by?). Given the transfer functiorf®) within the frequency band, our estimate of the Fourier transform
of the “true” channel of interest is

20— x0 _ 0y, (4.4)

We assume that the best estimate of the transfer function in the frequency bantlis the one that minimizes the norm
N = (fc(b),i(b)). Notice that although the vect&” containsF components, our estimated transfer functiéh is a single

complex number, containing in practice many fewer degrees of freedonxtflann this way, the value of the transfer function
averages over the different frequency bins within the Harmehd thus corresponds to a time average.

To find#(*) we minimize the norniV = (fc(b), i(b)). Under an arbitrary variatiodr(®) one has
oV = - (507" X0 =07, ") - (X0 - 0¥,V 5 0¥, ")
= —r® (Y., X0 0y, ") —cc

— _op [57“(”) (yz(b{ X0 _ T(b)fz(b))} , (4.5)
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where “CC” denotes the complex conjugate of the previous term. In ordefhaanish for all choices of the complex number
6r(®) the inner product appearing on the final line must vanish:

(Y;’”,fw - rwz“’)) ~0. (4.6)

The unique solution to this equation gives our best estimate of the transfer fuﬁ’gtjﬁhin the frequency bantlas:
(X(b) : Yz(b))
(Yz(b), Yz(b))

We note that instead of minimizing the inner product of our estimate of the true channel of interest independently within each
given frequency band, we could also have minimized the inner product defined as a sum ovBy,allfrequency bins; this

gives the same result since vectors obtained by projection onto orthogonal subspaces (corresponding to different frequency
bands) have zero inner product.

How effective is this procedure likely to be? Clearly, this depends upon how much contamination there is, in the channel
of interest, and upon how well the different environmental signals monitor the different sources of contamination. In order to
guantify these effects, it is useful to introduce towariance coefficiefietween channelsandj in frequency band, which is
defined by

F0) 4.7)

(b _
pl] = - - = - . (48)
(b) ~7(b) (b) ~7(b)
(Y. Y ) (Y]. Y )
From the definition it follows tha® < pﬁ?) < 1. This quantity may be interpreted as the (absolute value of) the cosine of

the angle between the vectors representingitieand j'th channels. Whemﬁ?) is close to unity this means that thgh
andj’'th channels are very correlated or anticorrelated; when close to zero this means that there is no statistically significant

(anti)correlation. The question “how Iargep%b.) is statistically significant” will be addressed in Sectip-_rh IX. The covariance
coefficientsé? between the IFO channeX(= Y7) and the other 11 environmental channgls- - -, Y7, are shown in Figur'gl 2.
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FIG. 2. The estimated correlations between the IPBKIRO channel ) and the other 11 environmental channels. Each individual graph
has vertical scale 0 to 1.

There are a number of interesting features in the grap;l‘g';bthat are worth brief comment.

e The magnetometer output shows beautifully strong correlation with theDMRO at all multiples of the line frequency
of 60 Hz. The large ambient magnetic fields in the laboratory are probably being produced by motors in the ventilation
system and transformers in the argon laser power supply.

e The correlations between the microphone and the_INIRO may reflect mechanical resonances in the mechanical
suspension and isolation systems which are driven by ambient acoustic noise.

e The DC strain is a low-pass filtered version of the IBMRO channel of interest: chann&l! So in fact it has excellent
low-frequency correlation with the IF@OMRO channel because these are measuring essentially the same thing. Note that
this channel will be left out of the decontamination procedure that we describe, since that procedure is intended only for
signals that should not show any intrinsic correlation with the true quantity of interest.

e The mode cleaner correlation is easy to understand. It occurs because the mode cleaner removes most but not all of the
laser frequency noise. The remaining frequency noise is converted by the interferometer into an effective change in the
arm length.

e The seismometer shows interesting and significant low-frequency correlation with th@eMRD. The mechanical sus-
pension does not entirely isolate the instrument from ground motions, and these are subsequently converted into motions
of the suspended masses. These low-frequency correlations are precisely the sort of correlations that will be removed by
the procedure described in this paper.

e The arm 2 visibility and the slow pzt show almost identical correlations with theDRIRO channel. We do not under-
stand why.

e The arm 1 coil driver shows very clear low-frequency correlations with the DIMRO. These may be related to the
previously-described correlation between the mode cleaner and thBMRD.



A technique for simultaneous removal of all of these correlations from theDMRO is described in Sectidn VI, but for the
moment we return to the simplest, two-channel case.

In the two-channel case, the transfer function in frequency bamak estimated by minimizing the norivi = (?c(b), ?c(b)).

This led to a unique solution for the estimated transfer functiéh given by [4.7). How much is the noriv reduced when
compared with the corresponding norm of the original channel of inttéﬁéé‘t), X(b)) before any correlations were removed?

This may be found by substituting the valuer8f (4.7) into the definition ofV. One obtains
N = ():((b)’):((b)
= (X(b) _ r(b)Yz(b),X(b) _ r(b)Yz(b))
= (X(b),X(b)) ENOE (X(b)’fz(”)) () (X(b)’Y”Z(b)) FEROE (Y~2(b),Y~2(b))
~ - (b) 2
(x0.¥.")]
/= (b) <= O\
(Yz( ),Yz( ))
~ - 2
(X0, ¥.")]
(X(”),X(”)) (Yz(b),Yz(b))

_ (X(b)’X(b)) [1 _ (pgl;))T . (4.9)

= (Xw),;z(b)) _

= (Xw),;z(b)) 1-

2
The fractional reduction in the norfis 1 — (pg?) . Thus, if an environmental channel is strongly correlated with the channel

of interest, a significant reduction in the norm is obtained. As discussed following eqL[a:tlon (4.3) this is may be though of as a
reduction in the total power in théth frequency band.

V. AN EXAMPLE (TWO CHANNEL CASE)

Our example (including Figu[é 2) is based on data from the Caltech 40-meter prototype gravitational wave interfe'_r}ometer [3].
During one week in November 1994, this instrument was used to collect data for later analysis. Between eleven and fourteen
channels of data were collected. The channel of inteYeistthe InterFerOmeter Differential Mode Read-out (LBMRO) and
the other sampled channels consist of environmental and instrumental monitors. The channels were sampl@86g dither
Hz (fast channels) or at one-tenth that rate (slow channels).

In our first example, we consider only two channels: = Y; is the IFQDMRO andY; is IFO_Mag.x. This is the
x—component of the magnetic field sampled near one of the optical elements denoted. Both of these signals are sampled at
the fast rate. We usetll; = M, = 10 x 2048 x 128 samples from the 18 November 1994 run 1 data set, spanning approxi-
mately 266 seconds. To carry out the averaging we chbosel 28 frequency bins in each d@¥;, = B, = 10 x 2048 frequency
bands. This is the same data set whose correlations with théMRO are illustrated in Figurd 2.

There is particular reason to believe that the IBBIRO is strongly contaminated by ambient magnetic field noise (or by
signals which are correlated to that). This is because the optical elements of the interferometer suspension are steered anc
controlled by magnetic forces. Many of the optical elements have magnets fastened to them, and small coils are used to provide
some of the servo feedback used to maintain the optical resonance of the interferometer. The laboratory magnetic fields arise
from a number of sources, including motors which are part of the air-circulation systems in the laboratory, and power-mains and
power-supply wiring such as the three-phase current driving the argon-laser power supply. It is also possible that ripple from the
power supplies is present in the servo loops whose error outputs are the source of IDMROsignal.

Figure:_3 shows the two channels andY; for 266 seconds. Because our primary goal is to remove low-frequehey (

987/2 Hz) contamination fronX, these channels have been low-pass filtered by (1) transforming into the frequency domain (2)
setting to zero all spectral amplitudes at frequenzigsl fnyquiss then (3) transforming back into the time-domain. Although
it is not obvious from the graphs, both channels contain strong sinusoidal components at multiples of the line frequency 60 Hz.
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FIG. 3. Approximately 266 seconds of two channels of the Caltech 40-meter interferometer output, after low-pass filtering to remove all
frequency components abolel fnyquist. X denotes the Differential Mode Readout, which is the channel of inteYess the output of a
magnetometer, sensing a component of the local magnetic field. These two signals are both contaminated by many harmonics of 60 Hz. They
are shifted byt-80 ADC counts for clarity.

Notice that the rms value of chann¥lis about 30 ADC counts. Also notice that the small instrumental feature (blip) around
t = 46 sec is almost obscured by the surrounding “hash”. The Fourier transforms of these two channels are shown'_in Figure 4.
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FIG. 4. The amplitude spectrum of the data sets from Fib‘ure 3. Notice that there are strong line-like features at the harmonics of 60 Hz,
particularly around 180 and 300 Hz in the channel of interest. The former may be due to the laser’'s power supply producing cross-talk in other
electronics. This graph shows only frequencie8.1 fxyquist-

Using the procedure that we have described, we can estimate the caliplifigbetween these two channels. This is shown
in Figurei
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FIG. 5. The estimated coupling functidt: (f) between the IFO channek() and the magnetometeYy). This estimate is dominated by
modulus is large compared to nearby frequencies. At these frequencies, the estimate is accurate. Th
frequencies at whicl®, can be accurately estimated includes (but is not limited to) many of the 60 Hz line harmonics.

noise, except at frequencies where its

In each frequency band, the estimatefbfis a sum over thé” = 128 different frequency bins contained in that band. If
there is no correlation between the two channels, the expected value of this sum behaves like a random walk, accumulating
proportional toy/F. (The case where there is no correlation is considered in detail in Se_'c_iion IX.) In frequency bands where the
two channels are correlated, the expected value of the sum accumulates proportianal to

The final result, Figurs'§:6 shows the estimated “true” value of the IFO Differential Mode Output channel, after subtracting the

estimated crosstalk.
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The final result of the estimation process that is described is an estimate of the true value of_BMRE&0channel after
subtraction of the correlated contamination. This should be compared with the original time/frequency domain data shown I_h Figi_jres 3 and 4.
signal has been reduced by about a factor of six! There has been a significant reduction in the spectral
content of the signal around 180 and 300 Hz, and the instrumental effect around 46 seconds is much more apparent.



VI. METHOD ( N-CHANNEL CASE)

In Section'_l'}'l we showed how it is possible to obtain an estimate of the coupling between two channels, by searching for the
linear combination (in frequency space) that minimizes the variance of the channel of interest. In this section, we generalize this
method to théV-channel case, where in addition to the channel of interest, theré aré additional environmental monitoring
channels.

The basic idea is identical. We estimate the “true” value of the channel of interest as:

N
20 _x0) _ 3 T](_b)yj(’”_ (6.1)
j=2

Here ther!”) are a set ofV — 1 coupling constants: they are our estimates of the contribution that the ciigmmekes to the
channel of interesk in the frequency bantl As before, we choose these coupling constants in the way that minimizes the total
power in the channel of interest, assuming that they are constant throughéitinequency band. This means that we choose

ther ) in order to minimize the expected value of the nakim= ( ® ), :(b)), under an arbitrary variatio&r§b).
al b) ) Ny D 50
N=3S" < <5r(b)Y Z Oy, ! > - (X(b) —Zr,(f)Yk( ,or\"Y; ))
j=2 k=2
al S () < ; (6)
= (—&y’) (Yj X0 — Zr,(j’)Yk > - cc)
j=2 k=2
L b ®
— 2R Zar < XO - S Y ) . (6.2)
k=2

In order for this quantity to vanish under all variations of fiie- 1 coupling constant&r](-b) one must satisfWW — 1 equations
(forj=2,---,N):

N
T , X (®) — ) Y =0. .
Y_](b) <) I(gb)Y (b) 6.3

k=2

This may be conveniently written in matrix/vector form. To do so, defineteelation matrix estimate in thiéth channel
> (b) <5 ()
o = (%" "), (6.4)

This matrix C(.Z) is Hermitian and positive semi-definite. Notice that the entries of this correlation matrix are defined for
J,k =1,---, N since by definition the channel of interest= Y;. This means that “intrinsically”' is a squareV x N matrix.
The equations satisfied by the coefficiefits!(6.3) may now be written as

N
o =S, (6.5)
k=2

Notice that the left hand side is determined by the correlations between the channel of interest and the environmental channels.
The matrix that appears on the right hand side is determined by the correlation between the different environmental channels. In
the case where these are not correlated (i.e., a given environmental channel is only correlated with itself) then the matrix on the
right hand side is diagonal, and the situation is very similar to the two-channel case.

If all of the channels are non-zero in at least one bin in frequency banein the matrix is Hermitian and positive definite,
so that it may be inverted. We denote the inverse of this matrix by the sy@itbl Note: this isnotthe inverse of alV x N
matrix. It is the inverse of theV — 1) x (N — 1) matrix defined by'(6,4) foj, k = 2,---, N.

The coupling constants that minimize the variance in the channel of interest are now given by:

N
ri? = Z wCn forj=2,--- N. (6.6)
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Although it is tempting to interpret this equation as “inverse of a matrix times the matrix” and replace thedrtisthig is not
correct, becaus€ ! is the inverse of afiN — 1) x (N — 1) matrix.

It is again possible to ask how much the noiNnis reduced when compared with the corresponding norm of the original
channel of interes(f((b), X(b)) before any correlations were removed. This may be found by substituting the vat(fé of
(4.7) into the definition ofV. One obtains

( (b),i )
N
— [ X0 =Sy x0) - Z 0y,
Jj=2 j=2
= ir (5) X(b)
]:

(X(b>, x®) [ p® |2] : (6.7)

where the second line follows from Eq.'6.3 and we have defined

~ (b) ~
P2 = irj(”) (Y ’X(b))

N N
- ZZCM Ckl/cn . (6.8)

2 k=2

The second form expressgé® |2 in manifestly positive definite form, while from its definition it is always less than or equal
to 1. The quantityp(®)|> provides a useful measure of the total improvement in the signal. To understand which environmental

channels led to this improvement one may studyihe 1 pairwise covariance coeﬁicienﬂ;sﬁ’}) 2.

VII. EXAMPLE ( N-CHANNEL CASE)

Ourn-channel example is based on the same 18 November 1994 run 1 data from the Caltech 40-meter prototype gravitational
wave interferometer [3] that was used in the previous 2-channel example in Séction V. As before, the channel oXiigerest
the InterFerOmeter Differential Mode Read-out (LBMRO) and the other 11 sampled channels consist of environmental and
instrumental monitors. Three of the channels (including IPKRARO) were sampled at the fast rated#68.42 - - - Hz and the
other nine were sampled at exactly one-tenth that rate. The different channels are shown'in Table I. The covariance coefficients
p1; between these channels and the IBBIRO channel were previously shown in Figute 2.

Channel # Content FRAME name
0 IFO output IFO_DMRO

1 magnetometer IFO_Mag x

2 microphone IFO_Mike

4 dc strain IFO_DCDM

5 mode cleaner pzt PSLMC_V

6 seismometer IFO_Seis1

7 slow pzt PSLSPZTV
8 power stabilizer PSLPSS

10 TTL locked IFO_Lock

11 arm 1 visibility IFO_EAT

12 arm 2 visibility IFO_SAT

13 mode cleaner visibility IFO_MCR

15 arm 1 coil driver SUSEE Coil .V

TABLE |. Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels, sampled at about 10 kHz; the
remaining twelve are the “slow” channels, sampled at about 1KHz. Note that the power stabilizer channel was accidentally disconnected until
approximately 20:00 local time and so was not used by us, and that some channel numbers were not present in the data.
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As before, we used the firdtf; = M, = 10 x 2048 x 128 samples from the data set, covering about 266 seconds. As before,
to carry out the averaging we chooBe= 128 frequency bins in each dB; = By = 10 x 2048 frequency bands. Because
the DC strain channel is effectively just a low-pass filtered version of theDMIRO channel, it was left out of the removal
process. The result of this procedure is shown in Fig'}'ure 7.

Estimated Channel of Interest (X) after Decoupling
(time Domain)

20

=
o

ADC counts
o

-10

. . . . .
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time(sec)

(Frequency Domain)

l
| | |
| | | | |
I | | | | | |
| | | | | | |
| | | | | | |
L L1 1
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frequency(Hz)
FIG. 7.  The final result of the estimation process, to remove contamination from 11 monitored environmental channels from the
IFO_DMRO channel. This should be compared with the original time/frequency domain data shown in Eiguré_s 3and4.

It is very useful to compare this with the previous 2-channel case, where we removed only contamination that was correlated
with the magnetometer channel. In comparison to this previous case, the following features are evident:

e The “end effects” that are apparent in the two channel case (Ff_i'gure 6) are no longer present: these were not end effects but
contamination of the IFADMRO channel by an interfering signal.

e Comparison of the power spectra (Figu?_é'_§ :_4,6,7) in the region below 60 Hz shows that a significant reduction in low-
frequency content has been obtained.

e The time-domain properties of the estimated detector noise arenorauniform, rather than less uniform. This is good
evidence that the signal content which is being removed is in fact a true correlated signal and not merely an artifact of the
subtraction procedure described here.

VIIl. REDUCING THE EFFECTS OF CORRELATED SIDELOBES

When we began this work, our original intent had been to carry out a procedure similar to the one just described. However
that procedure failed, for reasons that are interesting, and are worth explaining here.
The procedure which failed can be summarized as follows:

e Take long stretches of data from each of flie€hannels, spanning a time interval of lendth
e Cutthem intdI'/T short segments of length(say, one second long) .
e Transform these into the frequency domain.

e For each short segment, and in each frequency bin, calcula® anV matrix containing the products of the Fourier
amplitudes of the different channels.

e In each frequency bin, average thigr matrices thus obtained to get an estimate of the correlation matrix.

e Use this correlation matrix to estimate the transfer funcfrihat minimizes the total power in each frequency band.

12



The reason why this procedure failed is not hard to understand.

One might expect that in this procedure, since the length of each segment in the time-damtie fsequency-resolution of
this method isA f ~ 7. Thus, for example, the line-frequency harmonics appearing at multipksIé might be expected
to be resolved within a band abatii Hz about their true locations. This is correct.

The problem occurs because in many instances, these line-like features in the frequency domainchéarger amplitude
(by orders of magnitude) than the neighboring frequency bins. In addition, these line-like features do not lie precisely at the
center of a frequency bin (in the time domain, the corresponding sinusoids do not undergo an integer number of oscillations
during the time-intervat). Consequently, these line-like features exhibit sidelobes of the windowing function. In the method
that we have described, this windowing function is rectangular (on or off) but even if a more sophisticated and smoothly-varying
window function is chosen, the sidelobes are still present. These sidelobes are much smaller than the central maximum, and
depending upon the choice of window function, they fall off as some (inverse) power of the separation in frequency bins from
the central line. Since the energy in the central line is so large compared with neighboring frequencies, these sidelobes, while
insignificant compared with the central line feature, are still large enough to completely dominate the signals at neighboring
frequencies. Consequently, one finds that there are large correlations arising from the central line-like features, extending out
over a range of frequencies that is quite large comparedfo~ 7=!. In many of the instances which we examined, these
correlated sidelobes dominate the true correlation ob@thf. This is shown in Figuri_a: 8.

Modulus of Estimated Transfer Function R,
Calculated by Two Different Methods

\

| |
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I |
| method ffailed
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| |
|
|

|
I
| I
[ [
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B |
0 60 120 180 240 300 360 420 480
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FIG. 8. A comparison of two methods of estimating the transfer fundiion The blue curve shows the method used in this paper: in
each frequency banfdthe estimate is constructed as an average over nearby frequency bins. The red curve shows the method that failed: it
is essentially the time average of a single frequency bin in a sequence of short Fourier transforms. It fails because sidelobes of strong line
features cause spurious correlations over a much wider range of frequenciesftran /7.

The failure of this other method may be easily summarized as follows. Although the energy arising from a sinusoidal signal
present in several channels is largely confined to a (small) bandwidifthe correlation arising from this signal can dominate
the correlation over a bandwidth which is fifty times larger! The resulting loss in frequency resolution is unacceptable. For this
reason, we don’t use (or recommend!) this method for estimating the correlations between different channels.

IX. AVOIDING FALSE DISMISSAL OF “CORRELATIONS"(TWO-CHANNEL CASE)

The methods that we have described for removing environmental contamination or crosstalk from signals of interest assumes
that there is no correlation between the environmental monitors and the signal of interest, and thus that any correlai®n which
found is due to “leakage” or “crosstalk” in the instrument. If this assumption is satisfied, one might well ask, “Is there a danger
of falsely removing correlations which do not in fact exist in the observed signals?” To quantify this requires that we make
assumptions about the statistics of any uncorrelated signals.

Suppose that we consider the case whereNhehannels are independent uncorrelated Gaussian random variables, with a
white power spectrum. For simplicity let us also assume that each has zero mean value and unit variance. This is a situation
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where a good technique for removal of correlated noise from the channel of interest should do absolutely nothing, since there is
no correlation to remove! How does the technique described here perform in this situation?

For simplicity, consider first the two-channel case of Sedtion IV. Suppose that the signalX¥glyesdY»(j) are indepen-
dent Gaussian random variables with mean value zero and unit variance. In this case, the Fourier amflijuaiesY ()
are also independent Gaussian random variables. The estimated transfer fun¢t|on (4.7) for a particular frequency band has meau
value zero. The expectation value of its square is given by

<‘r(b)‘2> _ <Ei€(b) > e XY ()X*(j )57(])>
Die(b) 2ojeh) |Y(~)|2|37( 7)I?
— <|X—|2>< Z]E(b) Df( )| >
Yicw) Zjem [YOPRY ()2
1

= (X)) { =————— 9.1
TS For ey

The calculation of the last quantity is slightly complicated and may be found in Appg'hdix A. Here, we approximate it in the case
where the frequency bar{d) contains many frequency bins. Since the number of frequency bins tritlthieequency band is
denoted byF', we will assume that' >> 1. In this case one obtains

<‘r(b)‘2> - % (9.2)

Because the estimated transfer functicand the covariancg® are related by

()" =i B2 ©3

our simple example of two uncorrelated channels would have the expectation vatydroéach frequency band equalttdF .
Thus, on the average, blind application of our method would reduce the variance of the channel of interest by the fraction

N = (i“’),i“’))

- (k0,0 [1- (42)7] = (50, x) (1- 1) »

This is clearly unacceptable since there is no correlation actually present, and the power in the channel of interest should not be
reduced at all. In the case where we have two uncorrelated Gaussian random channels, with for Exanipig the direct
application of the method described here will reduce the power in the channel of interest by almost one percent!

The problem that we are describing is that of incorrectly or falsely removing correlations that are not really present! If the
length of the data set were extremely long, so that the nuifilzéifrequency bins in any given frequency band were very large,
then this problem would disappear. However in practical work, it is unreasonable to have very large numbers of frequency bins
F in each band.

One simple solution to this problem is to threshold on the covariance. In other words, we examine each environmental channel
in turn, and ask if it is correlated with the channel of interest. If such a covariance is pa¢sestatistically-significant level
the correlation is removed. Otherwise, the correlation is not removed. Since the expectation yélig1gfF, we can set a
threshold of say0/F

X. AVOIDING FALSE DISMISSAL OF “CORRELATIONS"(N-CHANNEL CASE)

In the N-channel case, there is also a risk of falsely removing “correlations” that are not present. In SectlonVI we introduced

the correlation matrix by equatloh _(6 4). All the following calculations are based on that matrix. Each entry of that matrix,
CJ(.Z) = (Yj(b),fk(b) , is the correlation between channélandj in frequency band. According to Appendlx_A because
the numberF’ of frequency bins in frequency baids finite, the correlation between any two channels can not be calculated
precisely. Consequently there is a risk of finding correlations when none exist, and then incorrectly removing them.

One method to avoid false dismissal of “correlation” is to threshold on every entry of the correlation rﬁﬁfere calculate
the absolute value of the covariance coefficient between chapast¥: in frequency band, pjk , which is defined by equation

14



(ET._S). prg.';g) is smaller than some threshold valpie (for examplep* = %), then we set the corresponding enﬂ‘%) in the
correlation matrix to zero. Lﬁg?) is greater than the threshold valuie then we leave the corresponding er(ﬂfsz) in correlation
matrix unchanged. We usﬁ),ﬁ.',’c), to denote the correlation matrix after thresholding:

c® it p > p, or
p® = “ ik (10.1)

0 otherwise.

The next step is to calculate the coupling constants using equﬁftj'(pn (6.6), but repﬂé@ing’th the correlation matrix after
thresholdingDﬁ.',’c).
N a—
rP =3 (D(b))jk DY forj=2,---,N. (10.2)
k=2

Having found the coupling constan_t%’)_, one can remove the correlations from the channel of interest using eqtﬁ_é_ﬂon (6.1).
There is a problem when equation (10.2) is applied to real data. Because the thresholding sets entries of the correlation matrix

to zero,D(.',? becomes nearly singular and its invef3e! in equation:Zl:O:,'Z) becomes unstable. For example, in FL('gure 2, there
are two channels, slow pzt and arm2 visibility, which are very similar to each other. When the small correlation elements are
set to zero in the correlation matrix, the two rows corresponding to these two channels become very close to each other, which

makesD(.',? nearly singular.
To solve this problem, we eliminate “redundant”’channels. Consider the eigenvaaresthe eigenvectors of the matrix

DJ(.',?. Note that the matri>DJ(.',? is Hermitian and positive semi-definite. Its eigenvalues are always real and non-negative. If

the matriny,’c) becomes close to a singular matrR;.',? will have an eigenvalu@, which is very close to zero. We call the
corresponding eigenvectaf. Hence,

N
DWA® = A%A° or 3" DAY = \°A0. (10.3)
k=2

When\? is very close to zero, the rhs of equatien (10.3) vanishes. This means there is at least on® riatican be written
as a linear combination of the other rows. Becalisis the correlation matrix of different channels, this implies that at least
one channel is a linear combination of the other channels. That channel is a redundant channel and gives us no useful additiona
information about the environment. We can eliminate that channel from our channel set in order to keep the correlation matrix far
from singular. To determine the “best” channel to eliminate, we consider the absolute value of elptﬁ}smmhe eigenvector
A°. If |AD] is the maximum of all the absolute values of elements in the eigenv&ttdhis means that channklmakes the
maximum contribution to the null eigenvector. Hence, we remove charfrain the environmental channel set. Then, we build
anew(N — 1)?2 correlation matrixD from the remaining N-1 channels and follow the same procedure described above until the
eigenvalues are far away from zero.

Let us summarize our method in steps:

1. Threshold the correlation matr&](.,i) using equatiorrj((:).:],') to get a new correlation matrib“.@§?.

2. Calculate the eigenvaluasand the eigenvectors of the matrixD](.’,?.

3. Check whether there is an eigenvalue near zero.
If not, calculate the coupling constants using equaﬁlé_ﬁ_!(lO.Z) and remove the correlations from the channel ofinterest (
using equation (6;1).
If there is an eigenvalua® which is close to zero, find the maximum (for examM| ) of the absolute values of
elements in the corresponding eigenvect®r Then, eliminate the corresponding channel (for example chan'lhéhﬂ

is the maximum) from the channel set. That means that we eliminatésthew and’th column in Dj(.',?. Then return to
step 2.
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XI. GENERAL DISCUSSION OF THRESHOLDING METHODS

An ideal scheme of removing correlations from the channel of intéfest obtainx should have the following properties:
1. If any environmental channel is rescaled, ¥§.= «Yj, it does not affect the resuit
2. If any environmental channel is duplicated, ¥x4+1 = Yj, N = N + 1, it does not affect the resuit

3. Ifany environmental channel is duplicated by a linear combination of other channé¥éyi,g. = a2 Y2+ ...+ an Y,
N = N + 1, thenYn41 can be removed from the set of channels without affecting the resuldf course, property 2
is just a special case of property 3.

4. If the environmental channels are replaced by any linear combination of the original chann&ls, ke M;;Y;, where
M is an invertible matrix, it does not affect the resxlt

5. Ifthe environmental channels are re-labeled, it does not affect the xedtlits is a special case of condition 4, whif;
is a permutation matrix of the s@,..., N).

6. If an environmental channel is Gaussian noise and independent of other channels, then it does not affect the final result
at a statistically-significant level.

If we do not do thresholding (when the number of frequency bins a frequency band is very large), our method has all six
properties above. However, if we threshold using the method described in Seiction X (when the number of frequdnay bins
a frequency band is not large enough), our method has all the properties above except for property 4.

We also considered two other thresholding methods. The first one is to threshold on individual channels. We check the
absolute value of the covariance coefficient between chgnawedl channel (which is the channel of interesf) in frequency
bandb, pg.?. If pj(-? is smaller than some threshold valptethen we eliminate channglfrom our channel set. yf;;’;) is greater
than the threshold valug®, then we keep that channel in our channel set. This method has all the properties above except
for property 4. Compared with the method discussed in Segtjon X, this method is too conservative: it does not remove all the
possible contaminating noise. It is possible that one environmental chafneinot correlated with the channel of interest
but is correlated with another environmental charigl Suppose chann@y is correlated to the channel of interest and
contributes to the removal of correlated noise from the channel of int&rdst equation :_('6_';1). In this situation, if we include
channelY; in the channel set, it is equivalent to the following two operations. First, we remove the correlation between channel
Y; and channel, from channelYy. We call the resuli. Then we remove the correlation between chadheind channel
Yy from channelX. This is better than only removing the correlation between chawigeand channeKX from channelX
because our estimation of the correlation betw¥grand X is better than our estimate of the correlation betw¥grand X .

Another thresholding method is to consider the eigenvectors of the correlation matrix between the environmental channels.
The correlation matrix is diagonalized by a similarity transformation, which is a unitary niatmrade up of the eigenvectors
of the correlation matrix.

L=U'cU (11.1)

Here, the matrix;; is a diagonal matrix of the eigenvalues of the correlation matrix.

A ifi=jg,or
L = (11.2)

0 otherwise

Construct new channelg;’ by Yi' = U;;Y;. These channel¥;' are independent of each other since they have vanishing
correlation. Then threshold on each char¥iglindividually using the method of thresholding in the two-channel case described

in Section'_l'zk. However, there is a problem with this apparently promising method. If any environmental channel is rescaled, i.e.
Y; = aY;j, the eigenvector of the correlation matrix is changed. Hence the independent channels that We' build;; Y;

are also changed. So this method does not have properties 4 and 5. One may argue that we can normalize the environmente
channels first and then diagonalize the correlation matrix by the unitary natrix this wayU is unique. However we can

not find any physical reason to use a unitary matrix to diagonalize the correlation matrix. If we use non-unitary matrix, it is no
longer unigque. To demonstrate that the non-unitary matrix is non-unique, construct a Matrix

L ifi=j,or
M, = { VA (11.3)
0 otherwise.
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It is obvious thatV/t = M, andI = (UM)'CU M is the diagonal identity matrix. We can arbitrarily choose another unitary
matrix U’.

I=U'NUMfcuMU = UMU" ) CUMU"). (11.4)

Let matrix P = UMU’. Equation 1114 shows thd diagonalizes the correlation matriX to a unit matrix/. Becausel/ is
non-unitary,P is non-unitary. Because of the choicef is arbitrary, P is not unique. Even when only a unitary matrix is
used, there is still a problem. If an environmental channel is duplicated¥kg.1 = Yj, NV = N + 1, the n eigenvectors of
the correlation matrix are changed. This means this that method does not have properties 2 and 3.

It seems difficult to find a method of thresholding which has all six desired properties. There is a tradeoff in choosing a
suitable method. In practice, when full-scale LIGO begins operation, we expect that the methods discussed here will provide
some guidance in choosing a suitable set of environmental signals to use in “clean up” and understanding the interferometer’s
output. We anticipate that with some experience and experimentation, it will not prove too difficult to identify a set of suitable
channels in different frequency bands, and thresholds can be set based on experience and on understanding of the instrument.

XIl. CONCLUSION

The methods described in this paper amount to estimating whether or not a signal of interest is correlated with other environ-
mental channels. The key assumption is that the quantity being measured in the signal channel should not have any correlations
with the environment. The correlations are removed following a prescription that minimizes the power in user-defined frequency
bands.

We assume that the correlations with the environment are described by linear transfer functions. The methods used to identify
and remove these correlations are very similar to Principal Component Analysis (PCA) carried out in frequency space. We have
used a real data set to demonstrate that the method is both reasonable and effective.

When the full scale LIGO interferometers begin operation in the year 2000, there will be over a thousand environmental and
control channels being monitored, and the problem of identifying and eliminating the most significant environmental contami-
nation will be severe. In the end, we suspect that the methods described here will be useful in two ways. First, they will assist
in identifying which environmental channels are having the greatest effects on instrument performance. The frequency depen-
dence of these effects might be helpful in trying to determine how they can be alleviated or eliminated. Second, after the most
relevant set of environmental channels have been successfully identified, these techniques should make it possible to “clean up”
the signal, although further study will be needed to determine if this has undesirable side effects.
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APPENDIX A: PROBABILITY DISTRIBUTION OF  p? FOR UNCORRELATED GAUSSIAN NOISE

From equation, (9 4)in Secthn iIX, we know that when the two channels are independent Gaussian random variables, the
method described in Sectlon.IV will falsely remove “correlations” which do not exist. One method to avoid this false dismissal
of “correlation” is to threshold on the cohereneedefined by equat|on (4 8). To set a reasonable thresho}d one need to
know the probability distribution of? for the case wher& andY are not correlated.

To determine the probability distribution pt, we first consider an F-dimensional complex Gaussian random va#&)e=
R(j) +iI(j),j € 1...F, whereR(j) andI(j) are independent real Gaussian random variables with vanishing mean and unit
variance. Note that in order to make the notation simpler, we introduce a new syhtbakepresent thé or Y in previous
Sections. The probability distributions are (subscript “g” means “Gaussian”)

1 R(j)2

pg(R(])) = \/ﬂeiTv and
pop(I(7)) = \/12—7;*#- (A1)

DefineUz(j) = |Z(j)|> = R(j)? + I(j)2. The probability distributiom, (U~ (j)) is defined by

17



| wow@iar= [ [ w @+ )y (R, (Ddrar (A2)

for any choice of functiod?. ChoosingV (z) = 6(Uz(j) — z) yields

‘ %e‘”zz(j) for Uz(j) > 0, or
pu(Uz(j)) = (A3)
0 forUz(j) < 0.

F

DefineUz = > Uz(j). In the F-dimensional real space spannedtiy(1),...,Uz(N)) the joint probability distribution
1

p(Uz(1),...,Uz(F))is

p(Uz(1),...,Uz(F)) = pu(Uz(1)) ... pu(Uz(F))

B (1)"e==* if Uy(j) > Oforallj=1...F,or ad)

0 otherwise.

=~

Now we calculate the probability distribution pf assuming thak andY are independent F-dimensional complex Gaussian
random vectors. According to equatign {4.8), the coherphéedefined by

2
> (4, 2)]
=" A5
= 1) (200 20) (85)
whereZ; andZ, are F-dimensional complex vectors. Without loss of generality, we asgyraad Z> both have unit norm, or
(Z1,71) = (Z2,Z5) = 1,s0Uz, = Uy, = 1. Because equatioh (A5) is rotationally invariant, we can also assjifig = 1
andZ;(j) =0forj =2,...F. Then,

P’ =12V =Uz(1). (A6)

Thus, the probability distribution gf? is equal to the probability distribution @fz(1) given thatUz = 1, where Z(j) is an
F-dimensional complex random variable with probability distribution given by equdtion (Al).

p(p*) = p(Uz(W)|Uz = Dlv,(1)=p2, (A7)
and the cumulative probability distribution
p(p* > p3) = p(Uz(1) > p|Uz = 1)] 2 (A8)

It will be easier to first determine the cumulative probability distributigp? > p32), or

1

p(U2(1) > plUz = 1) = / p(Uz(D)|U7 = DdU(1). (9)

o

Note that to normalize this probability distribution requigg#’z (1) > p|Uz = 1)|,=0 = 1. In the F-dimensional real space
spanned byU4(1),...,Uz(F)), the conditionV; = 1 defines part of an{ — 1)-dimensional plané.

U.(D)+...+U,(F)=1
Py is defined b (A10)
U.(j) >0forjel...F.
The regionUz(1) > pandUy = 1) defines a part of anf{ — 1)-dimensional plané,,.
U.(D)+...+U,(F) =1
P, is defined b U.(1)>pu (Al1)
U.(j) >0forje2...F.
Note thatP, is a subset of,. From equation!(A4), we can see thdt/;(1),...,Uz(F)) is a constant for any giveli. In

our casel/; = 1. Hencep(Uz(1) > u|Uz = 1) is just the ratio between thg" — 1)-volume of P, and the(F' — 1)-volume
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of Py. To help calculate the volume &,, we can translate the coordinatég; (1),...,Uz(F)) so that the origin moves to the
point(u,0,...,0):

U.(1) = U.(1) - p
new coordinate{ (A12)
U.(j) =U.(j)forje2...F.

In the F-dimensional real space spannedliy(1)’,...,Uz(F)"), the plane

U.()Y+...+U,(F) =1—np
P, is defined by{ (A13)
U.(j)) >0forjel...F.

Comparing equatior, (A10) and equatign (A13), we see thaand P, are rescaled versions of each other, and the linear
dimension ofP, equals(1 — x) times the linear dimension df,. Hence,

(F — 1)-volume of P,

_ 1 \F-1
(F — 1)-volume of Py (1=n) (Al4)

p(Uz(1) > plUz =1) =

Thus the cumulative distribution

)Ffl

p(p* > pg) = (1 - pj (A15)

Note thatp(p® > p0)|p —o = 1. Hence this probability distribution is correctly normalized.
Taking the derivative of equatlon (A15) to get the differential probability distribution function yields

dp(p® > pj)

p(pQ) = _T|p3:p2
=(F-1)(1-p)"" (A16)
Hence,
c F—-2
p(p*) = (F-1)(1-p°) . (A17)
The expected value gf is
. . . . 1
<p’>= / Pp(p*)dp® = . (A18)

Now we can return to the problem identified at the beginning of this section.

The aim was to avoid false dismissal of non- eX|st|ng ‘correlation” by setting a reasonable threshold on the cgiterence
(defined by equatior) (4 8)) between chann€élandY". If p? is greater than the threshaid®, we conclude that the correlation
betweenX andY is present at a statistically-significant level, and remove the correlation using method described i |n Sect|on \VA
If not, we leave channeX unchanged. According to equat|q_n_(_A15) when two channels are just mdependentGaussmn random

variables, the probability of incorrectly removing “correlation” between them is give(riby(p*)Q)Ffl. For example, when
F =128 and(p*)? = 10/ F, the probability of incorrectly removing “correlation”i8 3 x 10~°.
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