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A technique is described for removing interference from a signal of interest (“channel 1”) which is one of a set
of N time-domain instrumental signals (“channels 1 toN ”). We assume that channel 1 is a linear combination
of “true” signal plus noise, and that the “true” signal is not correlated with the noise. We also assume that part of
this noise is produced, in a poorly-understood way, by the environment, and that the environment is monitored
by channels2 to N . Finally, we assume that the contribution of channeln to channel1 is described by an
(unknown!) linear transfer functionRn(t� t0). Our technique estimates theRi and provides a way to subtract
the environmental contamination from channel 1, giving an estimate of the “true” signal which minimizes its
variance. It also provides some insights into how the environment is contaminating the signal of interest. The
method is illustrated with data from a prototype interferometric gravitational-wave detector, in which the channel
of interest (differential displacement) is heavily contaminated by environmental noise (magnetic and seismic
noise) and laser frequency noise but where the coupling between these signals is not known in advance. Note: a
current version of this paper may be obtained at:http://www.lsc-group.phys.uwm.edu/ .
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I. INTRODUCTION

There are many situations of interest in which data are contaminated by the environment. Often this contamination is un-
derstood, and by monitoring the environment it is possible to “clean up” or “reduce” the data, by subtracting the effects of the
environment from the signal or signals of interest. Examples include measurements of the earth’s magnetic field contaminated
by harmonics of60Hz, or a telephone conversation carried on a transmission line, which has been corrupted by electro-magnetic
cross-talk from nearby lines. The work in this paper was motivated by another example: the data stream from an interfero-
metric gravitational radiation detector [1]. In this instance, the signal of interest is the differential displacement of suspended
test masses. A small part of this displacement arises from gravitational waves, but there are also large contributions arising
from contaminating sources, such as the shaking of the optical tables (seismic noise) and forces due to ambient environmental
magnetic fields. Particularly at low frequencies, these types of ambient environmental noise are the fundamental effects limiting
the sensitivity of the instrument [2]. The key point here is that the gravitational waves are not correlated with any of these
environmental artifacts.

In many such situations, it is possible to monitor the environment, offering the hope of removing from the signal of interest
the contaminating effects of the environment. For the prototype gravitational wave detector used as an example in this paper [3],
about a dozen of these environmental signals were monitored, including components of the magnetic field, acoustic pressure,
acceleration of the optical suspension, and so on [4]. It is not hard to see that in many cases, these environmental fields add
directly into the signal of interest, after convolution with some (unknown) response function. For example the suspension of the
optical elements of the interferometer may be physically modeled by a coupled set of masses, springs, and frictional elements
(dashpots), and thus acts as a mechanical filtering device. The displacement of the ground is filtered through this suspension
and the resulting displacement is added into the one arising from any gravitational waves. Thus if the ground displacement were
monitored, and if we knew the exact transfer function of the suspension, we could remove from the differential displacement
signal the part due to ground motion.
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The difficulty here is that these transfer functions are not known, and can not be accurately calculated from first principles.
For example the mechanical filters which isolate the suspension from the ground contain non-ideal springs, damping elements
whose restoring forces are not proportional to velocity, and so on. It might in principle be possible to measure these transfer
functions (for example by shaking the ground in a controlled way) but in many cases this is not practical.

II. NOTATION

Although our methods could be generalized to the case of continuous-in-time signals, we will assume from here on that all
the signals are discretely sampled in time. We will assume that the raw data (channels1 toN ) are time series, sampled at regular
intervals�t. We donot assume that these sample rates are the same for all the channels, so in particular(�t)n will denote the
sample rate of then’th channel. TheMn (assumed even) different sample values of channeln at regular time intervals will be
denoted by

Yn(j) = value of channel n at time t = j(�t)n (2.1)

for j = 0; � � � ;Mn � 1:

We assume that each of the channels has been sampled over the entire time intervalt 2 [0; T ] and thus thatT = Mn(�t)n has
the same invariant value for all channelsn = 1; � � � ; N . Because the primary goal of our technique is to extract an approximation
of the “true” or “uncontaminated” values of channel1, we adopt a special notation for this channel, and use

X(j) = Y1(j) (2.2)

to denote the signal of interest.
Our methods assume that the contamination of channel 1 by the other channels is described by linear filters or transfer

functions. The action of a linear filter (convolution in the time domain) is most simply represented in the frequency domain
(where it is just multiplication), and thus much of our work will take place in the frequency domain. The Discrete Fourier
Transforms (DFT) of the channels will be denoted by

~Yn(k) =

Mn�1X
j=0

exp

�
2�i

jk

Mn

�
Yn(j) (2.3)

for k = �Mn=2; � � � ;Mn=2:

The indexk labels frequency bins, and in particular thek’th bin of channeln corresponds to a frequency

f(n;k) = k=T: (2.4)

Note that throughout this paper, the wordbandis used to denote a collection of adjacent frequencybins. We assume that the raw
signals (channels) are real values, i.e. that theYn(k) are real, which implies that~Yn(k) = ~Y �n (�k) where “�” denotes complex
conjugate.

III. MODEL (TWO-CHANNEL CASE)

We begin by examining the case of only two channels. This is a good way to introduce the main ideas of the analysis and the
principal techniques. In Section VII we generalize this method to theN -channel case.
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FIG. 1. The case where the instrument’s output consists of only two channels (X andY ) is quite simple. The “true” value which the
channel of interest is designed to measure is denoted byx. The actual instrument output for the channel of interest is denoted byX. It is a
linear combination ofx and the environmental variabley2 = Y2, convolved with the response functionR2. By assuming thatx andy2 are not
correlated, we can estimate the value ofR2 and thus estimate the value ofx.

Our model may be though of in terms of the diagram in Figure 1. The output of the instrument, in other words, the actual
sample values produced by the experiment, are denoted byX andY2, in the notation introduced earlier. These values are to
be thought of as “imperfect” representations of some true values which are the variables that the experiment or instrument is
attempting to measure. However the actual instrumental outputs are not exactly equal to these values, because they have been
contaminated by the environment. We denote the true value which the instrument is attempting to measure byx, and the actual
output of the instrument byX . In the two-channel case, the environmental monitor channel is denoted byY2; without loss of
generality we may assume that it is equal to the actual value of some environmental variabley2.

In our model, we assume that the true valuex of the desired signal is not present at the output, because it is contaminated
by the environment. We assume that this contamination may be represented by a linear filter applied to the environmental
variabley2. For example, suppose thatx is the temperature of a sample of material (if that material is surrounded by a constant
temperature environment) but in fact the temperature of the environmentY2 is not constant, and varies with time. The influence
of the environment on the measured temperatureX of the sample is complicated by the fact that the heat from the environment
must diffuse through a thermal insulator before reaching the sample, so that a change in the temperature of the environment is
not immediately reflected in a change in the temperature of the sample. In this example, the effect of the environment on the
sample temperature may be modeled by a first-order linear filter, whose impulse response decays exponentially in a thermal
diffusion time.

In the example that served to motivate this paper, the desired signal is the differencex in optical phase between two paths
of a suspended interferometer produced by gravitational waves. However the instrument contains steering magnets, which are
sensitive to the ambient magnetic fields in the laboratory: these magnetic fields result in forces on the optical elements which
also change the optical phase. Assuming that the geometry of the laboratory and of the instrument (which serves to convert
magnetic fields into magnetic gradients) is not changing with time, one would expect to find a linear filter relationship between
some component of the laboratory magnetic field and the outputX of the relative optical phase channel. Similar effect arise
from seismic motion and from other sources.

IV. METHOD (TWO CHANNEL CASE)

The basic idea of our method is to estimate the transfer functionsRi. This is most easily illustrated in the two-channel case.
The situation of interest is one in which the transfer function does not change with time, or changes slowly with time. This is the
case if it is defined by spring constants (i.e. mechanical coupling) or mutual inductances (electrical cross-talk) or other quantities
that depend upon geometrical and mechanical properties which change slowly (adiabatically) with time.

To estimate the transfer function requires an averaging process. It might seem natural to average in time, but the calculations
are easier to understand and express if the averaging is carried out in frequency space instead. For this reason, we imagine that
the frequency space occupied by our signal (which for then’th channel isRMn) is broken up into subspaces that span frequency
bands. To introduce the notation, we first consider the channel of interest,X . For future convenience we will assume that the
Nyquist frequency bin~X(M1=2) does not contain any useful information (i.e. that an anti-aliasing filter was used in taking the
data) and that we can project our signal onto theR

Mn�1 dimensional subspace that does not include this frequency bin. For
notational purposes, write this frequency-space representation as the vector
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~X =
h
~X(0); ~X(1); � � � ; ~X(M1=2� 1)

i
(4.1)

=
h
~X(0); � � � ; ~X(B1�1)

i
where we have decomposed theRM1�1 into a set ofB1 orthogonal vector spaces, each of which contains only the fre-
quencies in a particular bandb = 0; � � � ; B1 � 1. The number of individual frequency “bins” contained in one of the fre-
quency bands is (the dimensionless integer)F , andBnF = Mn=2 for n = 1; � � � ; N . The number of frequency bands
Mn=2F doesdepend upon the channel number (or sample rate) but the number of binsF in a given band does not. Thus,

the vector ~X(0) =
h
~X(0); ~X(1); � � � ; ~X(F � 1)

i
. In general, the vector associated with frequency bandb consists of

~X(b) =
h
~X(bF ); ~X(bF + 1); � � � ; ~X((b+ 1)F � 1)

i
. The frequency band labeled by the dimensionless indexb spans a range

of physical frequencyf (in cycles/unit-time) given by the half-open interval

f 2 [fb; fb+1) with fb =
bF

T
: (4.2)

Later, we will discuss how we choose the number of frequency bands. This is related to the question of how much averaging is
needed to accurately estimate the transfer functions.

This notation generalizes in the obvious way to the other channels~Y2; � � � ; ~YN . Note that the number of real degrees of
freedom of then’th channel isMn. The complex coefficients~Yn(i) for i = 1; � � � ;Mn=2 � 1 containMn � 2 of those real
degrees of freedom. The coefficients~Yn(0) and ~Yn(Mn=2) are both real and contain the remaining two real degrees of freedom.
As before (with no significant loss of generality) we will assume that~Yn(Mn=2) is zero, because an anti-aliasing filter has
eliminated any signal contributions near the Nyquist frequency.

To express the correlation between two channels (or the auto-correlation of a channel with itself) it is useful to introduce a
bi-linear inner product. This is defined by�

~Y(b)
n1
; ~Y(b)

n2

�
�

X
bF�k<(b+1)F

~Yn1(k) ~Y
�
n2
(k): (4.3)

This is just the ordinary Cartesian inner product between the two vectors, after they have been projected into the subspace

spanned by theb’th frequency band. The quantity
�
~X(b); ~X(b)

�
is the power spectrum of channelX , summed over theb’th

frequency band: the total power in theb’th frequency band. Notice that the inner product isonlydefined if both channelsn1 and
n2 are sampled quickly enough so that both of them extend up to theb’th frequency band. If the frequency band lies above the
Nyquist frequency of either channel, the inner product is not defined. Note also that we could define another inner product, which

is the ordinary Cartesian one (with no projection) by summing
�
~Y
(b)
n1 ; ~Y

(b)
n2

�
over the rangeb = 0; � � � ; Bmin = min(Bn1 ; Bn2),

but this is used so little that it’s not worth the trouble.
We are now prepared to estimate the transfer function~R2(f) shown in Figure 1. Our goal in doing this is to estimate the

“true” channel of interestx. We denote the estimate of this quantity with an overbar:�x. We also use the overbar to denote our
estimates of derived quantities, for example�~x.

We assume that~R2(f) is complex constantwithin each frequency bandb, in other words that the transfer function does not
vary rapidly over the frequency bandwidth�f = F=T . For notational convenience, let us denote the constant value of~R2(f) in
a given frequency band byr(b). Given the transfer functionr(b) within the frequency band, our estimate of the Fourier transform
of the “true” channel of interest is

�~x
(b)

= ~X(b) � r(b) ~Y2

(b)
: (4.4)

We assume that the best estimate of the transfer function in the frequency bandb is the one that minimizes the norm

N =
�
�~x
(b)
; �~x

(b)
�

. Notice that although the vector�~x
(b)

containsF components, our estimated transfer functionr(b) is a single

complex number, containing in practice many fewer degrees of freedom than�~x
(b)

. In this way, the value of the transfer function
averages over the different frequency bins within the bandb, and thus corresponds to a time average.

To find r(b) we minimize the normN =
�
�~x
(b)
; �~x

(b)
�

. Under an arbitrary variationÆr(b) one has

ÆN = �
�
Ær(b) ~Y2

(b)
; ~X(b) � r(b) ~Y2

(b)
�
�
�
~X(b) � r(b) ~Y2

(b)
; Ær(b) ~Y2

(b)
�

= �Ær(b)
�
~Y2

(b)
; ~X(b) � r(b) ~Y2

(b)
�
�CC

= �2<
h
Ær(b)

�
~Y2

(b)
; ~X(b) � r(b) ~Y2

(b)
�i

; (4.5)
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where “CC” denotes the complex conjugate of the previous term. In order thatÆN vanish for all choices of the complex number
Ær(b) the inner product appearing on the final line must vanish:�

~Y2

(b)
; ~X(b) � r(b) ~Y2

(b)
�
= 0: (4.6)

The unique solution to this equation gives our best estimate of the transfer function~R2(f) in the frequency bandb as:

r(b) =

�
~X(b); ~Y2

(b)
�

�
~Y2

(b)
; ~Y2

(b)
� (4.7)

We note that instead of minimizing the inner product of our estimate of the true channel of interest independently within each
given frequency bandb, we could also have minimized the inner product defined as a sum over allBmin frequency bins; this
gives the same result since vectors obtained by projection onto orthogonal subspaces (corresponding to different frequency
bands) have zero inner product.

How effective is this procedure likely to be? Clearly, this depends upon how much contamination there is, in the channel
of interest, and upon how well the different environmental signals monitor the different sources of contamination. In order to
quantify these effects, it is useful to introduce thecovariance coefficientbetween channelsi andj in frequency bandb, which is
defined by

�
(b)
ij �

vuuuut
���� ~Y(b)

i ; ~Y
(b)
j

����2�
~Y
(b)
i ; ~Y

(b)
i

��
~Y
(b)
j ; ~Y

(b)
j

� : (4.8)

From the definition it follows that0 � �
(b)
ij � 1. This quantity may be interpreted as the (absolute value of) the cosine of

the angle between the vectors representing thei’th and j’th channels. When�(b)ij is close to unity this means that thei’th
andj’th channels are very correlated or anticorrelated; when close to zero this means that there is no statistically significant
(anti)correlation. The question “how large a�(b)ij is statistically significant” will be addressed in Section IX. The covariance

coefficients�(b)1j between the IFO channel (X = Y1) and the other 11 environmental channelsY2; � � � ; Y12 are shown in Figure 2.
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FIG. 2. The estimated correlations between the IFODMRO channel (X) and the other 11 environmental channels. Each individual graph
has vertical scale 0 to 1.

There are a number of interesting features in the graph of�
(b)
1j that are worth brief comment.

� The magnetometer output shows beautifully strong correlation with the IFODMRO at all multiples of the line frequency
of 60 Hz. The large ambient magnetic fields in the laboratory are probably being produced by motors in the ventilation
system and transformers in the argon laser power supply.

� The correlations between the microphone and the IFODMRO may reflect mechanical resonances in the mechanical
suspension and isolation systems which are driven by ambient acoustic noise.

� The DC strain is a low-pass filtered version of the IFODMRO channel of interest: channelX ! So in fact it has excellent
low-frequency correlation with the IFODMRO channel because these are measuring essentially the same thing. Note that
this channel will be left out of the decontamination procedure that we describe, since that procedure is intended only for
signals that should not show any intrinsic correlation with the true quantity of interest.

� The mode cleaner correlation is easy to understand. It occurs because the mode cleaner removes most but not all of the
laser frequency noise. The remaining frequency noise is converted by the interferometer into an effective change in the
arm length.

� The seismometer shows interesting and significant low-frequency correlation with the IFODMRO. The mechanical sus-
pension does not entirely isolate the instrument from ground motions, and these are subsequently converted into motions
of the suspended masses. These low-frequency correlations are precisely the sort of correlations that will be removed by
the procedure described in this paper.

� The arm 2 visibility and the slow pzt show almost identical correlations with the IFODMRO channel. We do not under-
stand why.

� The arm 1 coil driver shows very clear low-frequency correlations with the IFODMRO. These may be related to the
previously-described correlation between the mode cleaner and the IFODMRO.
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A technique for simultaneous removal of all of these correlations from the IFODMRO is described in Section VI, but for the
moment we return to the simplest, two-channel case.

In the two-channel case, the transfer function in frequency bandb was estimated by minimizing the normN �
�
�~x
(b)
; �~x

(b)
�

.

This led to a unique solution for the estimated transfer functionr(b), given by (4.7). How much is the normN reduced when

compared with the corresponding norm of the original channel of interest
�
~X(b); ~X(b)

�
before any correlations were removed?

This may be found by substituting the value ofr(b) (4.7) into the definition ofN . One obtains

N �
�
�~x
(b)
; �~x

(b)
�

=
�
~X(b) � r(b) ~Y2

(b)
; ~X(b) � r(b) ~Y2

(b)
�

=
�
~X(b); ~X(b)

�
� r(b)�

�
~X(b); ~Y2

(b)
�
� r(b)

�
~X(b); ~Y2

(b)
��

+ jr(b)j2
�

~Y2

(b)
; ~Y2

(b)
�

=
�
~X(b); ~X(b)

�
�

���� ~X(b); ~Y2

(b)
����2�

~Y2

(b)
; ~Y2

(b)
�

=
�
~X(b); ~X(b)

�2641�
���� ~X(b); ~Y2

(b)
����2�

~X(b); ~X(b)
��

~Y2

(b)
; ~Y2

(b)
�
3
75

=
�
~X(b); ~X(b)

��
1�

�
�
(b)
12

�2�
: (4.9)

The fractional reduction in the normN is 1�
�
�
(b)
12

�2
. Thus, if an environmental channel is strongly correlated with the channel

of interest, a significant reduction in the norm is obtained. As discussed following equation (4.3) this is may be though of as a
reduction in the total power in theb’th frequency band.

V. AN EXAMPLE (TWO CHANNEL CASE)

Our example (including Figure 2) is based on data from the Caltech 40-meter prototype gravitational wave interferometer [3].
During one week in November 1994, this instrument was used to collect data for later analysis. Between eleven and fourteen
channels of data were collected. The channel of interestX is the InterFerOmeter Differential Mode Read-out (IFODMRO) and
the other sampled channels consist of environmental and instrumental monitors. The channels were sampled at either9868:42 � � �
Hz (fast channels) or at one-tenth that rate (slow channels).

In our first example, we consider only two channels:X = Y1 is the IFODMRO andY2 is IFO Mag x. This is the
x�component of the magnetic field sampled near one of the optical elements denoted. Both of these signals are sampled at
the fast rate. We usedM1 = M2 = 10 � 2048� 128 samples from the 18 November 1994 run 1 data set, spanning approxi-
mately 266 seconds. To carry out the averaging we chooseF = 128 frequency bins in each ofB1 = B2 = 10� 2048 frequency
bands. This is the same data set whose correlations with the IFODMRO are illustrated in Figure 2.

There is particular reason to believe that the IFODMRO is strongly contaminated by ambient magnetic field noise (or by
signals which are correlated to that). This is because the optical elements of the interferometer suspension are steered and
controlled by magnetic forces. Many of the optical elements have magnets fastened to them, and small coils are used to provide
some of the servo feedback used to maintain the optical resonance of the interferometer. The laboratory magnetic fields arise
from a number of sources, including motors which are part of the air-circulation systems in the laboratory, and power-mains and
power-supply wiring such as the three-phase current driving the argon-laser power supply. It is also possible that ripple from the
power supplies is present in the servo loops whose error outputs are the source of the IFODMRO signal.

Figure 3 shows the two channelsX andY2 for 266 seconds. Because our primary goal is to remove low-frequency (f <
987=2 Hz) contamination fromX , these channels have been low-pass filtered by (1) transforming into the frequency domain (2)
setting to zero all spectral amplitudes at frequencies� 0:1 fNyquist then (3) transforming back into the time-domain. Although
it is not obvious from the graphs, both channels contain strong sinusoidal components at multiples of the line frequency 60 Hz.
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FIG. 3. Approximately 266 seconds of two channels of the Caltech 40-meter interferometer output, after low-pass filtering to remove all
frequency components above0:1 fNyquist. X denotes the Differential Mode Readout, which is the channel of interest.Y2 is the output of a
magnetometer, sensing a component of the local magnetic field. These two signals are both contaminated by many harmonics of 60 Hz. They
are shifted by�80 ADC counts for clarity.

Notice that the rms value of channelX is about 30 ADC counts. Also notice that the small instrumental feature (blip) around
t = 46 sec is almost obscured by the surrounding “hash”. The Fourier transforms of these two channels are shown in Figure 4.
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FIG. 4. The amplitude spectrum of the data sets from Figure 3. Notice that there are strong line-like features at the harmonics of 60 Hz,
particularly around 180 and 300 Hz in the channel of interest. The former may be due to the laser’s power supply producing cross-talk in other
electronics. This graph shows only frequencies� 0:1 fNyquist.

Using the procedure that we have described, we can estimate the couplingR2(f) between these two channels. This is shown
in Figure 5.
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FIG. 5. The estimated coupling functionR2(f) between the IFO channel (X) and the magnetometer (Y2). This estimate is dominated by
noise, except at frequencies where its modulus is large compared to nearby frequencies. At these frequencies, the estimate is accurate. The
frequencies at whichR2 can be accurately estimated includes (but is not limited to) many of the 60 Hz line harmonics.

In each frequency band, the estimate ofR2 is a sum over theF = 128 different frequency bins contained in that band. If
there is no correlation between the two channels, the expected value of this sum behaves like a random walk, accumulating
proportional to

p
F . (The case where there is no correlation is considered in detail in Section IX.) In frequency bands where the

two channels are correlated, the expected value of the sum accumulates proportional toF .
The final result, Figure 6 shows the estimated “true” value of the IFO Differential Mode Output channel, after subtracting the

estimated crosstalk.
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FIG. 6. The final result of the estimation process that is described is an estimate of the true value of the IFODMRO channel after
subtraction of the correlated contamination. This should be compared with the original time/frequency domain data shown in Figures 3 and 4.
Notice that the rms of the time-domain signal has been reduced by about a factor of six! There has been a significant reduction in the spectral
content of the signal around 180 and 300 Hz, and the instrumental effect around 46 seconds is much more apparent.
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VI. METHOD ( N -CHANNEL CASE)

In Section IV we showed how it is possible to obtain an estimate of the coupling between two channels, by searching for the
linear combination (in frequency space) that minimizes the variance of the channel of interest. In this section, we generalize this
method to theN -channel case, where in addition to the channel of interest, there areN �1 additional environmental monitoring
channels.

The basic idea is identical. We estimate the “true” value of the channel of interest as:

�~x
(b)

= ~X(b) �
NX
j=2

r
(b)
j

~Yj

(b)
: (6.1)

Here ther(b)j are a set ofN � 1 coupling constants: they are our estimates of the contribution that the channelYj makes to the
channel of interestX in the frequency bandb. As before, we choose these coupling constants in the way that minimizes the total
power in the channel of interest, assuming that they are constant throughout theb’th frequency band. This means that we choose

ther(b)j in order to minimize the expected value of the normN =
�
�~x
(b)
; �~x

(b)
�

, under an arbitrary variationÆr(b)j .

ÆN =
NX
j=2

 
�
 
Ær

(b)
j

~Yj

(b)
; ~X(b) �

NX
k=2

r
(b)
k

~Yk

(b)

!
�
 
~X(b) �

NX
k=2

r
(b)
k

~Yk

(b)
; Ær

(b)
j

~Yj

(b)

!!

=

NX
j=2

 
�Ær(b)j

 
~Yj

(b)
; ~X(b) �

NX
k=2

r
(b)
k

~Yk

(b)

!
�CC

!

= �2<
2
4 NX
j=2

Ær
(b)
j

 
~Yj

(b)
; ~X(b) �

NX
k=2

r
(b)
k

~Yk

(b)

!3
5 : (6.2)

In order for this quantity to vanish under all variations of theN � 1 coupling constantsÆr(b)j one must satisfyN � 1 equations
(for j = 2; � � � ; N) :  

~Yj

(b)
; ~X(b) �

NX
k=2

r
(b)
k

~Yk

(b)

!
= 0: (6.3)

This may be conveniently written in matrix/vector form. To do so, define thecorrelation matrix estimate in theb’th channel:

C
(b)
jk =

�
~Yj

(b)
; ~Yk

(b)
�
: (6.4)

This matrixC(b)
jk is Hermitian and positive semi-definite. Notice that the entries of this correlation matrix are defined for

j; k = 1; � � � ; N since by definition the channel of interestX = Y1. This means that “intrinsically”C is a squareN �N matrix.
The equations satisfied by the coefficients (6.3) may now be written as

C
(b)
j1 =

NX
k=2

C
(b)
jk r

(b)
k : (6.5)

Notice that the left hand side is determined by the correlations between the channel of interest and the environmental channels.
The matrix that appears on the right hand side is determined by the correlation between the different environmental channels. In
the case where these are not correlated (i.e., a given environmental channel is only correlated with itself) then the matrix on the
right hand side is diagonal, and the situation is very similar to the two-channel case.

If all of the channels are non-zero in at least one bin in frequency bandb then the matrix is Hermitian and positive definite,
so that it may be inverted. We denote the inverse of this matrix by the symbolC�1. Note: this isnot the inverse of anN �N
matrix. It is the inverse of the(N � 1)� (N � 1) matrix defined by (6.4) forj; k = 2; � � � ; N .

The coupling constants that minimize the variance in the channel of interest are now given by:

r
(b)
j =

NX
k=2

�
C�1

�
jk
Ck1 for j = 2; � � � ; N: (6.6)
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Although it is tempting to interpret this equation as “inverse of a matrix times the matrix” and replace the rhs byÆj1 this is not
correct, becauseC�1 is the inverse of an(N � 1)� (N � 1) matrix.

It is again possible to ask how much the normN is reduced when compared with the corresponding norm of the original

channel of interest
�
~X(b); ~X(b)

�
before any correlations were removed. This may be found by substituting the value ofr(b)

(4.7) into the definition ofN . One obtains

N �
�
�~x
(b)
; �~x

(b)
�

=

0
@ ~X(b) �

NX
j=2

r
(b)
j

~Yj

(b)
; ~X(b) �

NX
j=2

r
(b)
j

~Yj

(b)

1
A

=

0
@ ~X(b) �

NX
j=2

r
(b)
j

~Yj

(b)
; ~X(b)

1
A

=
�
~X(b); ~X(b)

�h
1� j�(b)j2

i
: (6.7)

where the second line follows from Eq. 6.3 and we have defined

j�(b)j2 =
NX
j=2

r
(b)
j

�
~Yj

(b)
; ~X(b)

�
�
~X(b); ~X(b)

�
=

NX
j=2

NX
k=2

C�1j
�
C�1

�
jk
Ck1=C

(b)
11 : (6.8)

The second form expressesj�(b)j2 in manifestly positive definite form, while from its definition it is always less than or equal
to 1. The quantityj�(b)j2 provides a useful measure of the total improvement in the signal. To understand which environmental

channels led to this improvement one may study theN � 1 pairwise covariance coefficientsj�(b)1j j2.

VII. EXAMPLE ( N -CHANNEL CASE)

Ourn-channel example is based on the same 18 November 1994 run 1 data from the Caltech 40-meter prototype gravitational
wave interferometer [3] that was used in the previous 2-channel example in Section V. As before, the channel of interestX is
the InterFerOmeter Differential Mode Read-out (IFODMRO) and the other 11 sampled channels consist of environmental and
instrumental monitors. Three of the channels (including IFODMRO) were sampled at the fast rate of9868:42 � � � Hz and the
other nine were sampled at exactly one-tenth that rate. The different channels are shown in Table I. The covariance coefficients
�1j between these channels and the IFODMRO channel were previously shown in Figure 2.

Channel # Content FRAME name
0 IFO output IFO DMRO
1 magnetometer IFO Mag x
2 microphone IFO Mike
4 dc strain IFO DCDM
5 mode cleaner pzt PSL MC V
6 seismometer IFO Seis1
7 slow pzt PSL SPZTV
8 power stabilizer PSL PSS
10 TTL locked IFO Lock
11 arm 1 visibility IFO EAT
12 arm 2 visibility IFO SAT
13 mode cleaner visibility IFO MCR
15 arm 1 coil driver SUSEE Coil V

TABLE I. Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels, sampled at about 10 kHz; the
remaining twelve are the “slow” channels, sampled at about 1KHz. Note that the power stabilizer channel was accidentally disconnected until
approximately 20:00 local time and so was not used by us, and that some channel numbers were not present in the data.
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As before, we used the firstM1 = M2 = 10� 2048� 128 samples from the data set, covering about 266 seconds. As before,
to carry out the averaging we chooseF = 128 frequency bins in each ofB1 = B2 = 10 � 2048 frequency bands. Because
the DC strain channel is effectively just a low-pass filtered version of the IFODMRO channel, it was left out of the removal
process. The result of this procedure is shown in Figure 7.
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FIG. 7. The final result of the estimation process, to remove contamination from 11 monitored environmental channels from the
IFO DMRO channel. This should be compared with the original time/frequency domain data shown in Figures 3 and 4.

It is very useful to compare this with the previous 2-channel case, where we removed only contamination that was correlated
with the magnetometer channel. In comparison to this previous case, the following features are evident:

� The “end effects” that are apparent in the two channel case (Figure 6) are no longer present: these were not end effects but
contamination of the IFODMRO channel by an interfering signal.

� Comparison of the power spectra (Figures 4,6,7) in the region below 60 Hz shows that a significant reduction in low-
frequency content has been obtained.

� The time-domain properties of the estimated detector noise are nowmoreuniform, rather than less uniform. This is good
evidence that the signal content which is being removed is in fact a true correlated signal and not merely an artifact of the
subtraction procedure described here.

VIII. REDUCING THE EFFECTS OF CORRELATED SIDELOBES

When we began this work, our original intent had been to carry out a procedure similar to the one just described. However
that procedure failed, for reasons that are interesting, and are worth explaining here.

The procedure which failed can be summarized as follows:

� Take long stretches of data from each of theN channels, spanning a time interval of lengthT .

� Cut them intoT=� short segments of length� (say, one second long) .

� Transform these into the frequency domain.

� For each short segment, and in each frequency bin, calculate anN � N matrix containing the products of the Fourier
amplitudes of the different channels.

� In each frequency bin, average theT=� matrices thus obtained to get an estimate of the correlation matrix.

� Use this correlation matrix to estimate the transfer functionRj that minimizes the total power in each frequency band.
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The reason why this procedure failed is not hard to understand.
One might expect that in this procedure, since the length of each segment in the time-domain is� , the frequency-resolution of

this method is�f � ��1. Thus, for example, the line-frequency harmonics appearing at multiples of60 Hz might be expected
to be resolved within a band about�1 Hz about their true locations. This is correct.

The problem occurs because in many instances, these line-like features in the frequency domain havemuchlarger amplitude
(by orders of magnitude) than the neighboring frequency bins. In addition, these line-like features do not lie precisely at the
center of a frequency bin (in the time domain, the corresponding sinusoids do not undergo an integer number of oscillations
during the time-interval� ). Consequently, these line-like features exhibit sidelobes of the windowing function. In the method
that we have described, this windowing function is rectangular (on or off) but even if a more sophisticated and smoothly-varying
window function is chosen, the sidelobes are still present. These sidelobes are much smaller than the central maximum, and
depending upon the choice of window function, they fall off as some (inverse) power of the separation in frequency bins from
the central line. Since the energy in the central line is so large compared with neighboring frequencies, these sidelobes, while
insignificant compared with the central line feature, are still large enough to completely dominate the signals at neighboring
frequencies. Consequently, one finds that there are large correlations arising from the central line-like features, extending out
over a range of frequencies that is quite large compared to�f � ��1. In many of the instances which we examined, these
correlated sidelobes dominate the true correlation out to50�f . This is shown in Figure 8.
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FIG. 8. A comparison of two methods of estimating the transfer functionR12. The blue curve shows the method used in this paper: in
each frequency bandb the estimate is constructed as an average over nearby frequency bins. The red curve shows the method that failed: it
is essentially the time average of a single frequency bin in a sequence of short Fourier transforms. It fails because sidelobes of strong line
features cause spurious correlations over a much wider range of frequencies than�f = 1=T .

The failure of this other method may be easily summarized as follows. Although the energy arising from a sinusoidal signal
present in several channels is largely confined to a (small) bandwidth�f , the correlation arising from this signal can dominate
the correlation over a bandwidth which is fifty times larger! The resulting loss in frequency resolution is unacceptable. For this
reason, we don’t use (or recommend!) this method for estimating the correlations between different channels.

IX. AVOIDING FALSE DISMISSAL OF “CORRELATIONS”(TWO-CHANNEL CASE)

The methods that we have described for removing environmental contamination or crosstalk from signals of interest assumes
that there is no correlation between the environmental monitors and the signal of interest, and thus that any correlation whichis
found is due to “leakage” or “crosstalk” in the instrument. If this assumption is satisfied, one might well ask, “Is there a danger
of falsely removing correlations which do not in fact exist in the observed signals?” To quantify this requires that we make
assumptions about the statistics of any uncorrelated signals.

Suppose that we consider the case where theN channels are independent uncorrelated Gaussian random variables, with a
white power spectrum. For simplicity let us also assume that each has zero mean value and unit variance. This is a situation
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where a good technique for removal of correlated noise from the channel of interest should do absolutely nothing, since there is
no correlation to remove! How does the technique described here perform in this situation?

For simplicity, consider first the two-channel case of Section IV. Suppose that the signal valuesX(i) andY2(j) are indepen-
dent Gaussian random variables with mean value zero and unit variance. In this case, the Fourier amplitudes~X(i) and ~Y2(j)
are also independent Gaussian random variables. The estimated transfer function (4.7) for a particular frequency band has mean
value zero. The expectation value of its square is given by

����r(b)���2� =

*P
i2(b)

P
j2(b) ~X(i) ~Y �(i) ~X�(j) ~Y (j)P

i2(b)
P

j2(b) j ~Y (i)j2j ~Y (j)j2

+

= hj ~Xj2i
* P

j2(b) j ~Y (j)j2P
i2(b)

P
j2(b) j ~Y (i)j2j ~Y (j)j2

+

= hj ~Xj2i
*

1P
i2(b) j ~Y (i)j2

+
(9.1)

The calculation of the last quantity is slightly complicated and may be found in Appendix A. Here, we approximate it in the case
where the frequency band(b) contains many frequency bins. Since the number of frequency bins in theb’th frequency band is
denoted byF , we will assume thatF >> 1. In this case one obtains����r(b)���2� =

1

F
: (9.2)

Because the estimated transfer functionr and the covariance�2 are related by

�
�
(b)
1j

�2
= jr(b)j j2 (

~Yj ; ~Yj)

( ~X; ~X)
; (9.3)

our simple example of two uncorrelated channels would have the expectation value of�212 in each frequency band equal to1=F .
Thus, on the average, blind application of our method would reduce the variance of the channel of interest by the fraction

N �
�
�~x
(b)
; �~x

(b)
�

=
�
~X(b); ~X(b)

��
1�

�
�
(b)
12

�2�
=
�
~X(b); ~X(b)

��
1� 1

F

�
: (9.4)

This is clearly unacceptable since there is no correlation actually present, and the power in the channel of interest should not be
reduced at all. In the case where we have two uncorrelated Gaussian random channels, with for exampleF = 128, the direct
application of the method described here will reduce the power in the channel of interest by almost one percent!

The problem that we are describing is that of incorrectly or falsely removing correlations that are not really present! If the
length of the data set were extremely long, so that the numberF of frequency bins in any given frequency band were very large,
then this problem would disappear. However in practical work, it is unreasonable to have very large numbers of frequency bins
F in each band.

One simple solution to this problem is to threshold on the covariance. In other words, we examine each environmental channel
in turn, and ask if it is correlated with the channel of interest. If such a covariance is presentat a statistically-significant level,
the correlation is removed. Otherwise, the correlation is not removed. Since the expectation value of�2 is 1=F , we can set a
threshold of say10=F

X. AVOIDING FALSE DISMISSAL OF “CORRELATIONS”(N-CHANNEL CASE)

In the N-channel case, there is also a risk of falsely removing “correlations” that are not present. In SectionVI, we introduced
the correlation matrix by equation (6.4). All the following calculations are based on that matrix. Each entry of that matrix,

C
(b)
jk =

�
~Yj

(b)
; ~Yk

(b)
�

, is the correlation between channelsi andj in frequency bandb. According to Appendix A, because

the numberF of frequency bins in frequency bandb is finite, the correlation between any two channels can not be calculated
precisely. Consequently there is a risk of finding correlations when none exist, and then incorrectly removing them.

One method to avoid false dismissal of “correlation” is to threshold on every entry of the correlation matrix,C
(b)
jk . We calculate

the absolute value of the covariance coefficient between channelsj andk in frequency bandb, �(b)jk , which is defined by equation
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(4.8). If �(b)jk is smaller than some threshold value�� (for example�� = 10
F

), then we set the corresponding entryC(b)
jk in the

correlation matrix to zero. If�(b)ij is greater than the threshold value��, then we leave the corresponding entryC
(b)
jk in correlation

matrix unchanged. We use,D(b)
jk , to denote the correlation matrix after thresholding:

D
(b)
jk =

8<
:
C
(b)
jk if �(b)jk > ��, or

0 otherwise:

(10.1)

The next step is to calculate the coupling constants using equation (6.6), but replacingC
(b)
jk with the correlation matrix after

thresholding,D(b)
jk .

r
(b)
j =

NX
k=2

�
D(b)

��1
jk

D
(b)
k1 for j = 2; � � � ; N: (10.2)

Having found the coupling constantsr(b)j , one can remove the correlations from the channel of interest using equation (6.1).
There is a problem when equation (10.2) is applied to real data. Because the thresholding sets entries of the correlation matrix

to zero,D(b)
jk becomes nearly singular and its inverseD�1 in equation (10.2) becomes unstable. For example, in Figure 2, there

are two channels, slow pzt and arm2 visibility, which are very similar to each other. When the small correlation elements are
set to zero in the correlation matrix, the two rows corresponding to these two channels become very close to each other, which
makesD(b)

jk nearly singular.
To solve this problem, we eliminate “redundant”channels. Consider the eigenvalues� and the eigenvectors� of the matrix

D
(b)
jk . Note that the matrixD(b)

jk is Hermitian and positive semi-definite. Its eigenvalues are always real and non-negative. If

the matrixD(b)
jk becomes close to a singular matrix,D

(b)
jk will have an eigenvalue�0 which is very close to zero. We call the

corresponding eigenvector�0. Hence,

D(b)�0 = �0�0, or
NX
k=2

D
(b)
jk �

0
j = �0�0

j : (10.3)

When�0 is very close to zero, the rhs of equation (10.3) vanishes. This means there is at least one row inD that can be written
as a linear combination of the other rows. BecauseD is the correlation matrix of different channels, this implies that at least
one channel is a linear combination of the other channels. That channel is a redundant channel and gives us no useful additional
information about the environment. We can eliminate that channel from our channel set in order to keep the correlation matrix far
from singular. To determine the “best” channel to eliminate, we consider the absolute value of elements

���0
j

�� in the eigenvector
�0. If

���0
k

�� is the maximum of all the absolute values of elements in the eigenvector�0, this means that channelk makes the
maximum contribution to the null eigenvector. Hence, we remove channelk from the environmental channel set. Then, we build
a new(N � 1)2 correlation matrixD from the remaining N-1 channels and follow the same procedure described above until the
eigenvalues are far away from zero.

Let us summarize our method in steps:

1. Threshold the correlation matrixC(b)
jk using equation (10:1) to get a new correlation matrixD(b)

jk .

2. Calculate the eigenvalues� and the eigenvectors� of the matrixD(b)
jk .

3. Check whether there is an eigenvalue near zero.

If not, calculate the coupling constants using equation (10.2) and remove the correlations from the channel of interest (X)
using equation (6.1).

If there is an eigenvalue�0 which is close to zero, find the maximum (for example
���0

k

�� ) of the absolute values of
elements in the corresponding eigenvector�0. Then, eliminate the corresponding channel (for example channelk if

���0
k

��
is the maximum) from the channel set. That means that we eliminate thek’s row andk’th column inD(b)

jk . Then return to
step 2.
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XI. GENERAL DISCUSSION OF THRESHOLDING METHODS

An ideal scheme of removing correlations from the channel of interestX to obtain�x should have the following properties:

1. If any environmental channel is rescaled, i.e.Yj ) �Yj, it does not affect the result�x.

2. If any environmental channel is duplicated, i.e.YN+1 = Yj, N ) N + 1, it does not affect the result�x.

3. If any environmental channel is duplicated by a linear combination of other channels, i.e.YN+1 = �2Y2+ : : :+�NYN,
N ) N + 1, thenYN+1 can be removed from the set of channels without affecting the result�x . Of course, property 2
is just a special case of property 3.

4. If the environmental channels are replaced by any linear combination of the original channels, i.e.Yi
0 = MijYj, where

M is an invertible matrix, it does not affect the result�x.

5. If the environmental channels are re-labeled, it does not affect the result�x. This is a special case of condition 4, whenMij

is a permutation matrix of the set(2; : : : ; N).

6. If an environmental channel is Gaussian noise and independent of other channels, then it does not affect the final result�x

at a statistically-significant level.

If we do not do thresholding (when the number of frequency binsF in a frequency band is very large), our method has all six
properties above. However, if we threshold using the method described in Section X (when the number of frequency binsF in
a frequency band is not large enough), our method has all the properties above except for property 4.

We also considered two other thresholding methods. The first one is to threshold on individual channels. We check the
absolute value of the covariance coefficient between channelj and channel1 (which is the channel of interestX) in frequency
bandb, �(b)j1 . If �(b)j1 is smaller than some threshold value�� then we eliminate channelj from our channel set. If�(b)j1 is greater
than the threshold value��, then we keep that channel in our channel set. This method has all the properties above except
for property 4. Compared with the method discussed in Section X, this method is too conservative: it does not remove all the
possible contaminating noise. It is possible that one environmental channelYj is not correlated with the channel of interestX
but is correlated with another environmental channelYk. Suppose channelYk is correlated to the channel of interestX , and
contributes to the removal of correlated noise from the channel of interestX by equation (6.1). In this situation, if we include
channelYj in the channel set, it is equivalent to the following two operations. First, we remove the correlation between channel
Yj and channelYk from channelYk. We call the result�Yk. Then we remove the correlation between channelX and channel
�Yk from channelX . This is better than only removing the correlation between channelYk and channelX from channelX
because our estimation of the correlation between�Yk andX is better than our estimate of the correlation betweenYk andX .

Another thresholding method is to consider the eigenvectors of the correlation matrix between the environmental channels.
The correlation matrix is diagonalized by a similarity transformation, which is a unitary matrixU made up of the eigenvectors
of the correlation matrix.

L = UyCU (11.1)

Here, the matrixLij is a diagonal matrix of the eigenvalues of the correlation matrix.

Lij =

(
�i if i = j, or

0 otherwise:
(11.2)

Construct new channelsYi
0 by Yi

0 = UijYj. These channelsYi
0 are independent of each other since they have vanishing

correlation. Then threshold on each channelYi
0 individually using the method of thresholding in the two-channel case described

in Section IX. However, there is a problem with this apparently promising method. If any environmental channel is rescaled, i.e.
Yj ) �Yj, the eigenvector of the correlation matrix is changed. Hence the independent channels that we buildYi

0 = UijYj

are also changed. So this method does not have properties 4 and 5. One may argue that we can normalize the environmental
channels first and then diagonalize the correlation matrix by the unitary matrixU . In this wayU is unique. However we can
not find any physical reason to use a unitary matrix to diagonalize the correlation matrix. If we use non-unitary matrix, it is no
longer unique. To demonstrate that the non-unitary matrix is non-unique, construct a matrixM

Mij =

( 1p
�i

if i = j, or

0 otherwise:
(11.3)
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It is obvious thatMy = M , andI = (UM)yCUM is the diagonal identity matrix. We can arbitrarily choose another unitary
matrixU 0.

I = U 0(y(UM)yCUM)U 0 = (UMU 0)yC(UMU 0): (11.4)

Let matrixP = UMU 0. Equation 11.4 shows thatP diagonalizes the correlation matrixC to a unit matrixI . BecauseM is
non-unitary,P is non-unitary. Because of the choice ofU 0 is arbitrary,P is not unique. Even when only a unitary matrix is
used, there is still a problem. If an environmental channel is duplicated, i.e.YN+1 = Yj, N ) N + 1, the n eigenvectors of
the correlation matrix are changed. This means this that method does not have properties 2 and 3.

It seems difficult to find a method of thresholding which has all six desired properties. There is a tradeoff in choosing a
suitable method. In practice, when full-scale LIGO begins operation, we expect that the methods discussed here will provide
some guidance in choosing a suitable set of environmental signals to use in “clean up” and understanding the interferometer’s
output. We anticipate that with some experience and experimentation, it will not prove too difficult to identify a set of suitable
channels in different frequency bands, and thresholds can be set based on experience and on understanding of the instrument.

XII. CONCLUSION

The methods described in this paper amount to estimating whether or not a signal of interest is correlated with other environ-
mental channels. The key assumption is that the quantity being measured in the signal channel should not have any correlations
with the environment. The correlations are removed following a prescription that minimizes the power in user-defined frequency
bands.

We assume that the correlations with the environment are described by linear transfer functions. The methods used to identify
and remove these correlations are very similar to Principal Component Analysis (PCA) carried out in frequency space. We have
used a real data set to demonstrate that the method is both reasonable and effective.

When the full scale LIGO interferometers begin operation in the year 2000, there will be over a thousand environmental and
control channels being monitored, and the problem of identifying and eliminating the most significant environmental contami-
nation will be severe. In the end, we suspect that the methods described here will be useful in two ways. First, they will assist
in identifying which environmental channels are having the greatest effects on instrument performance. The frequency depen-
dence of these effects might be helpful in trying to determine how they can be alleviated or eliminated. Second, after the most
relevant set of environmental channels have been successfully identified, these techniques should make it possible to “clean up”
the signal, although further study will be needed to determine if this has undesirable side effects.
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APPENDIX A: PROBABILITY DISTRIBUTION OF �2 FOR UNCORRELATED GAUSSIAN NOISE

From equation (9.4) in Section IX, we know that when the two channels are independent Gaussian random variables, the
method described in Section IV will falsely remove “correlations” which do not exist. One method to avoid this false dismissal
of “correlation” is to threshold on the coherence�2 defined by equation (4.8). To set a reasonable threshold on�2, we need to
know the probability distribution of�2 for the case where~X and ~Y are not correlated.

To determine the probability distribution of�2, we first consider an F-dimensional complex Gaussian random variableZ(j) �
R(j) + iI(j); j 2 1 : : : F , whereR(j) andI(j) are independent real Gaussian random variables with vanishing mean and unit
variance. Note that in order to make the notation simpler, we introduce a new symbolZ to represent the~X or ~Y in previous
Sections. The probability distributions are (subscript “g” means “Gaussian”)

pg(R(j)) =
1p
2�

e�
R(j)2

2 ; and

pgp(I(j)) =
1p
2�

e�
I(j)2

2 : (A1)

DefineUZ(j) � jZ(j)j2 = R(j)2 + I(j)2. The probability distributionpu(UZ(j)) is defined by
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Z 1

�1
W (U)pu(U)dU �

Z 1

�1

Z 1

�1
W
�
R2 + I2

�
pg(R)pg(I)dRdI (A2)

for any choice of functionW . ChoosingW (x) = Æ(UZ(j)� x) yields

pu(UZ(j)) =

8<
:

1
2e
�UZ (j)

2 for UZ(j) > 0, or

0 for UZ(j) < 0 :

(A3)

DefineUZ �
FP
1
UZ(j). In the F-dimensional real space spanned by(UZ(1); : : : ; UZ(N)) the joint probability distribution

p(UZ(1); : : : ; UZ(F )) is

p(UZ(1); : : : ; UZ(F )) = pu(UZ(1)) : : : pu(UZ(F ))

=

8<
:
�
1
2

�n
e
�UZ
2 if UZ(j) > 0 for all j = 1 : : : F; or

0 otherwise.

(A4)

Now we calculate the probability distribution of�2 assuming that~X and ~Y are independent F-dimensional complex Gaussian
random vectors. According to equation (4.8), the coherence�2 is defined by

�2 � j(Z1; Z2)j2
(Z1; Z1) (Z2; Z2)

; (A5)

whereZ1 andZ2 are F-dimensional complex vectors. Without loss of generality, we assumeZ1 andZ2 both have unit norm, or
(Z1; Z1) = (Z2; Z2) = 1, soUZ1 = UZ2 = 1 . Because equation (A5) is rotationally invariant, we can also assumeZ1(1) = 1
andZ1(j) = 0 for j = 2; : : : F . Then,

�2 = jZ2(1)j2 = UZ2(1): (A6)

Thus, the probability distribution of�2 is equal to the probability distribution ofUZ(1) given thatUZ = 1, where Z(j) is an
F-dimensional complex random variable with probability distribution given by equation (A1).

p(�2) = p(UZ(1)jUZ = 1)jUZ(1)=�2 ; (A7)

and the cumulative probability distribution

p(�2 > �20) = p(UZ(1) > �jUZ = 1)j�=�20 : (A8)

It will be easier to first determine the cumulative probability distributionp(�2 > �20), or

p(UZ(1) > �jUZ = 1) =

Z 1

�

p(UZ(1)jUZ = 1)dUZ(1): (A9)

Note that to normalize this probability distribution requiresp(UZ(1) > �jUZ = 1)j�=0 = 1. In the F-dimensional real space
spanned by(UZ(1); : : : ; UZ(F )), the conditionUZ = 1 defines part of an (F � 1)-dimensional planeP0.

P0 is defined by

(
Uz(1) + : : :+ Uz(F ) = 1

Uz(j) > 0 for j 2 1 : : : F .
(A10)

The region (UZ(1) > � andUZ = 1) defines a part of an (F � 1)-dimensional planeP�.

P� is defined by

8>>><
>>>:

Uz(1) + : : :+ Uz(F ) = 1

Uz(1) > �

Uz(j) > 0 for j 2 2 : : : F .

(A11)

Note thatP� is a subset ofP0. From equation (A4), we can see thatp(UZ(1); : : : ; UZ(F )) is a constant for any givenUZ . In
our case,UZ = 1. Hencep(UZ(1) > �jUZ = 1) is just the ratio between the(F � 1)-volume ofP� and the(F � 1)-volume
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of P0. To help calculate the volume ofP�, we can translate the coordinates(UZ(1); : : : ; UZ(F )) so that the origin moves to the
point (�; 0; : : : ; 0):

new coordinates

(
Uz(1)

0 = Uz(1)� �

Uz(j)
0 = Uz(j) for j 2 2 : : : F:

(A12)

In the F-dimensional real space spanned by(UZ(1)
0; : : : ; UZ(F )0), the plane

P� is defined by

(
Uz(1)

0 + : : :+ Uz(F )
0 = 1� �

Uz(j)
0 > 0 for j 2 1 : : : F .

(A13)

Comparing equation (A10) and equation (A13), we see thatP� andP0 are rescaled versions of each other, and the linear
dimension ofP� equals(1� �) times the linear dimension ofP0. Hence,

p(UZ(1) > �jUZ = 1) =
(F � 1)-volume ofP�
(F � 1)-volume ofP0

= (1� �)
F�1 (A14)

Thus the cumulative distribution

p(�2 > �20) =
�
1� �20

�F�1
(A15)

Note thatp(�2 > �20)j�20=0 = 1. Hence this probability distribution is correctly normalized.
Taking the derivative of equation (A15) to get the differential probability distribution function yields

p(�2) = �dp(�2 > �20)

d�20
j�20=�2

= (F � 1)
�
1� �2

�F�2
: (A16)

Hence,

p(�2) = (F � 1)
�
1� �2

�F�2
: (A17)

The expected value of�2 is

< �2 >=

Z
�2p(�2)d�2 =

1

F
: (A18)

Now we can return to the problem identified at the beginning of this section.
The aim was to avoid false dismissal of non-existing “correlation” by setting a reasonable threshold on the coherence�2

(defined by equation (4.8)) between channels~X and ~Y . If �2 is greater than the threshold��2, we conclude that the correlation
between~X and ~Y is present at a statistically-significant level, and remove the correlation using method described in Section IV.
If not, we leave channel~X unchanged. According to equation (A15), when two channels are just independent Gaussian random

variables, the probability of incorrectly removing “correlation” between them is given by
�
1� (��)2

�F�1
. For example, when

F = 128 and(��)2 = 10=F , the probability of incorrectly removing “correlation” is� 3� 10�5.
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