
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
LIGO	LIGO-E1200225-v7

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1200225-v7	Advanced LIGO	12/19/2017

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Coding Standard for TwinCAT Slow Controls Software

Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note
of the LIGO Laboratory.

	California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu
	Massachusetts Institute of Technology
LIGO Project – NW22-295
185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

	
LIGO Hanford Observatory
P.O. Box 159
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137
	
LIGO Livingston Observatory
P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

Table of Contents
1	Introduction	4
1.1	Programming Languages	4
1.2	Project Directories	4
1.2.1	Target Area	5
1.3	Project Archive	5
1.3.1	Organization	5
1.3.3	Version Numbers	7
1.4	Cycle Time	7
1.5	Data Tags (Channels)	7
1.5.1	Input/Output Convention	7
1.5.2	Interface Variables	7
1.6	OPC Interface	7
2	Program Organization	8
2.1	Library	8
2.1.1	Hardware Input Structure	8
2.1.3	Hardware Output Structure	9
2.1.4	Interface Structure	9
2.1.6	Error Handling	10
2.1.7	Function Block	10
2.1.8	Initialization	11
2.1.9	Visual Screen Templates	12
2.2	Global Variables	12
2.3	Program	13
2.5	Project Files	14
2.5.1	Imports	14
2.5.2	Site and Location Customization	15
2.5.3	Interferometer and OPC Export Variable	16
2.6	Installation and Configuration Scripts	16
3	TwinCAT Project Setup	17
3.1	Setting the Options in the Project	17
3.1.1	Project Information	17
3.1.2	Fonts and Path Options	17
3.1.3	Build Options	19
3.1.4	TwinCAT Options	19
3.2	PLC Common Infrastructure	20
3.2.1	Common libraries	20
3.2.2	Error Handling	20
3.2.3	Software version	23
3.2.5	Run-time information	24
4	Naming Scheme	25
4.1	Names	25
4.1.1	Variable Names	25
4.1.2	Type Names	25
4.1.3	Function and Method Names	25
4.1.4	Function Block Names	25
4.1.5	Names of Visuals	25
4.1.6	Suffix Summary	26
4.2	Hardware Channels	26
4.3	Library Objects	27
4.3.1	Name Space	27
4.3.2	Folder Names	27
4.4	External Tags	28
5	OPC Access and Properties	29
5.1	OPC Access	29
5.2	OPC Properties	29
5.3	Automatic Type Support	31
5.4	Enumerated Types	31
5.5	Array Variables	32
5.6	ICS Database Generation	33
6	Documentation	34
6.1	Project Information	34
6.2	Type Information	34
6.3	Global Variables	35
6.4	Interfaces	35
6.5	Functions	35
6.6	Function Blocks	36
6.7	Visuals	36

1. [bookmark: _Toc506549469]Introduction
The purpose of this document is to facilitate a single coding standard among the slow controls software written for the TwinCAT system. TwinCAT contains an embedded IEC 61131-3 software PLC which is the main focus here. The document gives guidance how to build a reusable programming structure, how to name objects like variable, structures and function blocks, and how to document a library module.
[bookmark: _Toc506549470]Programming Languages
The IEC 61131-3 programming standard supports 5 different languages: structured text (ST), function block diagram (FBD), ladder diagram (LD), instruction list (IL) and sequential function chart (SFC). TwinCAT 3 also supports C/C++ and Matlab/Simulink. For the advanced LIGO slow control systems only structured text shall be used with TwinCAT 2.11. For TwinCAT 3 advanced LIGO also supports C/C++ for integrating already written modules.

	Programming language
	Description
	TwinCAT version

	Structured Text
	One of the IEC 61131-3 programming languages, Pascal like
	2.11 and 3

	C/C++
	For integrating previously written modules
	3

Table 1: Supported languages.
[bookmark: _Toc506549471]Project Directories
The project directories on a front-end or development machine are organized in a development area under version control and a target area where the run-times reside.

	Items
	Path
	Owner

	TwinCAT
	C:\TwinCAT
	Beckhoff

	Code
	C:\SlowControls
	Subversion

	Target
	C:\ SlowControls\Target
	Run-time

[bookmark: _Toc506549472]Target Area
The target area contains the files associated with a specific run-time. The directory structure is organized by target and PLC. The run-time files associated with a specific run-time are copied to the target directory using an installation script. This requires that the code are is a committed revision within subversion.

	
Items
	Path
	

	Target Area
	C:\SlowControls\Target
	

	Example target system area
	C:\SlowControls\Target\H1ECATC1
	

	Example target PLC 1 code
	C:\SlowControls\Target\H1ECATC1\PLC1
	

	Example target PLC 2 code
	C:\SlowControls\Target\H1ECATC1\PLC2
	

	Example target PLC 3 code
	C:\SlowControls\Target\H1ECATC1\PLC3
	

	Example target PLC 4 code
	C:\SlowControls\Target\H1ECATC1\PLC4
	

	TwinCAT boot files
	C:\TwinCAT\Boot
	

[bookmark: _Toc506549473]Project Archive
All project files are stored in a subversion (SVN) archive on redoubt.ligo-wa.caltech.edu.

	Item
	Link
	Type

	Server
	redoubt.ligo-wa.caltech.edu
	web

	Archive
	/slowcontrols
	web

	Full path
	https://redoubt.ligo-wa.caltech.edu/svn/slowcontrols/trunk
	checkout

Table 2: Subversion archive.	
[bookmark: _Toc506549474]Organization
The slow controls archive contains the folder TwinCAT for storing all files related to TwinCAT. There are currently two sub folders TwinCAT\Library for storing libraries and TwinCAT\Source for the storing project files. Scripts are stored in the TwinCAT\Script\Common folder. The configuration scripts and the system configuration associated with a real-time computer are stored in a target folder within TwinCAT\Script\Configuration. There are up to 4 PLCs allowed in TwinCAT 2.11.

	Items
	Path
	

	System documents
	SlowControls\Documents
	

	Network documents
	SlowControls\Documents\Network
	

	TwinCAT files
	SlowControls\TwinCAT
	

	TwinCAT documents
	SlowControls\TwinCAT\Documents
	

	TwinCAT coding standard
	SlowControls\TwinCAT\Documents\CodingStandard
	

	TwinCAT library files
	SlowControls\TwinCAT\Library
	

	Individual TwinCAT library
	SlowControls\TwinCAT\Library\CommonModeServo
	

	…
	…
	

	TwinCAT program source files
	SlowControls\TwinCAT\Source
	

	Current TwinCAT source files
	SlowControls\TwinCAT\Source\Current
	

	Source files for interferometer
	SlowControls\TwinCAT\Source\Current\Interferometer
	

	Corner source files
	SlowControls\TwinCAT\Source\Current\Interferometer\Corner
	

	End station source files
	SlowControls\TwinCAT\Source\Current\Interferometer\End
	

	Import files
	SlowControls\TwinCAT\Source\Current\Import
	

	…
	…
	

	Script files
	SlowControls\Scripts
	

	Common script files
	SlowControls\Scripts\Common
	

	Configuration files
	SlowControls\Scripts\Configuration
	

	Target configuration files
	SlowControls\Scripts\Configuration\H1ECATC1
	

	System configuration files
	SlowControls\Scripts\Configuration\H1ECATC1\SYS
	

	PLC configuration files
	SlowControls\Scripts\Configuration\H1ECATC1\PLC
	

	…
	…
	

	EPICS related files
	SlowControls\EPICS
	

	EPICS utilities
	SlowControls\EPICS\Utilities
	

	…
	…
	

	Modbus related files
	SlowControls\Modbus
	

	Modbus target files
	SlowControls\Modbus\Target
	

	Individual Modbus target
	SlowControls\Modbus\Target\H1ModbusC1
	

	…
	…
	

Table 3: Organization of the archive.

[bookmark: _Toc506549475]Version Numbers
The production code is managed by subversion release numbers. The subversion number is part of the run-time code and is archived. When significant changes to a library are made that require supporting both the old and new versions, a new library project has to be created. If the original library was called TimingMasterFanout then new version would be called TimingMasterFanoutV2.
[bookmark: _Toc506549476]Cycle Time
An IEC 61131-3 system consists of system task and at least one programmable logic controller (PLC). The system task is responsible for interfacing the hardware and starting the PLC tasks. The field bus of choice in advance LIGO is EtherCAT. The system task transfers data between a shared memory region and hardware at a fixed cycle time. TwinCAT 2.11 supports up to four different update rates. For advanced LIGO the standard update rate is 10 ms. For a limited number of channels a faster update rate of 1 ms is supported.

	Task
	Description
	Rate

	Standard
	All non time critical software and supervisory tasks
	10 ms

	Fast
	Time critical functions such as RS422 support at 115kbaud
	1 ms

Table 4: Supported update rates.
The tasks with the fast update rate are running at a higher priority (lower number).
[bookmark: _Toc506549477]Data Tags (Channels)
[bookmark: _Toc506549478]Input/Output Convention
From the perspective of the TwinCAT program and configuration input channels refer to inputs from the EtherCAT terminals, e.g., analog-to-digital converters and binary inputs, whereas output channels refer to outputs to the EtherCAT terminals, e.g., digital-to-analog converters and binary outputs. The same is true for user inputs which are inputs into TwinCAT and readbacks which are outputs from TwinCAT.
[bookmark: _Toc506549479]Interface Variables
All external tags (channels) have an initialization record which is periodically updated and is declared PERSISTENT. Upon power failure and loading a new code its value as retained as much as possible. Any initialization that is required, when the PLC is started or when a new version is loaded, needs to be dealt with in software. See the SaveRestore library.
[bookmark: _Toc506549480]OPC Interface
We are using the TwinCAT OPC comments denoted by (*~ ... *) to make global variables accessible to the OPC server. The opening bracket annotation needs to be on the same line as the variable. Variable names in TwinCAT are translated one-to-one into OPC tag names, which in turn are translated into EPICS channels using a conversion rule. OPC properties are used to describe additional information such as limits, precision and state names. These OPC properties are translated into corresponding EPICS database fields.
[bookmark: _Toc506549481]Program Organization
The development blocks for the advanced LIGO slow controls software are individual libraries. Each of the basic libraries is tailored to control a single electronics chassis or controller.
A typically library consists of
one or more type describing the hardware inputs,
one or more type describing the hardware outputs,
a type describing the user interface channels or tags (input and output),
one or more function blocks containing the run-time code, and
a set of visual templates that can be used for diagnostics.
The main program then consists of a global variable list and a series of function block calls.
[bookmark: _Toc506549482]Library
This section gives an example of the structures and the function block defined for the LowNoiseVco library.
[bookmark: _Toc506549483]Hardware Input Structure
	TYPE LowNoiseVcoInStruct :
STRUCT
	PowerOk:		BOOL;	(* Voltage monitor readback *)
	TuneMon:		INT;	(* Monitor for the frequency offset *)
	ReferenceMon:		INT;	(* RF power at the reference input *)
	DividerMon:		INT;	(* RF power at the divider input *)
	OutputMon:		INT;	(* RF power at the output amp *)
	ReferenceTemp:	INT;	(* Temperature of the reference RF detector *)
	DividerTemp:		INT;	(* Temperature of the divider RF detector *)
	OutputTemp:		INT;	(* Temperature of the output RF detector *)
	Excitation:		BOOL;	(* Monitors the excitation input enable *)
	Frequency:		LREAL;	(* Measured frequency *)
	FrequencyLive:	BOOL;	(* Keep alive for frequency measurement *)
END_STRUCT
END_TYPE;

[bookmark: _Toc506549484]Hardware Output Structure
	TYPE LowNoiseVcoOutStruct :
STRUCT
	TuneOfs:		INT;	(* Setpoint for the frequency offset *)
	ExcitationEn:		BOOL;	(* Enables the excitation input *)
END_STRUCT
END_TYPE;

[bookmark: _Toc506549485]Interface Structure
All elements of an interface structure are getting exported with read and write permission. To prevent output tags from showing an invalid value each output parameter has to overwritten at each cycle. Output parameters in the interface structure should never be read.

	TYPE LowNoiseVcoStruct :
STRUCT
	(* error handling *)
	Error:			BOOL;	(* Error flag *)
	ErrorCode:		DWORD;	(* Error code *)
	ErrorMessage:		STRING;(* Error message *)
	(* output tags *)
	PowerOk:		BOOL;	(* Voltage monitor readback *)
	TuneMon:		LREAL;	(* Monitor for the frequency offset in V *)
	ReferenceMon:		LREAL;	(* RF power at the reference input in dBm *)
	DividerMon:		LREAL;	(* RF power at the divider input in dBm *)
	OutputMon:		LREAL;	(* RF power after the output amplifier dBm *)
	ReferenceTemp:	LREAL;	(* Temperature of the reference RF detector *)
	DividerTemp:		LREAL;	(* Temperature of the divider RF detector *)
	OutputTemp:		LREAL;	(* Temperature of the output RF detector in C *)
	ExcitationSwitch:	BOOL;	(* Monitor the excitation input enable *)
	Frequency:		LREAL;	(* Frequency of the VCO output *)
	FrequncyServoFault:	BOOL;	(* Indicates a fault in the frequency servo *)
	(* input tags *)
	TuneOfs:		LREAL;	(* Setpoint for the frequency offset in V *)
	ExcitationEn:		BOOL;	(* Enables the excitation input *)
	FrequencySet:		LREAL;	(* Setpoint for the VCO frequency output *)
	FrequencyServoEn:	BOOL;	(* Enables the frequency PID *)
END_STRUCT
END_TYPE;

[bookmark: _Toc506549486]Error Handling
Each main function block needs to provide error handling using three variables defined in the interface structure: Error, ErrorCode and ErrorMessage. The error flag is set true to indicate an error condition. The error code is a bit encoded value listing the error conditions with zero indicating no error. The error code number can be used to flag multiple errors by setting corresponding bits. Error conditions are described in the documentation associated with the library.
The error message is a human readable string describing the error condition. It can contain up to 80 characters. If multiple errors are flagged, the error message needs to reflect this. All error messages need to be defined in a global constant of type ErrorMessagesArray.

	VAR_GLOBAL CONSTANT
	ThermistorStruct_Errors: ErrorMessagesArray :=
		(* 1 *) 'Thermistor resistance is too high',
		(* 2 *) 'Thermistor resistance is too low',
		(* 3 *) 'Thermistor data invalid',
		(* 4 *) 'Thermistor measurement error';
END_VAR

The name of the constant string array has to reflect the name of the structure that contains the error structure with the extension “_Errors” added. In TwinCAT 2.11 this constant has to be linked to a file with the name “ThermistorStruct_Errors.exp” with the option “Export before compile” selected. This will guarantee that the automatic medm screen generator is able to assemble an error list for each structure.
A simple library without error conditions needs to set the error flag to false, the error code to zero and the error message to an empty string.
[bookmark: _Toc506549487]Function Block
A function block has to declare input and output variables. In the simplest case the input parameter is the hardware input structure, the hardware output structure is the output parameter and the interface structure is the in/out parameter.

	FUNCTION_BLOCK LowNoiseVcoFB
VAR_INPUT
	LowNoiseVcoIn:	LowNoiseVcoInStruct;	(* Input structure *)
END_VAR
VAR_OUTPUT
	LowNoiseVcoOut:	LowNoiseVcoOutStruct;	(* Output structure *)
END_VAR
VAR_IN_OUT
	LowNoiseVco:		LowNoiseVcoStruct;		(* Interface structure *)
END_VAR

[bookmark: _Toc506549488]Initialization
All function blocks controlling hardware have to support initialization and have to be able to store the current state. This is done by passing a SaveRestoreEnum parameter as well as an additional interface structure that holds the previously stored values.

	FUNCTION_BLOCK LowNoiseVcoFB
…
VAR_INPUT
	Request:		SaveRestoreEnum;		(* init/save request *)
END_VAR
VAR_IN_OUT
	LowNoiseVcoInit:	LowNoiseVcoStruct;		(* saved interface struct *)
END_VAR
…

The additional interface structure should is used to pass the previously saved parameters to the initialization routine. It is also used to store these parameters. The Init parameter will either request no operation, an initialization operation, a save operation, or a transition to a safe operation mode. Typically, only state machines will have to implement the transition to a safe operation mode. Within the function block the initialization code would look like:

	(* Code *)
CASE Request OF
	(* initialization *)
	Restore:
		LowNoiseVco := LowNoiseVcoInit;
		(* additional initialization steps can be added here *)
	SafeMode:
		(* only for state machines *)
	Save:
		LowNoiseVcoInit := LowNoiseVco;
	Noop:
		(* always ignore *)
END_CASE;
…

The LowNoiseVcoInit variable will be stored in a global persistent block. This means its values are preserved between reboots and recompilations as long as the LowNoiseVcoStruct stays the same. Changing the LowNoiseVcoStruct or one of its elements will invalidate its persistent memory and reinitialize with all zeros. However, a change in an unrelated structure should not affect the low noise VCO.
The restore request is basically an initialization request and will be issued once after a reboot or a reload of the program. The save request will be issued at regular intervals, but at a low rate, maybe once a minute. The safe mode request might be issued upon a fatal error or a user request. It would typically affect the entire PLC program and not just one library.
Restoring to the previously saved values is probably the best option in most circumstances, but is unlikely to be appropriate in all cases. For example, a state machine probably needs to start in a well defined initialization state and not in whatever state it was left in. In these cases additional code needs to be added to the restore request.
[bookmark: _Toc506549489]Visual Screen Templates
Either one or a set of visual screen templates are associated with a library. The top-level screen template should be a representation of the hardware controlled by the library. It should interface the interface structure, and display all its input and output parameters. Input parameters should be modifiable by the user. Since the library only knows abstract data types, the visual screen template shall deploy placeholder variables to represent actual data. For example, the VCO template screen might reference “vco.OutputMon” in the numeric field describing the output RF power. vco is the placeholder parameter that will be replaced with the actual data of type LowNoiseVcoStruct, when the visual template is embedded into a master screen. In most cases the visual template screens should leave their background transparent, so that it can be set by the master screen.
[bookmark: _Toc506549490]Global Variables
Global variables are used to store hardware input structure, the hardware output structure, the associated function blocks and a hierarchical structure representing all interface structure as part of an interferometer structure. The later is outlined in section 3.4 and is used to represent the opc naming tree which in turn is translated into an EPICS name.
Persistent global variables are used to store the initialization structures. Their values are retained between reboots and restarts of the program. They will be reinitialized with zeros, when the structure itself is modified, so.

	VAR_GLOBAL
	I1:		IfoStruct;	(*~	(OPC : 1 : visible for OPC-Server) *)
	
	AlsVcoIn	AT %I*:	LowNoiseVcoInStruct;	(* Input *)
	AlsVcoOut	AT %Q*:	LowNoiseVcoOutStruct;	(* Output *)
	AlsVcoFB:			LowNoiseVcoFB;		(* Function block *)
	…
END_VAR
VAR_GLOBAL PERSISTENT
	AlsVcoInit:			LowNoiseVcoStruct;		(* Save/restore *)
	…
END_VAR

The variable names for the input, output, interface and initialization structures follow the naming of the structure elements within I1 that lead to the VCO. The interferometer tag isn’t included in the name to support copy/paste between different interferometers. The actual addresses are wildcards and are configured through the system manager.
[bookmark: _Toc506549491]Program
The main program can be a simple series of function block calls. There can be multiple programs to separate subsystems. These programs need to be attached to the standard task, which updates at the 10 ms rate. If a function block requires 1 ms update rate, it needs to be located in separate program that is attached to the fast task.

	PROGRAM ALS
VAR
	SaveRestore:	SaveRestoreFB;(* function block for save/restore *)
	GotoSafe:	BOOL;		(* goto safe mode when transitioning high *)
	Request:	SaveRestoreEnum; (* save/restore request *)
END_VAR

SaveRestore (SaveInterval := T#1m,
		GotoSafe := GotoSafe,
		Request => Request);

AlsVcoFB (LowNoiseVcoIn := AlsVcoIn,
		LowNoiseVcoOut => AlsVcoOut,
		LowNoiseVco := I1.Als.VCO,
		Request := Request,
		LowNoiseVcoInit := AlsVcoInit);
…
END_PROGRAM;

[bookmark: _Toc506549492]Project Files
Project files must not be written site specific. To facilitate this the source files for the interferometer are separated into two subdirectories: corner and end. Each project file must contain at least two imports to determine the subversion number and to specify the target interferometer as well as the appropriate end station. The project name indicates the PLC it is intended for and has the form “PLC1.pro” or similar.
[bookmark: _Toc506549493]Imports
A normal project files defines two global variable resources which are linked to a file and are imported before compilation: Global_Variables_Version and Global_Variables_IFOVAR.
Global_Variables_Version looks like this:
	VAR_GLOBAL CONSTANT
 SvnRevision: DINT := 0;
END_VAR

Whereas Global_Variables_IFOVAR looks like this
	VAR_GLOBAL CONSTANT
	IfoId:	IfoIdEnum := IfoT1; (* IfoH1, IfoL1 or IfoH2 *)
	LocId:	LocationIdEnum := EndX; (* Corner, EndX or EndY, MidX or MidY *)
END_VAR
VAR_GLOBAL
	(* Must reflect intreferometer and X/Y end station *)
	T1		AT %MB0:		IfoXStruct;
	(*~		(OPC 		:1 : visible for OPC-Server)
			(OPC_PROP[8610]	:Plc2: OPC-Server name) *)
END_VAR

In the source directory the interferometer is set to the test system. The important point is that during installation these two global variable resources will be overwritten with the correct information appropriate for the target. In particular, the installation script guarantees that the current source code revision has no local modifications and sets the SvnRevision number accordingly. Similarly, the interferometer parameters are set to the appropriate configuration for the specific target. These variables are available in the code and can be used in the rare instances where sites or end stations need to be distinguished.

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\GlobalVariablesImport.png]

[bookmark: _Toc506549494]Site and Location Customization
The main program defines
	VAR_GLOBAL
 Ifo			AT %MB0:	IfoStruct;
END_VAR

which is getting aliased to an H1 or L1 variable during the installation process. For the X-end station the structure is IfoXStruct, for Y-end it is IfoYStruct and for the corner it stays IfoStruct. A program running in the corner, has to define an IfoStruct only. A program which runs in either the X-end or the Y-end has to define all three. It should use “End” in the IfoStruct to denote the end station, “X” within the IfoXStruct and “Y” within the IfoYStruct.
The Ifo variable is the one you use in the main program, since it is the same between all instantiations of the code. The former is used by OPC or TwinCAT-EPICS-gateway to communicate with the outside world. So, internally one may see variable names start with Ifo.TCS.End..., whereas EPICS/opc would see L1:TSC-X_...
The programmer has to define IfoStruct, IfoXStruct and IfoYStruct.in the main code. These structures need to be identical with the only difference that in IfoXStruct the parameter name is X, Y in IfoYStruct, and End in IfoStruct. Of course, if the system name is TCS, then one has to define a TcsXStruct, TcsEndStruct and TcsYStruct, each with its own X, Y and End parameters.
Dynamically, the variable IfoId and LocId (both enums) are available to distinguish site and location.

[bookmark: _Toc506549495]Interferometer and OPC Export Variable
In the above example the OPC export variable was name after the interferometer T1 and was of the type IfoXStruct. In order to hide the interferometer details form the normal program a generic interferometer variable is defined in the Global_Variables_IFO resource. It looks like this:
	VAR_GLOBAL
	Ifo			AT %MB0:			IfoStruct;
END_VAR

Notice that both variables are located at the same address! The program would use Ifo, whereas the OPC server would read T1, but both instances represent the same data in memory. For this to work in the end station, three similar structures are required: IfoStruct (generic), IfoXStruct (OPC in EX) and IfoYStruct (OPC in EY). These structures absolutely must contain the same element types in the same order. For example, the ifo structure could contain an ALS subsystem structure. They would be named AlsStruct, AlsXStruct and AlsYStruct, respectively. Now, these ALS structure all contain the structure AlsEndStruct, but now the element names are different. They are End, X and Y, respectively. This way the code addresses Als variable with the prefix Ifo.Als.End, whereas the L1 target in the Y end station would provide its OPC access at L1.Als.Y.
[bookmark: _Toc506549496]Installation and Configuration Scripts
The installation scripts are located in the folder SlowControls\Scripts\Common. A separate documentation is available with T1300175.
Typically, a user would run the “install_tc_target” shortcut which starts a GUI that allows the selection of a target with associated PLCs as well as the desired action. Targets are defined in the Scripts\Configuration folder. Each target requires its own folder in there, and each PLC requires its own folder within the target folder. Target specific configuration scripts are specified in the target folder, whereas PLC specific configurations are specified in the PLC folder. Typically, the target configuration script should be sufficient.
Each target folder also requires a SYS folder which contains the TwinCAT system configuration file (*.tsm). The TwinCAT system configuration in principle is identical between sites and end stations, but there may be slight difference between locations that cannot be easily parameterized. Since software updates are much more frequent than hardware changes, this should not pose a problem.

[bookmark: _Toc506549497]TwinCAT Project Setup
[bookmark: _Toc506549498]Setting the Options in the Project
[bookmark: _Toc506549499]Project Information
Set the title information to the appropriate PLC and station. Since there are typically only source files for corner and end station, there should be no indication of interferometer or which of the two end stations.

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\ProjectInformation.png]

[bookmark: _Toc506549500]Fonts and Path Options
Choose a fixed point font such as “Courier New”. The project library path should include the path to the slow controls libraries.
[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\ProjectOptionFont.png]

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\ProjectOptionDirectories.png]
[bookmark: _Toc506549501]Build Options
Make sure the “check overlapping memory areas” option is selected.

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\ProjectOptionBuild.png]

[bookmark: _Toc506549502]TwinCAT Options
Make sure the “Enable inline string functions” option is selected. This will allow us to use the string functions in more than one task. By default they are not multi-thread safe. This option page also allows to change the allocation for the different memory regions. For large project these limits may have to be increased.
[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\ProjectOptionTwinCAT.png]
[bookmark: _Toc506549503]PLC Common Infrastructure
Each PLC project is required to implement the PlcInfo library. This library provides support for reporting errors at the PLC level, it exports the software subversion number and it provides a set of run-time information specific to the PLC.
[bookmark: _Toc506549504]Common libraries
The following libraries need to be imported for every project.

	SaveRestore
	Support for saving user interface settings to a persistent memory block. It also supports restoring these settings upon restart.

	Error
	Support for error handling and reporting.

	PlcInfo
	Support for reporting software version, run-time information and top level errors

[bookmark: _Toc506549505]Error Handling
Each user interface structure is required to contain an error reporting structure of type ErrorStruct. Error handling is supported with “Error” library. However, this abstraction cannot be propagated to the highest level because a PLC only covers a subset of the available channels. For instance, there are “H1:ALS“ channels in the corner and both end stations. This means that each of the three associated PLCs will have a user structure H1.Als defined. If it would contain an error structure, the names would collide. There is also no error at the H1 level for the same reason. Instead, the error hierarchical error structures stop at the level one below. For instance, corner station PLC would contain an error structure in the H1.Als.C structure, whereas the end stations would contain error structures in the H1.Als.X and H1.Als.Y structures, respectively. Within each PLC code each subsystem has a corresponding top level error reporting structure. These top level local error structures are combined in a PLC error structure which is reported in the PlcInfo structure. The PlcInfo structures are defined in the H1.Sys.EtherCAT structure. Each PLC has exactly one of these structures and the name of the structure contains the target designator. For instance, the user can access H1.Sys.EtherCat.C1Plc2, H1.Sys.EtherCat.X1Plc2 and H1.Sys.EtherCat.Y1Plc2 and the Error element therein to learn about errors occurring with PLC2 of corner, end X and end Y, respectively.

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\GlobalVariablesSysStruct.png]

Since there is only one end station program, a little bit of magic with the overlapping H1 and Ifo variables is required to make it all work.
[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\GlobalVariablesAndStructures.png]

The program unit for the Sys also requires a call to the top level error handler for the PLC which collects the error from each subsystem and combines them into the PLC status information.

[image: C:\SlowControls\TwinCAT\Documents\CodingStandard\Image\MainProgram.png]

[bookmark: _Toc506549506]Software version
The subversion revision is a number describing a snapshot of the software in the archive. The installation scripts for a PLC with make sure the archive is up-to-date before compiling the project. The active subversion number is imported into the code and available to the user as part of the PlcInfo structure.

[bookmark: _Toc506549507]Run-time information
Let’s take a look at the most important elements of the PlcInfo structure.

	IfoId
	Interferometer identification, e.g. H1 or L1

	LocationId
	Location of the computer, i.e., Corner, EndX or EndY

	Status
	Top level error structure of the PLC

	SvnRevision
	Subversion revision number

	StartTime
	Time the PLC was started

	CurrentTime
	Current system time

	Hostname
	Computer name of the machine running the PLC

	CpuUsage
	Percentage of CPU usage

	SysLatencyActual
	Actual system latency

	SysLatencyMax
	Maximum system latency

[bookmark: _Toc506549508]Naming Scheme
[bookmark: _Toc506549509]Names
Generally, verbose and descriptive names are preferred to short and abbreviated ones. This will make the code more readable and help in maintenance and support. For example, Index is preferred over I and TimingMasterFanout is preferred over Tmfo.
[bookmark: _Toc506549510]Variable Names
The naming of variables preferably should be unique in all libraries, following the camel case notation: For each variable a meaningful, preferably short, English name should be used, the base name. Always the first letter of a word of the base name is to be written uppercase, the remaining letters lowercase; example: FastGain or InputOffset. Abbreviations are written starting with an uppercase and then all lower case; example: VcoGain or TimingMasterFanout. Pointer variables shall use the suffix Ptr, whereas constant variables may use the suffix Const.
[bookmark: _Toc506549511]Type Names
Type names follow the same rule as variable names. A complex type shall incorporate a suffix to denote is derivation: Enum for ENUM, Struct for STRUCT and Array for ARRAY.
Structure members follow the rules of variables.
[bookmark: _Toc506549512]Function and Method Names
Function and method names follow the same rules as variables but with the suffix Fun. Internal helper functions such as conversion routines can also use a lowercase name, so that they look more in line with mathematical notation.
[bookmark: _Toc506549513]Function Block Names
The names of function blocks follow the same rules as variables but with the suffix FB. Interfaces in TwinCAT 3 use the suffix I.
[bookmark: _Toc506549514]Names of Visuals
Visual interfaces have the suffix Vis.

[bookmark: _Toc506549515]Suffix Summary

	Element
	Description
	suffix

	Constant
	Constant value (optional, may be clear from context)
	Const

	Pointer
	Pointer to a variable
	Ptr

	ENUM
	Enumerated type
	Enum

	STRUCT
	Record type
	Struct

	ARRAY
	Array type
	Array

	Function
	Function or Method declaration
	Fun

	Function block
	Function block declaration
	FB

	Interface
	Abstract function block or interface
	I

	Visual
	Screen interface for diagnostics
	Vis

Table 5: Required suffix notation.
[bookmark: _Toc506549516]Hardware Channels
Variables that are connected to hardware channels are separated into input variables and output variables. They must be located in the input and output shared memory regions, respectively. A variable describing a list of input channels must have the suffix In. The corresponding structure must have the suffix InStruct. An output channel list uses the suffix Out, whereas the output structure uses OutStruct. Channels with different cycle time must be placed into different structures. The above names are for the standard cycle time of 10 ms. Channels that need to be updated at the fast rate need to prepend Fast to the above suffixes.

	Element
	Description
	suffix

	Input variable
	Input variable with standard update rate
	In

	Output variable
	Output variable with standard update rate
	Out

	Input variable
	Input variable with fast update rate
	FastIn

	Output variable
	Output variable with fast update rate
	FastOut

	Input STRUCT
	Input channel structure with standard update rate
	InStruct

	Output STRUCT
	Output channel structure with standard update rate
	OutStruct

	Input STRUCT
	Input channel structure with fast update rate
	FastInStruct

	Output STRUCT
	Output channel structure with fast update rate
	FastOutStruct

Table 6: Input and output channel notation.

A code fragment declaring input and output channels in the global variable space:
	PicoMotorFastIn	AT %IB0100:	PicoMotorFastInStruct;
PicoMotorFastOut	AT %QB0200:	PicoMotorFastOutStruct;
PicoMotorIn		AT %IB0102:	PicoMotorInStruct;
PicoMotorOut		AT %QB0204:	PicoMotorOutStruct;		

[bookmark: _Toc506549517]Library Objects
[bookmark: _Toc506549518]Name Space
Libraries can optionally choose a name space following the variable name notation. This name space is then used to prefix all exported objects. For example: the library TimingMasterFanout has the name space prefix Timing. Within this library TimingSlaveDuoToneStructure, TimingReadSlaveFun and TimingMasterFanoutFB are a valid structure, function and function block, respectively.
Simple libraries that consist of an input structure, an output structure, an interface structure and a function block are not required to choose an explicit name space, but are expected to use the library name as the base for all four objects. Hence, they are defining an implicit name space with the same name as the library name. For example: the library CommonMode may contain the structures CommonModeInStruct, CommonModeOutStruct and CommonModeStruct as well as the function block CommonModeFB.
[bookmark: _Toc506549519]Folder Names
Program object units (POUs) and data types are organized in folders. These folders are purely organizational and are intended to help grouping items together for easier maintenance. In a library all exported types, functions and function blocks are typically located at the top level. If there are many objects, it may make sense to group them into folders. In any case, internal objects should always be moved into a folder named Internal.
[bookmark: _Ref317533616]

[bookmark: _Ref322687957][bookmark: _Toc506549520]External Tags
External tags (channels) are organized in a hierarchical structure. Each system defines its own structure. This continues with structures for subsystems that are contained in the system structures.
	TYPE AlsEndStruct :
STRUCT
	Laser:	ALSLaserStruct;
	VCO:		LowNoiseVcoStruct;
	PZT1:		PZTMirrorStruct;
	PZT2:		PZTMirrorStruct;
	…
END_STRUCT
END_TYPE;

TYPE AlsYStruct :
STRUCT
	Y:		AlsEndStruct;
END_STRUCT
END_TYPE
…
TYPE IfoStruct:
STRUCT
	Als:		AlsYStruct;
	Asc:		AscYStruct;
	Lsc:		LscYStruct;
	Tcs:		TcsYStruct;
END_STRUCT
END_TYPE;

VAR_GLOBAL PERSISTENT
	I1:		IfoStruct;	(*~	(OPC : 1 : visible for OPC-Server) *)
END_VAR;

This allows for exporting the entire interferometer interface structure at once and it allows for generating tag names automatically while preserving the hierarchical organization.

[bookmark: _Toc506549521]OPC Access and Properties
[bookmark: _Toc506549522]OPC Access
The global variable describing the interface structure of the interferometer is made accessible to the OPC server by using the OPC comments. Meaning,
	H2:		IfoStruct;	(*~	(OPC : 1 : visible for OPC-Server)
					(OPC_PROP[8610] : h2ecatc1 : server name) *)

will make the entire h2 variable with all its sub elements will be visible through the OPC interface. In turn, it can be interfaced to EPICS. Individual tags such as the FastGain of the LaserServo will be available from the OPC server as “H2.Isc.Als.LaserServo.FastGain”. The default EPICS channel name constructed from this tag will then become “H2:Isc-Als_LaserServo_FastGain”. Be aware that IEC 61131-3 names are not case sensitive. The same is true for the corresponding TwinCAT OPC names, whereas EPICS channel names are case sensitive.
[bookmark: _Toc506549523]OPC Properties
OPC properties are used to further describe the external tags. These properties are also used to fill in the EPICS database fields. The properties have to be attached to the elements at the end of the hierarchical structure. These are variables with a basic type like INT or LREAL. Due to the program organization most of these variables are defined in libraries through structures. Therefore, the OPC properties are written after the structure elements using the OPC comment structure. For example:
	TYPE LowNoiseVcoStruct :
STRUCT
	(* output tags *)
	PowerOk:	BOOL;	(*~
				(OPC_PROP[0005] :1: read-only)
				(OPC_PROP[0101] :Voltage monitor readback: DESC)
				(OPC_PROP[0106] :OK: ONAM)
				(OPC_PROP[0107] :OOR: ZNAM) *)
	TuneMon:	LREAL;	(*~
				(OPC_PROP[0005] :1: read-only)
				(OPC_PROP[0101] :Frequency offset monitor: DESC)
				(OPC_PROP[0100] :V: EGU)
				(OPC_PROP[0103] :-10: LOPR)
				(OPC_PROP[0102] :+10: HOPR)
				(OPC_PROP[8500] :3: PREC) *)
	...
END_STRUCT
END_TYPE;

	Property ID
	Description
	Record

	5
	Access control: 1 – read-only, 3- read/write
	all

	100
	EGU: Engineering units
	numeric

	101
	DESC: Description
	all

	102
	HOPR: High operations value
	numeric

	103
	LOPR: Low operation value
	numeric

	104
	DRVH: Maximum instrument range
	numeric

	105
	DRVL: Minimum instrument range
	numeric

	106
	ONAM: Label for closed (one) state
	binary

	107
	ZNAM: Label for open (zero) state
	binary

	306
	HYST: alarm deadband
	numeric

	307
	HIHI: hihi alarm level
	numeric

	308
	HIGH: high alarm level
	numeric

	309
	LOW: low alarm level
	numeric

	310
	LOLO: lolo alarm level
	numeric

	8500
	PREC: Display precision
	numeric

	8510 to 8525
	ZRST, ONST, ... FFST: Zero string, one string, ... fifteen string
	mb binary

	8600
	EPICS data type (bi, bo, ai, ao, longin, longout, stringin, stringout, mbbi, mbbo, mbbiDirect, and mbboDirect)
	all

	8601
	Input or output: overwrites the default behavior
	all

	8602
	TSE: Time stamp; default is -2
	all

	8603
	PINI: default 1 for input and 0 for output records
	all

	8604
	DTYP: default is opc; can be overwritten with opcRaw
	all

	8610
	Default OPC server name; default is opc
	top level

	8611
	TwinCAT runtime name including ads routing info and port
	top level

	8620
	Alias for structure item or top level symbol
	top & items

	8700
	OSV: one alarm severity
	binary

	8701
	ZSV: zero alarm severity
	binary

	8702
	COSV: change of state alarm severity
	(mb) binary

	8703
	UNSV: unknown state alarm severity
	mb binary

	8710 to 8725
	ZRSV, ONSV, … FFSV: zero, one, … fifteen state alarm severity
	mb binary

	8727 to 8730
	HHSV, HSV, LSV and LLSV
	analog

	8800 to 8999
	FIELD: Any database field can be specified in the comment string; does not perform any checks; use only when truly desperate
	don’t use

Table 7: Supported OPC properties.
Only a small subset of EPICS database fields are supported. In general, fields associated with conversion and calculations are not supported, since all processing should be done within the PLC program. The supported general properties are listed in the above table.
If a property is specified for a structure, it is used as the default value for all its elements. It can be overwritten by each element below. NO_ALARM, MINOR and MAJOR are the allowed alarm severity values. HIHI and LOLO alarms are assigned major severity, if they are defined; whereas LOW and HIGH alarms are assigned minor severity, if they are defined. Custom fields for are currently not supported.
[bookmark: _Toc506549524]Automatic Type Support
By default all variables that are read-only will be represented by EPICS input records, whereas all variables that have read/write access will be represented by EPICS output records. This behavior can be overwritten, but there should never be a reason to.
The table below shows the default EPICS type selected for the database depending on the TwinCAT datatype.
	Type
	Description
	

	longin/longout
	SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, BYTE, WORD, DWORD, LWORD
	

	bi/bo
	BOOL
	

	mbbi/mbbo
	Enumerated data type with 16 or fewer labels
	

	stringin/stringout
	STRING
	

	ai/ao
	REAL, LREAL, any other
	

Table 8: Automatic type support.
[bookmark: _Toc506549525]Enumerated Types
An enumerated type will be converted into a multi-bit binary record, if there are 16 or fewer labels and if all numeric representations are between 0 and 15. There is no conversion possible. The numeric value of the enum type has to be the same as its EPICS representation, i.e., The zero value will be set to 0, etc. The string values of the multi-bit binary record are automatically set to the labels of the enumerated type.

Since enum labels need to be unique in TwinCAT, one usually has to add a prefix to guarantee that there are no name conflicts. This leads to somewhat cumbersome names in EPICS. It is therefore possible to specify the EPICS enum labels specifically. Example:
	TYPE IfoIdEnum : (IfoH1, IfoL1, IfoH2, IfoT1, IfoI1);
END_TYPE
(*~
	(OPC_PROP[8510] :H1: ZRST)
	(OPC_PROP[8511] :L1: ONST)
	(OPC_PROP[8512] :H2: TWST)
	(OPC_PROP[8513] :T1: THST)
	(OPC_PROP[8514] :I1: FRST)
*)

This leads to EPICS labels of the form H1, L1, etc. rather than the default IfoH1, IfoL1, etc.
[bookmark: _Toc506549526]Array Variables
Array variables are supported by IEC 61131-3 and can be exported through OPC as well. They will also be accessible through EPICS, but require an extension to the LIGO channel naming convention. For example, if the structure “L1.Io.Wfs1” contains the members:
	TYPE DemodComplex:
STRUCT
	I:	LREAL;
	Q:	LREAL;
END_STUCT
END_TYPE;

Gain:		ARRAY [1..4] OF LREAL;
Rotation:	ARRAY [1..4,1..4] OF LREAL;
Signal:	ARRAY [1..4] OF DemodComplex;

The corresponding OPC and EPICS variables are (with m and n ranging from 1 to 4):
	Type
	OPC name
	EPICS name

	LREAL
	L1.Io.Wfs1.Gain[m]
	L1:Io-Wfs1_Gain[m]

	LREAL
	L1.Io.Wfs1.Rotation[m][n]
	L1:Io-Wfs1_Rotation[m][n]

	LREAL
	L1.Io.Wfs1.Signal[m].I
	L1:Io‑Wfs1_Signal[m]_I

	LREAL
	L1.Io.Wfs1.Signal[m].Q
	L1:Io‑Wfs1_Signal[m]_Q

Table 8: Array variables with OPC and EPICS.
Each individual array index will be exported as separate EPICS channel.
[bookmark: _Toc506549527]ICS Database Generation
All EPICS fields must be defined in the PLC through OPC properties. TwinCAT will automatically generate an XML file with the extension “.tpy” which can be parsed to generate an EPICS database file. The program EpicsDbGen is available to do this. It is called from the command line as follows:

	Usage: EpicsDbGen ['options'] -i 'input' -o 'output'
 Generates an EPICS database from a TwinCAT tpy file.
 -ea exports all variables regardless of their opc setting
 -l[l][a|e|b] generate an [extended] [atomic|epics|burt] channel listing
 -r[n|d] [no|dot] conversion rule for EPICS names
 -c[u|l] force upper/lower case for EPICS names
 -nd eliminates leading dot
 -ni replaces array brackets with underscore
 -ns ignores channels of type string
	-sio splits database into input only and input/ouput recrods
	-sn 'num' splits database into files with no more than num records
 -i 'input' input file name (stdin when omitted)
 -o 'output' output database file (stdout when omitted)

The input file is the TwinCAT file with the extension “.tpy”. The output file can either be a list of channels or an EPICS database file depending on the arguments. If no input file is specified, input from the standard input is taken. If no output file is specified, the output is written to the standard output.
The argument “-a” specifies that all global variables will be exported. The “-l” argument generates a channel name list rather than a database file. With the “-ll” extension a long list is generated. Normally, the case of the TwinCAT variable is preserved. However, the option “-cu” forces all upper case names, whereas the option “-cl” forces all lower case names. If the option “-ni” is specified, array indices of the form “[n]” are replaced by “_n” when translating to the EPICS channel name.
The option “-sio” can be used to split the database records between input and in/out into separate files. The option “-sn N” can be used to split files, so that they contain no more than N records. Both options can be used individually or combined. If either option is used, an output file has to be specified. For example, if the file name is “PLC.db”, the “-sio” option will generate two files “PLC.in.db” and “PLC.io.db”. With the option “-sn 1000”, we will get “PLC.001.db”, “PLC.002.db”, etc. Each file but the last will contains exactly 1000 records. Both options together will generate files of the form “PLC.in.001.db” and “PLC.io.001.db”.

[bookmark: _Toc506549528]Documentation
A template for documenting a TwinCAT library exists in the DCC, F1200003. It contains the project information, a description of the function blocks as well as detailed listing of the input and output types. Some specialized libraries may require additional information for functions, interfaces or global variables. An example can be found in E1200226.
[bookmark: _Toc506549529]Project Information
The following project information is required: title, version, name space, author and a short description.

	Field
	Description
	Mandatory

	Title
	Name of the library, usually in camel case, e.g., LowNoiseVco
	Yes

	Version
	Library version number, usually 1, 2, etc.
	Yes

	TwinCAT
	Version of TwinCAT for which the library was developed
	Yes

	Name space
	Name space of the library
	Yes, if exists

	Author
	Name of the programmer
	Yes

	Description
	Short description of the purpose of the library
	Yes

	Error code
	Lists the available error codes
	Yes

Table 9: Project Information.
[bookmark: _Toc506549530]Type Information
Each external type of a library require the following information: name, definition and short description. For a complex type each element should contain a short description as well.

	Field
	Description
	Mandatory

	Type name
	Name of the type, e.g., LowNoiseVcoStruct
	Yes

	Definition
	Type definition used by the library
	Yes

	Description
	Short description of the purpose of the type
	Yes

	Elements
	For complex types a list of elements
	Yes, if exist

Table 9: Type Information.

[bookmark: _Toc506549531]Global Variables
Generally, there should be no need for global variables in a library. If they exist, the following information is required: name, type, a possible initialization value and a short description.

	Field
	Description
	Mandatory

	Variable name
	Name of the global variable
	Yes

	Type
	Type of the global variable
	Yes

	Initialization
	Initialization value of the variable
	Yes, if exist

	Description
	Short description of the purpose of the variable
	Yes

Table 9: Global variables.
[bookmark: _Toc506549532]Interfaces
In TwinCAT 3 abstract classes are called interfaces. They contain a list of abstract methods. Each interface definition requires name, list of methods and a short description.

	Field
	Description
	Mandatory

	Interface name
	Name of the type, e.g., LowNoiseVcoStruct
	Yes

	Methods
	List of methods used by the interface
	Yes

	Arguments
	Each method can have a list of arguments
	Yes, if exist

	Description
	Short description of the purpose of the interface
	Yes

Table 9: Interfaces.
[bookmark: _Toc506549533]Functions
Each function requires the following information: name, return type, list of input parameters, list of output parameters, list of in/out parameters and a short description.

	Field
	Description
	Mandatory

	Name
	Name of the, e.g., TimingSlaveDuoToneReadFunc
	Yes

	Return
	Return type
	Yes

	Inputs
	List of input parameters
	Yes, if exist

	Outputs
	List of output parameters
	Yes, if exist

	In/Outs
	List of in/out parameters
	Yes, if exist

	Description
	Short description of the purpose of the function or function block
	Yes

Table 9: Functions.

[bookmark: _Toc506549534]Function Blocks
Each function and function block requires the following information: name, list of input parameters, list of output parameters, list of in/out parameters and a short description. In TwinCAT 3 function block are treated as classes and can extend a base class, inherit from an interface definition and contain methods. If used, the information of all class elements are required.

	Field
	Description
	Mandatory

	Name
	Name of the function or function block, e.g., LowNoiseVcoFB
	Yes

	Parent
	For classes that extend a parent function block
	Yes, if exist

	Interfaces
	For classes that implement an interface
	Yes, if exist

	Inputs
	List of input parameters
	Yes, if exist

	Outputs
	List of output parameters
	Yes, if exist

	In/Outs
	List of in/out parameters
	Yes, if exist

	Methods
	List of methods used by the function block
	Yes, if exist

	Description
	Short description of the purpose of the function or function block
	Yes

Table 9: Function blocks.
[bookmark: _Toc506549535]Visuals
Each visual screen element requires the following information: screen snapshot, name, a short description and a list of placeholders. Placeholders are parameters denoted by $paramter_name$ in the visuals that are required to be defined when the visual is embedded. Since the visual of a library usually represents an interface structure, there should be at least one placeholder parameter denoting a variable of this type.

	Field
	Description
	Mandatory

	Name
	Name of the function or function block, e.g., IscWhiteningVis
	Yes

	Description	
	Short description of the purpose of the function or function block
	Yes

	Placeholder
	Parameters used for variable substitution
	Yes, if exist

Table 9: Visuals.

2

image1.png
32 Resouces

E-E3 Giobal Variables
@ Gl Varables_ALS
@ Giobal Varables_ASC
@ Giobal Varables IFO

@ Global Varobles ISC

@ Globol Varables Version (CONSTANT)

@ TwinCaT_Conliguition [VAR_CONFIG)

@ Vaicble_Configuaion (VAR_CONFIG)
library ALSLaser\ALSLaser b 8.8 12 08:53.25: global v|
lbraty ALSLaserLocking AL SLaser ocking b 15.8.12
lbrary Ay Ausiiery b 8.2.13 07:33 47: dlobal vari
lbrary C:ASlowContiols\TwinCAT\Library WiteDACH W
library CommonModsServo\CommonMode b 15.8.12 1.
library DCPower\DCPower b 8.2.13 07:33.47: global vi
library DelayLinePhaseShifter\DelayLogic.ib 31.7.12 1
library Demodulator\Demodulator b 8.2.13 07:33.47: ol
library Enor\Error b 18.8.12 18:34:59: global varizbles
lbraty IscWhiteningblscwhitening b 4,213 15:40:48
lbrary LowhloiseVCO\LowNoiselVco b 31.7.1210:25:0
bty Photodetectors\Photodetectors b 25.1.13 16:32)
library PlelnfotPlcinfo b 8.2.13 18:27:21: global variabh
lbrary FZTMitor\FZTMiror b 31.7.12 10:25:02: glbal
lbraty ReadADC\ReadADC b 18.4.12 08:18:53: giobal
bty RFAmplfier\ RFAmpifier. b 7.8.12 15:17:45: glob:

0001

[VAR_GLOBAL CONSTANT

0002

IfoIa:

0003

ZLocIa:

0002

[ewp_var

0005

[var_crosar

0006

IfoldEnum
ZLocationIdEnum :

EnaX;

(+ Must reflect intreferometer and X/Y end station %)

0007

TL

0008

(o~

0005

0010

0011

-

0012

[ewp_var

0013

0014

0015

0016

0017

o018

0015

0020

0021

0022

0023

0024

0025

0026

0027

0028

0025

0030

(23 H 1 @ mmB metr\S musBactre bh 7 8 19 161745

031

= IfoT1; (* IfoH1, Ifoll or IfoH2 *!

(* Corner, EndX or End¥, MidX or MidY¥ *)

AT mis0: IfoXstruct;
(opc 11 : visible for OBC-Server)
(OPC_PROP(8610] tPlc2: OBC-Server name)

oba Vot st | Aosss s |

Name of the global vaiable st

Link o e

[Global_Varisbles_IFOVAR

Fiename: [voe\CurertinterferomelenEndiovar.em | Browse.

& Import before compile

€ Expot belore compie

ok | Cocn

image2.png
Flerans: Peto
Ditectory: [TwinCAT\Sowce\CurentierferometenEnd Carce

Changs date: 31101210:2303/v29

Tite: 150 End taon PLET Target Mcine 1 Sttistics
b [_Leeei

o | E—

Descition 5

image3.png
Options
BT (o eer reen

Onlique
Bold
Pold obligus

AaBbYyZz

Cancel

ik

image4.png
Category:

Loadt Save
User Iformation
Edtor

Deskion

Passwords
Source dowrload
Symbol configualion
Database-cannection
Macras

TwinCAT

- Project
Lirares:

Compi fls:

Visualzationfles:

Target
Librares:

- General
Librares:

Compi fls:

Upload fes:

Visualzationfles:

[ETonEAT PLEE 2 oweartowincat by

[ENTwrEATLES

[ENTwrEAT e rioadh

image5.png
Category:

Loadt Save
User Iformation
Edtor

Deskion

Colrs
Directores

=
Passwords

Source dowrload

Symbol configualion
Database-cannection
Macras

TwinCAT

¥ Debugging
T~ Replace constants
¥ Nested conments

™ Creste binay fie ofthe appiication | __Exclude obiects

¥ Actions fide programs
I~ Treat LREAL & REAL
T~ Check signed / unsined comparisons

Number f ot segnons 2

I~ Nocheck functions for liraries

Macro before compie:
Macro afte compil:

- Compilr version—————————————
W Uselatest

Fix 29931

- Check automaicaly ——————————
I Unused vaiables

I Overlapping memory areas
I Concurent access

T~ Multiple write access on output

image6.png
Category:

Loadt Save
User Iformation
Edtor

Deskion

Colrs

Directores

Log

Buid

Passwords

Source dowrload
Symbol configualion
Database-cannection

e ke
e ks
[ke
B

Kytes

[ioo— Hoyes

¥ Create Debug Code
¥ Enable breakpaints

v Eable Triig Sina nctians

Symbol dowrload
@ Dynanic Symbols

© Statc Symbols
Main Sub

dobal ¥ P

[A

™ Enable CE Target Visualzation s ot free of charge)
T Download Symbol desciption

I Inialzation of VAR_CONFIG Inputs

T~ Remind to update boot project on change

I~ Enable Web Visuslzaton s ot fes of charge)

image7.png
SysStruct ===l
(* This structure needs to be updated in synchronization with SysXStruct and SysYStruct *)
[TYPE Sysseruct
sTRUCT
Etnercac: EtherCatstatusstruct;
|enp_sTruCT
[enp_tveE

SysXStruct [==]=]
(* Tnis structure needs to be updated in synchronization with SysStruct and SysYStruct *)
[ryeE sysxscruce
sTruCT
Echercat: EtherCacSctacuskScruct;
Jewn_struct
Jenn_TveE

< >

EtherCATStatusStruct =
[(This scructure needs co be updated in synchronization with EcherCATStatusXStruct and Echercal
[ryez EchecaTstacusscruce
sTruCT
Enaiplc2: PleInfostruct;
Jewn_struct
Jenn_TveE

EtherCATStatusXStruct [e=]=]
(* Tnis structure needs to be updated in synchronizacion with EcherCATStacusScruct and EtherCATS
[rveE EchercaTstacuskstruct
sTruCT
x1p1c2: PleInfostruct;
Jewn_struct
Jenn_TveE

< >

image8.png
Global_Variables_Version C:\SlowControls\TwinCAT\Source\Current\Interferometer\Version.exp

[VAR_GLOBAL CONSTANT

SvnRevision: pINT

Global_Variables_IFO

[vaR_cLoBAL
Ifo

AT mis0: Ifostruce;

sys:
[exp_sTROC

<

Global_Variables_IfoVar C:ASlowControls\TwinCAT\Source\Current\Interferometer\End\IfoVar.exp

<

[VAR_GLOBAL CONSTANT
Ifola: IfoldEnum := IfoT1; (* IfoHl, IfoLl or IfcH2 *)
Locla: LocationIdEnum := EndX; (* Cormer, EndX or EndY, MidX or MidY *)

|enp_var

VAR GLoBAL

(* Must reflect intreferometer and X/Y end station *)

TL AT wMB0: IfoXStruct:

(o
(opC 11 : visible for OBC-Server)
(OPC_PROP[£610] :Plc2: OBC-Server name)

)

JEND_VAR || IfoXStruct =]
0003 (+ This scructure needs to be updated in synchronization with IfoStruct and Ifo¥Stru
0002|TYPE IfoXstruct
0003 |sTRUCT
0004 als: AlsXStruct;

0005 Asc Ascxstruct,
0006 Isc Iscxstruct.
0007 sys SysXstruct.
0008 [END_STRUCT

0008 =ND TYPE

image9.png
] MAIN (PRG-ST) [
I ey
saveRestor SaveRestorers;
Gotosare: :
SaverestoreEnums
IfoErrorkandlerss;
Erzorstructs
FlcIntors;
<
[Eaverestors (Savelnterval @ ”
Gotosate := Gotosate,
Request => Request)+
a5 () 2
IfoErrorHandlerfB (FB-ST) Ii_ssg :; ’
IfoErrorHandlerFB -
toErrorRandler(ifo := Ifo, Error := IfoError):
Izostruct;
Plenfo (Request := Request, Ifo := Ifold, Loc := Locld,
Svn i= SvaRevision, Status i= IfeError,
ErrorStruct; Plc Ifo.Sys.EtherCat.EndiPlc2);
Erroriandlests;

<

[Ezrorfandler (rzorMechod 1= Init, Erzor = Erzor);
Ifo.ALS.End.Error.Flag
Errorsiandler (ErrorMethod := Report, Error := Error, Code := 1, Msg := 'Als’);

If0.ASC.End.Erzor.Flag
Errorfiandler (ErrorMethod

Repore, Errox,

2, usg

Rsch)

Ifo.ISC.RE.End.Error.Flag
Errorfiandler (ErrorMethod

Report, Error

Error, Code

4, Msg = 'RE'):

|Erzorfiandler (ErrorMetnod := Commit, Error := Error):

image10.png
LIGO

