

Squeezed Light Techniques for Gravitational Wave Detection

July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India

G1200688-v1

Abstract

Several kilometer long interferometers have been built over the past decade to search for gravitational waves of astrophysical origins. For the next generation detectors intracavity powers of several 100 kW are envisioned. The injection of squeezed light, a specially prepared quantum state, has the potential to further increase the sensitivity of these detectors. The technology behind squeezed light production has taken impressive steps forward in recent years. As a result a series of experiments is underway to prove the effectiveness of squeezed light and to make quantum technology a valid upgrade path for gravitational wave detectors.

Gravitational Waves

Sensitivity Sixth Science Run

Advanced LIGO Sensitivity

The Advanced LIGO Detector

Squeezed Light

Key Insights

- Shot noise in a Michelson interferometer is due to vacuum fluctuations entering the dark port.
- > Quantum noise also produces photon pressure noise.
- Injecting a specially prepared light state with reduced phase noise (relative to vacuum) into the dark port will improve the shot noise sensitivity.
- Similarly, injecting light with reduced amplitude noise will reduce the photon pressure noise.
- Non-linear optical effects can be used to generate a squeezed "vacuum" state.

G1200688-v1

Experimental Confirmation at the GEO600 Detector

Squeezed Light Interferometry

The Beamsplitter

Generating Squeezed "Vacuum"

Need an operation that applies

 $\widetilde{e}_{vac} \rightarrow \widetilde{e}_{vac} + e^{2i\varphi} \times \widetilde{e}_{vac}^*$ φ : squeezer angle

 $\Rightarrow \text{Noise} \propto |\mathsf{E}_{\text{local}}| \times |\tilde{\mathsf{e}}_{\text{vac}}| \times \cos(\varphi_{\text{local}} - \varphi) \times \cos(\tilde{\varphi}_{\text{vac}} - \varphi)$

Optical parametric oscillator (OPO)
 Non-linear crystal that is pumped at double the frequency and below threshold.

Shot /Radiation Pressure Noise in the Quantum Picture

Phase fluctuations in the vacuum field entering the beamsplitter are responsible for the shot noise

- > Phase squeezing reduces shot noise
- Amplitude fluctuations in the vacuum field entering the beamsplitter are responsible for radiation pressure noise
- > Amplitude squeezing reduced radiation pressure noise

The H1 Squeezer Experiment

Goals:

- Demonstrate 3dB of squeezing at the initial LIGO sensitivity
- Don't degrade low
 frequency sensitivity
- Risk mitigation for high power operations
- Pathfinder for advanced
 LIGO squeezer

Potential show stoppers:

- Back scattering
- Stray light
- Phase noise
- > Optical losses
- > Auxiliary servo noise
- > Alignment jitter
- Stability

Squeezer at Hanford

Electronics

Michael (ANU) Grant (Michigan)

Sh

eon (ANL

Sheila (MIT) Alexander (AEt)

Squeezed Light Interferometry

Optics Table

H1 Squeezed

G1200688-v1

LIGO

Non-Linear Gain

	Now	Near future	Advanced LIGO
3 Faraday passes	5% each	3% each	Aim for less
Signal recycling		2.5%	than 10% total
cavity@100 Hz		(T=35%)	
Squeezer mode	30%	4%	
matching to OMC			
OMC transmission	19%	1%	
Total losses	55-60%	20%	
Detected Squeezing	2+dB	6dB	10-15dB

Losses

Phase Noise

	Now	Near future	Advanced LIGO
RF sidebands	1.3 mrad	same	Reduce to less
Sources on squeezer table	≤22 mrad		than 2 mrad total
Beam jitter	30 mrad		
Total phase noise	37mrad		
Detected squeezing	2+dB	6dB	10-15dB

Future Phase Noise and Loses

Outlook

GEO600/AEI will work on high performance squeezing and long term stability

- ANU continues to optimize the ring-cavity OPO
- R&D program at MIT to work on filter cavities and a low loss readout chain
- Start a design for an advanced LIGO squeezer

Squeezed light sources will be the first upgrade to advanced gravitational-wave interferometers

