

Gravitational Wave Data Analysis: a Mathematical and Statistical Challenge

John T. Whelan john.whelan@astro.rit.edu

Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology

American Mathematical Society Eastern Sectional Meeting 2012 September 22 Document # LIGO-G1200738-v1

- 2 Looking for the Signal
 - Modelled Signals
 - Unmodelled Signals
- Interpreting the Results
 - Absence of Signal
 - Presence of Signal

2 Looking for the Signal
Modelled Signals
Unmodelled Signals

Interpreting the Results
 Absence of Signal
 Presence of Signal

Gravitational Wave Basics

- Linearized gravity $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
- TT gauge $h_{ij}\vec{e}_i\vec{e}_j = \overleftrightarrow{h} = h_+\left(t \frac{\vec{k}\cdot\vec{r}}{c}\right)\overleftrightarrow{e}_+ + h_{\times}\left(t \frac{\vec{k}\cdot\vec{r}}{c}\right)\overleftrightarrow{e}_{\times}$
- GW detector measures $h(t) = \overleftrightarrow{h} : \overleftrightarrow{d} = F_+ h_+(t) + F_{\times} h_{\times}(t)$ where $\overleftrightarrow{d} = \frac{\vec{u} \otimes \vec{u} - \vec{v} \otimes \vec{v}}{2}$ w/ $\vec{u} \otimes \vec{v}$ along arms

Gravitational Wave Observations

 Limiting attention to ground-based interferometers Not considering space-based detectors, pulsar timing, etc

Gravitational Wave Observations

- km-scale ifos in US & Europe; "initial detector era" 2002–11
- Currently upgrading for "advanced detector era" 2015+
- Data analysts finishing last of initial detector analyses & preparing improved analysis methods for ADE

Characterization of Noise

 • "Noise curve" is estimate of ASD √S_n(f) where S_n(f) is one-sided power spectral density

Characterization of Noise

- "Noise curve" is estimate of ASD $\sqrt{S_n(f)}$ where $S_n(f)$ is one-sided power spectral density
- For wide-sense stationary noise

$$E\left[n(t)n(t')\right] = \int_0^\infty \cos(2\pi f[t-t']) S_n(f) df$$

Characterization of Noise

- "Noise curve" is estimate of ASD √S_n(f) where S_n(f) is one-sided power spectral density
- For wide-sense stationary noise

$$E\left[\tilde{n}(f)\tilde{n}(f')\right] = \frac{1}{2}\delta(f-f')S_n(f)$$

Characterization of Noise

- "Noise curve" is estimate of ASD √S_n(f) where S_n(f) is one-sided power spectral density
- For wide-sense stationary noise

$$E\left[\tilde{n}(f)\tilde{n}(f')\right] = \frac{1}{2}\delta(f-f')S_n(f)$$

• If noise is Gaussian, its probability distribution is

$$p(n) \propto \exp\left(-2\int_0^\infty \frac{|\tilde{n}(f)|^2}{S_n(f)}\,df
ight)$$

- Real noise has non-Gaussian "glitches", non-stationarities, correlations between detectors, narrow "lines" etc
- Idealized model is a good starting point, but need to cope with complications

Data Quality Vetos

Examining auxiliary data channels allows "bad" times to be flagged and/or vetoed according to categories, e.g.:

- Cat 1 Do not include data in Fourier transforms
- Cat 2 Okay to include in Fourier transform, but ignore any transient event at this time
- Cat 3 Regard transient event at this time w/suspicion
- Cat 4 Transient events somewhat more likely to be noise

Slutsky et al, CQG 27, 165023 (2010), arXiv:1004.0998

Is Vetoing Enough?

Figure 1. Single interferometer SNR plots from the coherent wave burst [25] pipeline overlaid with the single interferometer Omega [24] burst triggers; the Gaussian distribution is also given for comparison. Note that the SNR ~10 events are the problem for the coherent analysis; the single interferometer rate of SNR ~10 events is very large. The effect of the successive application of the DQ hag categories can be seen in the results for H1 (left) and L1 (girh) form S6.

Vetoing bad times reduces noise "tails" but data still not Gaussian

Nodelled Signals Jnmodelled Signals

- Looking for the Signal
 Modelled Signals
 Unmodelled Signals
- Interpreting the Results
 Absence of Signal
 Presence of Signal

Modelled Signals Unmodelled Signals

Classification of GW Signals

At freqs relevant to ground-based detectors (10s-1000s of Hz), natural division of sources:

	modelled	unmodelled
long	Periodic Sources (aka Continuous Waves) (e.g., Rotating Neutron Star)	Stochastic Background (Cosmological or Astrophysical)
short	Binary Coalescence (Inspiral+Merger+Ringdown) (Black Holes, Neutron Stars)	Bursts (Supernova, BH Merger, etc.)

Modelled Signals Unmodelled Signals

- Looking for the Signal
 Modelled Signals
 Unmodelled Signals
- Interpreting the Results
 Absence of Signal
 Presence of Signal

Data Characterization Search Methods

Modelled Signals Unmodelled Signals

Matched Filtering

Given noise and signal hypotheses $\mathcal{H}_N: x(t) = n(t) \qquad \mathcal{H}_S: x(t) = n(t) + s(t)$ odds ratio is $\frac{p(\mathcal{H}_S|x)}{p(\mathcal{H}_N|x)} = \frac{p(x|\mathcal{H}_S)}{p(x|\mathcal{H}_N)} \frac{p(\mathcal{H}_S)}{p(\mathcal{H}_N)}$ For Gaussian noise, Bayes factor \equiv likelihood ratio is $p(x|\mathcal{H}_S) = \left(\int_{-\infty}^{\infty} |\tilde{x}(t) - \tilde{s}(t)|^2 + 1\right) \left(\int_{-\infty}^{\infty} |\tilde{x}(t) - \tilde{s}(t)|^2 + 1\right)$

$$\frac{\rho(x|\mathcal{H}_S)}{\rho(x|\mathcal{H}_N)} = \exp\left(-2\int_0^\infty \frac{|\tilde{x}(f) - \tilde{s}(f)|^2}{S_n(f)}\,df\right) \left/ \exp\left(-2\int_0^\infty \frac{|\tilde{x}(f)|^2}{S_n(f)}\,df\right)$$

so log-likelihood ratio is

$$\ln\Lambda = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{s}(f)^* \tilde{x}(f)}{S_n(f)} \, df - 2 \int_0^\infty \frac{|\tilde{s}(f)|^2}{S_n(f)} \, df$$

Modelled Signals Unmodelled Signals

Idealized Matched Filter & Complications

Define $(x|y) = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{x}(f)^* \tilde{y}(f)}{S_n(f)} df$

- Likelihood is $p(x|\mathcal{H}_N) \propto e^{-(x|x)/2}$
- Likelihood ratio is $\ln \frac{p(x|\mathcal{H}_S)}{p(x|\mathcal{H}_N)} = (s|x) \frac{(s|s)}{2}$

• Could use $\rho = \frac{(s|x)}{\sqrt{(s|s)}}$ as detection statistic; $p(\rho|\mathcal{H}_N) \propto e^{-\rho^2/2}$

Complications:

- Data not Gaussian; true $p(\rho|\mathcal{H}_N)$ has large outliers
- *H*_S(λ) is composite hypothesis;
 s(*t*; λ) depends on unknown signal parameters
- Data taken by detectors w/different location & orientation

Modelled Signals Unmodelled Signals

Suppressing Noise Outliers (Transient Search)

- Large values of matched filter SNR $\rho = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{s}(f)^* \tilde{x}(f)}{S_n(f)} df$ for signals, or for non-Gaussian glitches
- χ² method (Allen *PRD* **71**, 062001 (2005); gr-qc/0405045):
 - Split into *p* frequency intervals ρ_i = 4 Re ∫_{fi}^{fi+1} š(f)* x̃(f) / S_n(f) df into which signal SNR would be evenly distributed.
 - Construct $\chi^2 = p \sum_{i=1}^{p} (\rho_i \rho/p)^2$
- Empirically determine contours in (ρ, χ²) which separate simulated signals from background events (Babak et al arXiv:1208.3491.)

Modelled Signals Unmodelled Signals

Parameter Space

Signal expected in a detector depends on unknown params:

- distance, arrival time/phase, sky position (α, δ), inclination ι, polarization angle ψ
- For binary coalescence: masses, spins
- For periodic: NS spin, spindown, ellipticity, orbit if in binary

12/29 G1200738-v1 2012 Sep 22 John T. Whelan

GW Data Analysis: a Mathematical & Statistical Challenge

Modelled Signals Unmodelled Signals

Parameter Space

Signal expected in a detector depends on unknown params:

- distance, arrival time/phase, sky position (α, δ), inclination ι, polarization angle ψ
- For binary coalescence: masses, spins
- For periodic: NS spin, spindown, ellipticity, orbit if in binary

$$s(t) = A(t) \left(\frac{1 + \cos^2 \iota}{2} F_+ \cos \phi(t) + \cos \iota F_{\times} \sin \phi(t) \right)$$

- CBC: shape of transient signal in a detector depends on masses & spins; other params just change amplitude A(t)
- CW: signal factors into $s(t) = \sum_{\mu=1}^{4} A^{\mu} h_{\mu}(t)$ where $\{A^{\mu}\}$ depend on amplitude params $\{h_0, \iota, \psi, \phi_0\}$; template shape depends on phase params $f_0, \frac{df}{dt}, \alpha, \delta$, etc. Jaranowski et al *PRD* **58**, 063001 (1998); gr-qc/9804014

Data Characterization Search Methods

Modelled Signals Unmodelled Signals

Template Banks

- Need to search for signal w/unknown parameters
- $(s_1|s_2) = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{s}_1(f)^* \tilde{s}_2(f)}{S_n(f)} df$ lets us define "distance" btwn nearby param space pts (Owen *PRD* **53**, 6749 (1996); gr-qc/9511032)

$$(oldsymbol{s}(oldsymbol{\lambda})|oldsymbol{s}(oldsymbol{\lambda}+oldsymbol{d}oldsymbol{\lambda}))=1-\sum_{ij}g_{ij}\,oldsymbol{d}\lambda^i\,oldsymbol{d}\lambda^j$$

 "metric" g_{ij} used to determine spacing btwn templates (figure from Babak et al arXiv:1208.3491.)

GW Data Analysis: a Mathematical & Statistical Challenge

Singular Value Decomposition for Template Banks

- Standard method specifies 97% overlap between signal & nearest template; neighboring templates overlap by 2 94%
- Can speed up for low-latency analysis by using SVD to resolve templates in orthonormal basis & dropping least significant basis vectors
- Cannon et al PRD 82, 044025 (2010); arXiv:1005.0012

Modelled Signals Unmodelled Signals

Coherent Search for Periodic Signals

- For continuous waves, divide signal parameters into
 - amplitude params: $\{h_0, \iota, \psi, \phi_0\}$
 - phase params: $\lambda \equiv \{\alpha, \delta, f_0, f_1, \ldots\}$
- Jaranowski et al *PRD* 58, 063001 (1998); gr-qc/9804014 showed signal linear in {*A^μ*}, fcns of amplitude params

 $s(t) = \mathcal{A}^{\mu} h_{\mu}(t)$ (assume $\sum_{\mu=1}^{4}$)

template waveforms $h_{\mu}(t)$ depend on phase params

Log-likelihood ratio quadratic in {A^µ}:

$$\ln \Lambda(\mathcal{A}, \boldsymbol{\lambda}) = (\boldsymbol{s} | \boldsymbol{x}) - \frac{(\boldsymbol{s} | \boldsymbol{s})}{2} = 2\mathcal{A}^{\mu} \boldsymbol{x}_{\mu}(\boldsymbol{\lambda}) - \mathcal{A}^{\mu} \mathcal{M}_{\mu\nu}(\boldsymbol{\lambda}) \mathcal{A}^{\nu}$$

• \mathcal{F} -stat method uses best-fit amp params $\widehat{\mathcal{A}}^{\mu} = \mathcal{M}^{\mu\nu}(\lambda) x_{\nu}(\lambda)$ $(\mathcal{M}^{\mu\nu}$ is inv of $\mathcal{M}_{\mu\nu}$); detection statistic is max log-likelihood

$$\mathcal{F} = \ln \Lambda(\widehat{\mathcal{A}}, \lambda) = \frac{1}{2} x_{\mu}(\lambda) \mathcal{M}^{\mu\nu}(\lambda) x_{\nu}(\lambda)$$

Modelled Signals Unmodelled Signals

Bayesian Interpretation (\mathcal{B} -statistic)

- Assume λ known; likelihood $p(x|\mathcal{A}) \propto e^{-\chi^2(\mathcal{A})/2}$
- Bayes's theorem says $p(\mathcal{H}|x) = \frac{p(x|\mathcal{H})p(\mathcal{H})}{p(x)}$
- Odds ratio $\frac{p(\mathcal{H}_S|x)}{p(\mathcal{H}_N|x)} = \frac{p(x|\mathcal{H}_S)}{p(x|\mathcal{H}_N)} \frac{p(\mathcal{H}_S)}{p(\mathcal{H}_N)}$; Bayes Factor $\mathcal{B}_{10} = \frac{p(x|\mathcal{H}_S)}{p(x|\mathcal{H}_N)}$
- $\mathcal{H}_S \equiv$ noise + signal w/some \mathcal{A} ; $\mathcal{H}_N \equiv$ noise only
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{p(x|\mathcal{A})}{p(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_S is composite hypoth. $p(x|\mathcal{H}_S) = \int p(x|\mathcal{A})p(\mathcal{A}|\mathcal{H}_S)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{p(x|\mathcal{A})}{p(x|0)} p(\mathcal{A}|\mathcal{H}_S) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} p(\mathcal{A}|\mathcal{H}_S) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $p(A|H_S)$ uniform in $\{A^{\mu}\}, B = e^{F}$ Unphysical; implies $p(h_0, \cos \iota, \psi, \phi_0 | H_S) \propto h_0^3 (1 - \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating *B*-stat integral w/physical priors

Modelled Signals Unmodelled Signals

Computational Costs for CW Searches

- If λ ≡ {freq, sky pos etc} known, can do most sensitive fully coherent search (correlate all data)
- If some params unknown, have to search over them
- Long coherent observation → fine resolution in freq etc
 → need too many templates → computationally impossible

e.g.
$$N_{\text{tmplts}} \sim \frac{1}{\Delta f} \frac{1}{\Delta f} \frac{1}{\Delta \text{sky}} \sim T \cdot T^2 \cdot (fT)^2$$

 Most CW searches semi-coherent: deliberately limit coherent integration time & param space resolution to keep number of templates manageable

One Semicoherent Method: Cross-Correlation

Dhurandhar, Krishnan, Mukhopadhyay & JTW *PRD* **77**, 082001 (2008) Chung, Melatos, Krishnan & JTW *MNRAS* **414**, 2650 (2011) (Currently being applied by JTW, Larson, Krishnan, et al)

- Divide data into segments of length T_{sft} & take "short Fourier transform" (SFT) x_l(f)
- Label SFTs by *I*, *J*, ... and pairs by α, β, ...
 I & *J* can be same or different times or detectors
- Construct cross-correlation $\mathcal{Y}_{IJ} = \frac{\tilde{x}_{I}^{*}(f_{\tilde{k}_{I}})\tilde{x}_{J}(f_{\tilde{k}_{J}})}{(T_{st})^{2}}$ $f_{\tilde{k}_{I}} \approx \text{signal freq @ time } T_{I} \text{ Doppler shifted for detector } I$
- Use CW signal model to determine expected cross-correlation btwn SFTs & combine pairs into optimal statistic ρ = Σ_α(u_α𝔅_α + u^{*}_α𝔅^{*}_α)

Modelled Signals Unmodelled Signals Center for Computational Relativity and GRAVITATION

Tuning the Cross-Correlation Search

- Computational considerations limit coherent integration time
- Can make tunable semi-coherent search by restricting which SFT pairs α are included in $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*)$
- E.g., only include pairs where $|T_I T_J| \equiv |T_{\alpha}| \leq T_{max}$

Modelled Signals Unmodelled Signals

Looking for the Signal
 Modelled Signals
 Unmodelled Signals

Interpreting the Results
 Absence of Signal
 Presence of Signal

Modelled Signals Unmodelled Signals

Stochastic Background Search Method

• Noisy data from GW Detector:

$$\mathbf{x}(t) = \mathbf{n}(t) + \mathbf{s}(t) = \mathbf{n}(t) + \overleftarrow{\mathbf{h}}(t) : \overrightarrow{\mathbf{d}}$$

Look for correlations between detectors

$$E[x_1x_2] = \underbrace{\overline{E[n_1n_2]}}_{\text{avgto0}} + \underbrace{\overline{E[n_1s_2]}}_{\text{avgto0}} + \underbrace{\overline{E[s_1n_2]}}_{\text{avgto0}} + E[s_1s_2]$$

• Expected cross-correlation (frequency domain)

 $E\left[\tilde{x}_{1}^{*}(f)\tilde{x}_{2}(f')\right] = E\left[\tilde{s}_{1}^{*}(f)\tilde{s}_{2}(f')\right] = \overset{\leftrightarrow}{d}_{1} : E\left[\overset{\leftrightarrow}{\tilde{h}}_{1}^{*}(f)\otimes\overset{\leftrightarrow}{\tilde{h}}_{2}(f')\right] : \overset{\leftrightarrow}{d}_{2}$

• For stochastic backgrounds

$$E\left[\tilde{s}_{1}^{*}(f)\tilde{s}_{2}(f')\right] = \delta(f-f')\gamma_{12}(f)\frac{S_{gw}(f)}{2}$$

 $S_{gw}(f)$ encodes spectrum; $\gamma_{12}(f)$ encodes geometry

Modelled Signals Unmodelled Signals

Stochastic Background Detection Statistic

• Expected cross-correlation (frequency domain)

$$E\left[\tilde{x}_{1}^{*}(f)\tilde{x}_{2}(f')\right] = E\left[\tilde{s}_{1}^{*}(f)\tilde{s}_{2}(f')\right] = \delta(f-f')\gamma_{12}(f)\frac{S_{gw}(f)}{2}$$

Optimally filtered cross-correlation statistic

$$Y = \int df \, \tilde{x}_1^*(f) \, Q(f) \, \tilde{x}_2(f)$$

• Filter encodes expected spectrum & spatial distribution (isotropic, pointlike, spherical harmonics ...)

$$\mathcal{Q}(f) \propto rac{\gamma^*_{12}(f) \mathcal{S}^{ ext{exp}}_{ ext{gw}}(f)}{\mathcal{S}_{n1}(f) \mathcal{S}_{n2}(f)}$$

Modelled Signals Unmodelled Signals

Burst Search Methods

- Robust method for finding transients: look for coincident signals in multiple detectors
- For bursts, no template, so look for e.g., excess power
- Can also combine detector data coherently

Modelled Signals Unmodelled Signals

One Coherent Burst Search Method

Sutton et al, NJP 12, 053034 (2010); arXiv:0908.3665

• Vector **x** of *D* detector outputs is

$$\mathbf{x} = \mathbf{F}\mathbf{h} + \mathbf{n} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} = \begin{pmatrix} F_{1+} & F_{1\times} \\ \vdots & \vdots \\ F_{D+} & F_{D\times} \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \end{pmatrix} + \begin{pmatrix} n_1 \\ \vdots \\ n_D \end{pmatrix}$$

- Log-likelihood ratio is $\ln \Lambda = (\mathbf{Fh}|\mathbf{x}) \frac{(\mathbf{Fh}|\mathbf{Fh})}{2}$
- Maximize by taking $\mathbf{h} = \widehat{\mathbf{h}} = (\mathbf{F}^{\dagger}\mathbf{F})^{-1}\mathbf{F}^{\dagger}\mathbf{h}$; detection stat is

$$E_{\mathsf{gw}} = 2\ln\widehat{\Lambda} = (\mathbf{F}\widehat{\mathbf{h}}|\mathbf{F}\widehat{\mathbf{h}}) = (\mathbf{P}^{\mathsf{gw}}\mathbf{x}|\mathbf{P}^{\mathsf{gw}}\mathbf{x})$$

P^{gw} = F(F[†]F)⁻¹F[†] projects onto 2-dim space of GW signals
P^{null} = 1_{D×D} - P^{gw} projects onto (D - 2)-dim null space
E_{null} = (P^{null}x|P^{null}x) used to veto noise transients

Upper Limits Detection & Parameter Estimation

Looking for the Signal
Modelled Signals
Unmodelled Signals

Interpreting the Results
 Absence of Signal

Presence of Signal

Upper Limits Detection & Parameter Estimation

Looking for the Signal
 Modelled Signals
 Unmodelled Signals

Upper Limits Detection & Parameter Estimation

Setting Upper Limits

- If no significant signal seen, can set upper limit on event rate, known pulsar ellipticity, GW background strength, etc.
- E.g., inspiral event rate set using loudest event statistic Biswas et al *CQG* **26**, 175009 (2009); arXiv:0710.0465
- Typically use data x to set limit on physical quantity μ by constructing posterior pdf

$$p(\mu|x, l) = \frac{p(x|\mu, l)p(\mu|l)}{p(x|l)}$$

& integrating to find upper limit μ^{ul} : $\int_{0}^{\mu_{\text{ub}}^{\text{ul}}} p(\mu|x, I) d\mu = 0.95$

- Don't generally include much non-GW prior info in p(μ|I); in initial detector era, would often find p(μ|x, I) ≈ p(μ|I) if we did!
- Do use this method to combine independent experiments

$$p(\mu|x_2, x_1, l) = \frac{p(x_2, x_1|\mu, l)p(\mu|l)}{p(x_2, x_1|l)} = \frac{p(x_2|\mu, l)p(x_1|\mu, l)p(\mu|l)}{p(x_2|x_1, l)p(x_1|l)}$$

Upper Limits Detection & Parameter Estimation

Setting Upper Limits

- If no significant signal seen, can set upper limit on event rate, known pulsar ellipticity, GW background strength, etc.
- E.g., inspiral event rate set using loudest event statistic Biswas et al *CQG* **26**, 175009 (2009); arXiv:0710.0465
- Typically use data x to set limit on physical quantity μ by constructing posterior pdf

$$p(\mu|x, l) = \frac{p(x|\mu, l)p(\mu|l)}{p(x|l)}$$

& integrating to find upper limit μ^{ul} : $\int_{0}^{\mu_{\text{ub}}^{\text{ul}}} p(\mu|x, I) d\mu = 0.95$

- Don't generally include much non-GW prior info in p(μ|I); in initial detector era, would often find p(μ|x, I) ≈ p(μ|I) if we did!
- Do use this method to combine independent experiments

$$p(\mu|x_2, x_1, l) = \frac{p(x_2|\mu, l)p(x_1|\mu, l)p(\mu|l)}{p(x_2|x_1, l)p(x_1|l)} = \frac{p(x_2|\mu, l)p(\mu|x_1, l)}{p(x_2|x_1, l)}$$

Upper Limits Detection & Parameter Estimation

Looking for the Signal
 Modelled Signals
 Unmodelled Signals

Interpreting the Results
 Absence of Signal

Presence of Signal

Upper Limits Detection & Parameter Estimation

Blind Injection Challenge

- No direct detections of GW so far; detection & parameter estimation methods tested by Blind Injection Challenge: http://www.ligo.org/science/GW100916/
- LIGO & Virgo routinely perform "hardware injections"; simulated signals added to data via control loop.
- For blind injection, time & parameters were concealed until analysis was complete
- Reported as part of S6/VSR2/VSR3 inspiral search Abadie et al (LSC/Virgo) PRD 85, 082002 (2012); arXiv:1111.7314

Upper Limits Detection & Parameter Estimation

Detection Confidence

- Non-Gaussian data \bowtie can't trust false alarm rate from $p(\rho | \mathcal{H}_N)$
- Can't "turn off" GW to get background (unless using EM triggers)
- Seek events found in coincidence in different detectors; estimate background by "time-sliding" data relative to each other. (Low thresholds → ∃ many triggers in each detector.)
- Routinely do 100 time-slides to estimate significance of events. Only allows false alarm probability $\gtrsim 1\%$
- For BIC, used trigger lists to synthesize slides for all of S6
- Only louder "background" events were signal trigger in one detector + glitch in other.
 Different FAR estimates if you exclude "signal" trigger or not!

Upper Limits Detection & Parameter Estimation

Detection Confidence for Rare Events

Different FAR estimates if you exclude "signal" trigger or not!

Abadie et al (LSC/Virgo) PRD 85, 082002 (2012); arXiv:1111.7314

27/29 G1200738-v1 2012 Sep 22 John T. Whelan GW Data Analysis: a Mathematical & Statistical Challenge

Upper Limits Detection & Parameter Estimation

Parameter Estimation

- Matched-filter searches return best-fit pt in param space; not generally best estimate of true signal parameters:
 - Single-detector triggers independent of some params
 - Other parameter degeneracies
 - Coarse template banks
- Follow up detections with dedicated parameter estimation using Markov-Chain Monte Carlo, nested sampling, etc
- Produce posterior PDFs for signal parameters
- LSC/Virgo parameter estimation paper forthcoming

Upper Limits Detection & Parameter Estimation

- GW data analysis involves not just model + experiment also statistical and mathematical signal processing
- Looking for modelled/unmodelled signal in non-ideal noise
- Matched filtering, but also coherent/semicoherent analyses, template banks, sensitivity vs computational cost
- Statistical inference used to
 - Set upper limits in the absence of a detection (now)
 - Assign confidence to a potential detection (soon!)
 - Determine parameters of detected systems (later)