

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1101224-v1

Advanced LIGO

22 December 2011

Test Procedure for Slow Controls Concentrator Auxiliary 2

Daniel Sigg

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

http://www.ligo.caltech.edu/

LIG0

1 Overview

The slow controls concentrator auxiliary 2 supports 8 photodiodes, 2 temperature control outputs and 4 axes of PZT readbacks.

2 Test Equipment

- Multimeter, scope and signal generator.
- Second slow controls concentrator auxiliary 2 (<u>D1102045-v1</u>). Replace the 2 quad photodiode breakout boards with 2 quad TNC/GND breakouts.
- 2 test cables DB9 to 4xBNC (<u>D1102414-v1</u>).
- DC power supplies.

3 Documentation

• Schematics—<u>D1102045-v1</u>

4 Tests

Power up the measurement equipment and connect open the lid of the DUT. Connect a DB37 cable (male-male) between the DUT and the second slow controls concentrator. Equip the TNC inputs (but not the BNC inputs) of the DUT with 50Ω terminators. Connect a DB15 (male-female) between "PD DC 1-4 Out" and "PD DC 5-8 IN". Connect the test cables to "PD DC 1-4 IN" and "PD DC 5-8 OUT".

4.1 Power

Check the voltages on the concentrator power board. The voltage should be within 5% of nominal. Test that the OK signal is a TTL low (<0.8V).

TP6 (+5V)

TP8 (+15V)_____

TP3 (-15V)_____

TP9 (OK)	
----------	--

4.2 LED

Check that the LED on the front panel and the 3 LEDs on the rear panel are lit.

Front panel LED_____

Rear panel LEDs_____

4.3 Testing

Use an Ohmmeter and check the continuity of the signal lines between the two slow controls concentrators. Each tested signal should read 50Ω .

Concentrator	Signal	Pass/Fail
PZT 1X HV	PZT readback	
PZT 1X Sensor	PZT readback	
PZT 1Y HV	PZT readback	
PZT 1Y Sensor	PZT readback	
PZT 2X HV	PZT readback	
PZT 2X Sensor	PZT readback	
PZT 2Y HV	PZT readback	
PZT 2Y Sensor	PZT readback	
Temp Laser	Temperature control	
Temp Doubler	Temperature control	

Apply a 1kHz sine wave to each the BNCs of the first test cable while measuring the response with a scope on the second test cable, at the front panel BNCs of the DUT and at the front panel BNCs of the second concentrator. Since the 2 photodiode inputs are connected together, the response of the first 4 front panel BNCs is seen on the next 4 as well.

Cable 1	Pass/Fail					
	Cable 2	DUT		2 nd concentrator		
		PDMon	PDMon+4	PDMon	PDMon+4	
BNC 1						
BNC 2						
BNC 3						
BNC 4						