

Nano-coatings the reasons and the R&D status

<u>Riccardo DeSalvo</u> I.M. Pinto, V. Pierro, V. Galdi, M. Principe, Shiuh Chao, Huang-Wei Pan, Chen-Shun Ou, V. Huang

Gravitational Wave Advanced Detector Workshop, Waikoloa Marriott Resort, Hawaii, May 14 2012

Outline

Reasons to study nanometer coatings

• Status of R&D

First interest for nanocoatings

- RDS participated to the PXRMS conference Big Sky – Montana
- X-ray mirror coating community
- LIGO-G080106-00-R

Lessons from x-ray community

- Extremely thin layers are always glassy
 - More stable !
- Different atomic radius and oxydation pattern assure glassy structure around the interface between different materials
- Natural doping due to interdiffusion may also play a relevant role

JGW-G1201029

LIGO-G1200562

Lessons from x-ray community, II

- Good glass formers remain glassy for large thicknesses
- Poor glass formers
 - first produce crystallites inside the glass
 - Invisible to x-rays
 - Then crystallites grow into columnar-growth poli-crystalline films
- Crystallites are <u>bad for scattering</u>
- Probably <u>bad for mech. losses</u> also
- (Dopants induce better glass formers)

14 may 2012 GWADW 2012

Lessons from x-ray community, III

- Not surprising Chao first managed to reduce scattering in gyrolaser dielectric mirrors by inventing the SiO₂ doped TiO₂
- But the important message is that <u>thinner coatings</u> are more stable !
- They will probably have even less scattering (crystallite free)
- Will they also have less mechanical losses?

Shiuh Chao, et al., "Low loss dielectric mirror with ion beam sputtered TiO2-SiO2 mixed films" Applied Optics. Vol.40, No.13, 2177-2182, May 1, 2001.

14 may 2012 GWADW 2012

Layer thickness vs. Annealing

- Higher T annealing reduces losses
- In co-sputtering large percentages of dopant (SiO₂ in TiO₂) are needed
- Thinner layers require less
 (%) SiO₂ for the same annealing stability

Annealing Temperature(⁰C)

W.H. Wang and S. Chao, Optics Lett., 23 (1998) 1417; S. Chao, W.H. Wang, M.-Y. Hsu and L.-C. Wang, J. Opt. Soc. Am. A16 (1999) 1477;

S. Chao, W.H. Wang and C.C. Lee, Appl. Opt., 40 (2001) 2177

Why using layered SiO₂::TiO₂

• Comparing: **stratified** $66\% TiO_2$ $36\% SiO_2$ with same refraction index as TiO_2 doped Ta_2O_5

1) If mech. losses in TiO2::Ta₂O₅ are the same as in glassy TiO₂ (worst case)
 Mech. dissipation reduction ~ 36%

How much gain from layered TiO₂:: SiO₂ If we trust Effective Medium Theory,

• Measured loss angles from TNI:

plain Ta₂O₅: $4.72 \pm 0.14 \ 10^{-4}$ TiO₂ doped Ta₂O₅: $3.66 \pm 0.29 \ 10^{-4}$ are consistent with a loss angle for glassy TiO₂: $1.2 - 1.4 \ 10^{-4}$

Mech. dissipation reduction ~ 65%

Dielectric Mixtures Structure makes differences in refraction index

JGW-G1201029

LIGO-G1200562

14 may 2012 GWADW 2012

Titania Doped Tantala

- Years after Chao introduced SiO₂-TiO₂ coatings
- LMA discovered that TiO₂-Ta₂O₅ coatings have
 - less mechanical noise,
 - better thermal noise performance
- Is it because TiO_2 - Ta_2O_5 is a more stable glass?
- Or because of atomic level stress due to doping?
- Or both?

Why stress may be important?

JGW-G1201029

Example: hydrogen dissipation in metals

• A metal has P orbitals ...

Example: hydrogen dissipation in metals

- Hydrogen resides in electron cloud
- = > Double well potential !
- Flip-flops between wells
- Indifferent equilibrium

HGO-

...In the presence of an acoustic wave

JGW-G1201029

LIGO-G120

- horizontal compression:
 - Proton jumps down
- Vertical compression
 - Proton jumps up

Losses in a glass

Double well potential

- Oscillating stress
- Well to well jumping

• Each jump gives loss

JGW-G1201029

LIGO-G1200562

1515

• How to stop it?

Stress the glass !

• Static stress

• Asymmetric double well

 State lives always in the lower hole

Acoustic oscillations in double well potential

- No stress
- Well to-well jumping
- Dissipation

Effects of Stress in Si₃N₄

dissipation in glasses," Phys. Rev. B84 (2011) 174109.

JGW-G1201029 LIGO-G1200562

1818

14 may 2012 GWADW 2012

How to add Stress to the coating

- Adding TiO₂ in Ta₂O₅ introduce random stress
 - Stress from different oxidation pattern (random distribution)
 - Observed Lower losses
- Alternating thin layers TiO₂ to SiO₂ introduce ordered stress
 - Stress from different atomic spacing (ordered)

How to add Stress to the coating

- How thick an optimal layer?
 - 1 interlayer diffusion length thick ?
 - Uniformly graded concentration => uniform stress ?
 - Will it lead to Lower mechanical losses?

LIGO-G1200562

S.Chao, et al., Appl. Optics, 40 (2001) 2177.

• So far for the reasons to try nm layered coatings

 Now let's look at the experimental activity on nm coatings at Chao's Lab in the National Tsing Hua University in Taiwan

Refurbished ion-beam-sputterer

- Fast cycling Coater for SiO₂, TiO₂, Ta₂O₅
- For multi-layers and mixtures

Refurbished ion-beam-sputterer

Kaufman-type ion beam sputter system in a class 100 clean compartment within a class 10,000 clean room Previously used to develop low-loss mirror coatings for ring-laser gyroscope

Exchangeable twin target holder

Sputter target and rotator

Kaufman ion gun and neutralizer

Nano-layer coating preparations

Calibrating deposition rate for TiO₂ and SiO₂

JGW-G1201029

LIGO-G1200562

14 may 2012 GWADW 2012

Nano-layer coating preparations

Uniformity distribution for TiO₂ and SiO₂

LIGO-G1200562

Q Measurement setup

Loss hunting

• Support losses

Neutralizing clamp losses

Neutralizing Residual gas effects

Neutralizing pump vibrations

- Added flexible tube sank in lead pellets
 - Allow continuous pumping

Preparing Silicon cantilevers

• For cryogenic measurements

KOH wet etching

LIGO-G1200562

Silicon cantilevers

14 may 2012 GWADW 2012 JGW-G1201029 LIGO-G1200562

Roughness of cantilever

3434

Incidentally ...

14 may 2012 GWADW 2012

Silicon cliff

- We live here ! $A s_2 S_3$ 10-5
 - That's Scary !!!
 - Is this the reason why cryogenic mirrors do not improve?

14 may 2012 GWADW 2012

FIG. 2. Internal friction of several amorphous solids (Topp and Cahill, 1996). Between 0.1 and 10 K, the internal friction is nearly independent of temperature and measuring frequency. Within this temperature range, the magnitude of the internal friction for all glasses falls within about a factor of 20 as shown here by the dashed straight lines and the double arrow, called the glassy range, except for some a-Si films that are mentioned 0.1 0.1 K, see the JGW 3636 1200562 LIGO

Better cryo coatings?

- What can we do to get better cryo coatings ? ?
- Is getting away from silica a simple answer???
- Should we switch to Al₂O₃ instead ???
- More work to do

