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1 Introduction

1.1 Purpose and Scope

This is a writeup of a calculation to understand the measured violin mode Q’s of the MC2
suspension at LLO but much of the background is applicable to all suspensions.

1.2 References

LLO alog entries 4470, 4472, 5097, 5280

G. Cagnoli et al., Phys. Lett. A 255 (1999), p230

T0900415: Upper Limit to Suspension Thermal Noise from LIGO 1 and Implications for Wire
Suspensions in Advanced LIGO

T070101: Dissipation Dilution

T080096: Wire Attachment Points and Flexure Corrections

LIGO-T0900435: HAM Small Triple Suspension (HSTS) Final Design Document
LIGO-D020700: HSTS Overall Assembly

Cumming et al,, Design and development of the advanced LIGO monolithic fused silica
suspension, Class. Quantum Grav. 29 (2012) 035003.

1.3 Version history
8/28/12: -v1.

10/31/12: -v2, with analysis of data on additional wires and modes taken by Keiko and posted
10/29 in LLO alog 5097.

4/19/13: -v3. Various refinements suggested by Jeff K, including a calculation of net thermal noise.
Incorporate refitted Q’s from LLO alog 5280.

2 Measurement

The violin mode of one of the wires supporting the optic in the MC2 was measured by Keiko
Kokeyama, with advice from Gaby Gonzalez and Peter Fritschel. See LLO alog entries 4470 and
4472. The frequency and Q were 631.55 Hz and 2.3x10°. See -v1 of this document for the analysis
of that data point.

Later, Keiko measured the frequencies and Q’s of the first three modes of all four wires. See LLO
alog entry 5097. This data is reproduced in Table 2 (Section 5) below.

Later again, Keiko reprocessed the ringdown curves from alog 5097 using an improved Q-fitting
procedure to produce a new data set in alog 5280, reproduced in Table 6 (Section 6) below.
However it turns out that there is probably some problem with this reanalysis because it implies
unphysical damping parameters.

3 Theory
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3.1 Mode frequencies

To see whether these measurements were reasonable, the frequency and Q were calculated using
the Mathematica model of the suspension, specifically case {"mark.barton",
"20120120hstsMC2damp"} of the TripleLite2 model. This is equivalent to the Matlab
parameter set ~/trunk/Common/MatlabTools/TripleModel Production/hstsopt metal.m
revision 2007 which has given a good fit with measured TFs. It also includes modifications, used
below, for optionally assigning a separate damping function on each of the four final wires, so as to
allow net pendulum mode thermal noise to be calculated from fitted parameters on the respective
wires. However since neither the Mathematica nor Matlab models includes violin modes explicitly,
calculating these was a matter of using numerical values from the parameter sets in general
formulae as described below.

Per Eq. 2.67 of Fletcher and Rossing, to second order in small quantities, the frequency of a violin
mode is

2.2

ﬁl:nﬁ°(1+b+b2+ng sz (1.1)

(Their B has been renamed b to avoid confusion with the thermodynamic material property S
used below.)

Here n=1,2,3... is the mode number, and

1 |T
fl=—|—, (1.2)
2L\ p,
is the frequency of a wire without bending stiffness but the same length L, tension 7" and mass per
length p, .
The dimensionless quantity b (formerly 3) is
_2k [
LNT

b (1.3)
where K is the radius of gyration of the wire, Y is the Young’s Modulus, and A is the cross-
sectional area, but it is closely related to the usual flexure length, defined (T080096) as

Yl bL

== (1.4)

Here, I is the second moment of area of the wire in the bending direction, equal to 7r*/4 in any
direction for a wire of circular cross-section. (The moments of area of the bottom wires in the
longitudinal and transverse directions are called M31 and M32 in the model code.)

It is convenient and instructive to put the above formula in terms of a :

n T
1o = > 2022 o (1.5)
ZL(I—a—H)\)pL

L 217
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This makes it obvious that to first order in % = % (= 0.00248 for the HSTS) the effect is simply

to shorten the wire by one flexure length a at each end for all harmonics. This is consistent with
the fact that a wire of non-zero bending stiffness does not bend sharply at the clamp point but along
a curve that for most purposes gives the effect of a pivot a away from the attachment point. In

.o, . . . . 2 2 2 .
addition, there is also a tiny shortening 7 7 ¢ /2 L second order in both ¢ T and mode number 7.

The plain b* term disappears because it turns out to be an artifact of doing the expansion in the
numerator rather than the denominator, i.e.,

1/(1-b)=1+b+b"+0(b") (1.6)

3.2 Damping

The Q of the violin mode depends on the material damping factor ¢ and the dissipation dilution
factor D. The damping factor is modeled as a frequency-independent structural term
., =2 %107 (Cagnoli et al. 1999; also T0900415) plus a thermoelastic term:

21 fTA

1+(2mf7)) (17)

¢(f) = ¢SfVLlCl +¢thermo = ¢S[VLle +

where (e.g., Cumming et al.)
7=0.0732Cr’p, / k (1.8)

is a time constant for heat diffusion across the wire (C is heat capacity and k is heat conductivity),
and

2
A= e[ -] (19)
pyC Y
is twice the thermoelastic damping at the peak frequency 1/2nt (T,, is temperature, ¢ is linear
: 1 dY : : . .
expansion, = YT’ and 0 =T /A is stress). The magic number 0.0732 is a geometrical factor
w

for wires of cylindrical shape, equal to % £ where & is the first zero of the derivative of the first

Bessel function of the first kind:

e =315 (8)-1,(8))=0 (1.10)

Because the energy in a violin mode is stored in second-order stress changes of the elastic material,
dissipation dilution is applicable (T070101) and the quality factor Q is not just 1/¢ for the

material, but D /¢ where

2.2
p=24[ 174 (1.11)
L 2L

Again there is a higher order term proportional to n”, which turns out to be significant.
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4 Model parameter values

The following table gives symbol names and values for key parameters from the “production”
HSTS model as of 1/20/2012 through the date of this report, which aims to be a good
approximation to a generic HSTS suspension and has given good fits to measured transfer
functions. In some cases, e.g., the optic mass m3, a value specific to L1:MC2 is available and this

has been noted in the table and used where appropriate in the subsequent analysis. The model can
be found in the SUS SVN at

Atrunk/Common/MathematicaModels/TripleLite2/mark.barton/20120120hsts

Table 1: Key parameter values from Mathematica model “20120120hsts”

Parameter Parameter Value (SI'| Note

(Theory) (Mathematica) Units)

m m3 2.889 optic mass (generic HSTS value)

m m3 2.90099 optic mass, L1:MC2 with prisms

L 13 0.22 wire length

Y Y3==Ysteel |2.119*10"11 Young’s modulus

r r3 0.0000597 wire radius

a flex3 0.000546237 flexure length a (generic HSTS value)
M31 9.97671*10"-18 | wire second moment of area /

B betasteel -2.5*%10"-4 logarithmic rate of change of Young’s

modulus with temperature

o alphasteel | 12*10"-6 thermal expansion coefficient

Py rhosteel 7800 density

C Csteel 486 heat capacity

Drer phisteel 2*10"-4 structural component of phi

T taufibre 0.0000813372 | thermoelastic time constant

A deltafibre |0.00263381 thermoelastic half maximum phi

D (n=1) D1 0.00502663 dissipation dilution (n=1)

D (n=2) D2 0.00520916 dissipation dilution (n=2)

D (n=3) D3 0.00551338 dissipation dilution (n=3)

5 Results

The raw data from LLO alog 5097 (initial ringdown fitting algorithm) is given in Table 2.
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Table 2: Raw data from initial ringdown fitting algorithm

Wire fl (Hz) Ql £2 (Hz) Q2 f3 (Hz) Q3

#1 631.56 247105 1263.3 163943 | 1895.19 141496
#2 644.977 251198 1290.09 172007 | 1935.45 150543
#3 660.305 249889 1320.62 187364 | 1981.46 177172
#4 671.023 229827 1342.16 175060 | 2013.56 169019

5.1 Frequencies and tensions

Using values from the model in the frequency formula of Section 1 gives f = 650.55 Hz. This
represented a mystery in -v1 of this report when the only frequency value was for wire #1, i.e.,
631.56 Hz or a 4% discrepancy. However with the luxury of frequency values for all four wires
(Table 2) it becomes obvious that the problem was simply that there is a spread of values,
presumably due to uneven tensions, and that the theoretical value is in the centre of the cluster.

To make this precise, the tension in each wire was inferred from the n=1 mode frequency using the
above equation for f, with n=1 - see Table 3. The total tension over 4 wires is 28.4791 N

(frequency is proportional to the square root of tension and could not haave been sensibly averaged
or added). This is within 0.07% of the total load force from a mass of 2.90099 kg, i.e., 28.4587 N,
which is excellent agreement.

Table 3: Tensions inferred from measured fundamental violin mode frequencies

Wire number £l (Hz) Tension (N) % difference from
mean

#1 631.56 6.67533 -6.24

#2 644.977 6.96346 -2.20

#3 660.305 7.30009 +2.53

#4 671.023 7.54019 +5.90

Sum 28.4791

MC2mass*g 28.4587

Besides the sum, there are three other linear combinations of interest, which are related to the pitch,
roll, and “pringle” forces on the optic:

“pitch” = BL+BR-FL-FR- (BL = back left, etc)
“roll” = FL+BL-FR-BR
“pringle” = FL+BR-FR-BL

Because the modes are measured by exciting the whole mass, it is difficult to identify which wire
position corresponds to which frequency and the wire numbers have been assigned purely by
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ascending order of frequency. Thus we need to consider multiple possible mappings from wire
number to position.

If the tensions are plotted as a function of wire number, as in Figure 1, they fall on a straight line to
a good approximation, that is, they are equally spaced. This is a striking pattern but the significance
of it is not clear and it may be a coincidence.

Figure 1: Tensions inferred from measured fundamental violin mode frequencies (plotted)

Histogram of tensions
tension (N)

74

70

1 2 3

wire number

The “pringle” imbalance (between the sums over the two diagonals) can be arbitrarily large
because the optic is very stiff and resists it. However it is not possible to assign four equally spaced
tensions to the corners so that only the “pringle” imbalance is large. In some order or other, the
three linear combinations will be 0.048 N, 0.528 N and 1.201 N, i.e., one small and two large.

The small imbalance is presumably “roll”. There is a 0.5° horizontal wedge which gives a left-right
COM shift of 0.17 mm. This creates a torque of 0.00482 N.m, which is respectably close to 0.048
N acting over a lever arm of n5 =0.08 m, i.e., 0.0038 N.m.

The mid-sized imbalance is probably “pitch”. A 0.093 mm displacement forward or backward of
the prism (slightly less than the gluing accuracy goal of 0.1 mm) would give a slightly smaller
torque than in roll, of 0.264 N.m, but the lever arm is smaller (s1 = 0.005 m), so this would
correspond to a 0.528 N force imbalance. Matching the largest imbalance of 1.2 N with a 0.21 mm
prism offset is not totally unthinkable but neither especially plausible.

There aren’t enough clues to determine the sign of pitch, but we can constrain roll: the optic is
installed with the thick side of the wedge on the right as viewed from the back (upside down with
respect to the substrate drawing). This gives a positive roll torque in standard SUS coordinates, so
we need “roll”’<0 as defined above to balance it, i.e., FR+BR>FL+BL.

All this implies either the following arrangement or its front-back mirror:
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Table 4: Mapping of wire numbers to corners

Note that the front-back assignment is not constrained and could be flipped.

Left-right Front-back | Pitch
sum difference | torque
(“pitch”) (N.m)

FL #1 FR #3 -0.00264

63156 Hz | 073N | 660305 1z | /300N | BITRN 57803 N | Num

BL #4 BR #2

671.023 Hz 7.54019 N 644.977 Hy 6.96346 N | 14.50365 N

Front-back 1 1451550 N 1426355 N

sum:

Right-left

difference

(“roll”): -0.04803 N

-0.00384
Roll torque | N.m
5.2 Damping

The stock damping function included with the model has two terms, one for structural and one for
thermoelastic damping. The thermoelastic term turns out to contribute the bulk of the damping in
the frequency range of the violin modes but the structural term is not negligible. See Figure 2.

Putting in entirely stock values, at the nominal violin mode frequency of 650.56, the total ¢ is

9.9x10™, almost 5 times the structural term, 2x10™*. Together with a D of 0.00503, this gives an
effective @ of 4.97x10° or a Q of 2.01x10°. Interestingly the measured range of 2.3x10° to

2.5x10° is very much in the same ballpark but slightly better (lower ¢ , higher Q).

This discrepancy persists when the stock damping function is used but allowance is made for the
uneven tensions. Tension affects the mode Q in three ways: (i) via the thermoelastic A, which has
a (small, negative) term proportional to stress, (ii) via pushing the frequency to a different point on
the damping function, which is moderately steeply increasing in the range of the first three violin
modes, and (ii) via the dissipation dilution factor, which falls (more dilution) with tension. In fact
the last effect dominates and the net @ falls with frequency. See the small coloured dots in Figure
3, which lie above the larger coloured dots representing the measured values. However within each
cluster (n=1, n=2, n=3) both the measured points and the stock theory with tension correction show
the same characteristic downward trend with frequency from the dependency of the dissipation
dilution on tension.
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Figure 2: Bending loss angle ¢ (before dissipation dilution) as a function of frequency for the
wire. The thermoelastic peak is visible on the right.
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Since three data points (for three different harmonics) are available per wire, we can potentially say
something about three different parameters of the damping function, the obvious candidates of
interest being the structural @and the thermoelastic 7 and A. The Mathematica function
FindRoot [] was used to find the parameter values that would reproduce the observed Q’s in
conjunction with dissipation dilution incorporating the tensions derived earlier. (FindFit [] and
NSolve [] were tried first but even when fairly narrow constraints on the sensible solutions were
provided, they failed to give curves passing through or even particularly near the data.)

The parameter values obtained are listed in Table 5, together with the stock values for comparison.
Curves based on the parameters have been plotted in Figure 3, and do in fact pass precisely through
the data points they’re based on. As an aid to the eye, the mode number n has been treated as a
continuous function of frequency and interpolated so as to give a smooth curve that can be
compared to the underlying damping function. Despite the fit being based on only three points on a
somewhat unrepresentative section of the curve (the upward slope just to the left of the
thermoelastic peak) the consistency of the fitted parameters and the naturalness of the fitted curves
is quite good. The fitted values of structural phi are clustered around the stock value of 2x10™
(mean 2.06x10™*), whereas the fitted values of thermoelastic A are clustered around about 71% of
the stock value.

Figure 3: Fitted damping curves with Q’s from original ringdown fitting algorithm

Black dots are prediction from stock model. Wire #1=red, #2=blue, #3=green,#4=brown. Large
coloured dots are measured 1/Q. Small dots are predictions using stock values for all parameters

10
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except wire tensions. Dashed curves use fitted parameters (the mode number n has been
interpolated to give a continuous curve).
1

»
8.x1076 - :
w
6.x1076 - R .
. L AP
»"';
4.x10-6 | ‘
2.x1076 |-
1 . . . P 1 . . 1 . . . P 1 f (Hz)
50 100 200 500 1000 2000
Table 5: Fitted damping parameters with Q’s from original ringdown fitting algorithm
f1 (Hz) phi delta tau (s) 1/ (2xpixtau) (Hz)
stock 650.585 0.0002 0.00263381 0.0000813372 1956.73
=1 631.56 0.00016832 0.00214845 0.0000789362 2016.25
T2 644.977 0.000212517 0.00196291 0.0000794312 2003.68
=3 660.305 0.000227039 0.00166091 0.0000984017 1617.4
14 671.023 0.000218143 0.00184757 0.000103027 1544.78
mean 651.966 0.000206505 0.00190496 0.0000899491 1795.53
stdev 17.3009 0.0000261493 0.000204534 0.000012575 249.431

6 Refitted data

Later, Keiko reanalyzed the original ringdown curves with a different fitting algorithm that was
hoped to be better. See LLO alog 5280. The new data is reproduced in Table 6. The frequencies are
the same (and thus all the above conclusions about tensions) but the Qs are somewhat different,
especially for the n=3 mode.

Table 6: Raw data with Q’s from “improved” fitting algorithm

Wire number f1 (Hz) Ql 2 (Hz) Q2 3 (Hz) Q3

#1 631.56 234598 | 1263.3 160933 | 1895.19 195142
#2 644.977 238817 | 1290.09 165250 | 1935.45 178511
#3 660.305 239867 | 1320.62 167053 | 1981.46 174990

11
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| #4

| 671.023

| 229072 | 1342.16

| 164167 | 2013.56

| 177825 |

This rather disturbs the subsequent curve fitting of ¢, T and A. The 7’s and A’s are substantially

larger than before (the thermoelastic peak frequency is lower), and the ¢ values come out negative,

as in Table 7 and Figure 4. Since a negative ¢ is unphysical, there is presumably something wrong

with the new algorithm, and we persist with the original Q’s.

Table 7: Fitted damping parameters with Q’s from “improved” ringdown fitting algorithm

f1 (Hz) phi delta tau (s) 1/ (2xpixtau) (Hz)

stock 650.585 0.0002 0.00263381 0.0000813372 1956.73
=1 631.56 -0.00112109 0.00457979 0.000139954 1137.2

72 644.977 -0.00056371 0.00343057 0.000126003 1263.11
73 660.305 -0.000407667 0.00315013 0.000118878 1338.81
4 671.023 -0.00049905 0.00341633 0.000122863 1295.38
mean 651.966 -0.00064788 0.0036442 0.000126925 1258.62
stdev 17.3009 0.000321904 0.000636916 9.16241x107° 86.6895

Figure 4: Fitted damping curves with Q’s from “improved” ringdown fitting algorithm

Black dots are prediction from stock model. Wire #1=red, #2=blue, #3=green,#4=brown. Large
coloured dots are measured 1/Q. Small dots are predictions using stock values for all parameters
except wire tensions. Dashed curves use fitted parameters (the mode number n has been
interpolated to give a continuous curve).
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7 Effect on net thermal noise
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To examine the effect that different amounts of damping at different corners would have, the stock
Mathematica model was altered to allow different damping functions on each of the four lower
wires, and the fitted parameters from the initial Q’s were plugged in. The modified model is in the

SUS SVN at

~trunk/Common/MathematicaModels/TripleLite2/mark.barton/20120120hstsMC2damp

The results are compared with those from the stock model in Figure 5 and Table 8. In fact the

thermal noise is almost identical up to 30 Hz and about 11% lower at 1000 Hz.

Figure 5: Net pendulum thermal noise

MC?2 thermal noise with stock damping (black) and fitted damping (red)

X (m/rtHz)

1011k

10-13

10715

10-17

10-19

05

Table 8: Net thermal noise at representative frequencies

f (Hz)

x (m/rtHz), stock

X (m/rtHz), fitted

1 1 f H
50 10.0 50.0 100.0

fitted/stock

0.1
0.316228
1.
3.16228
10.
31.6228
100.
316.228
1000.

1.07 x107°14

8.73506x 1071
7.82564x10713
2.13397x10713
1.19274x10°Y7
6.98528x 10717
4.60104x10°2°
3.5083x 10721
2.83237x10722

1.0738x107°14
8.75147x1071°
7.8366x10713
2.16377x1071>
1.20306x 10717
6.95182x10°1°
4.45137x1072°
3.26725x1072!
2.53209x 10722

1.00356
1.00188
1.0014
1.01396
1.00865
0.99521
0.96747
0.931292
0.893982

13
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8 Conclusion

The observed frequencies tell a consistent story. The tensions implied by the frequencies sum to
almost exactly the known payload force, and the “roll” imbalance matches the expected value
based on the horizontal wedge. It’s difficult to say definitively which of the two remaining
imbalances is “pitch” and which is “pringle”, but the smaller of the two is what would be expected
if the prisms were at the limit of their 0.1 mm front-back gluing tolerance and so is probably pitch.
Conversely the larger is an additional factor two, consistent with the fact that there is little
constraint on the “pringle” imbalance.

The damping from the first ringdown fitting algorithm ties up quite well with the model and what
small discrepancy there is (of order 25%) is (i) in the advantageous direction and (ii) better
explained by the thermoelastic term (rather than the structural term) being low.

The Q’s from the second ringdown fitting algorithm imply unphysical values of ¢, and we propose
to ignore them.

To the extent the initial Q values can be trusted, the effect on thermal noise at the optic is very
small (<11%) and in the favorable direction compared to the stock model.
9 Appendix

In the PDF version of this report, a printout of the Mathematica notebook containing the calculation
will be appended.

calculationcalculations will be appended.

14



Calculation of TripleLite2 model with violin mode stuff (for T1200418-v3)

Note: this notebook needs to be in a calculation directory of case {“mark.barton”,”20120120hstsMC2damp”} of the
TripleLite2 model to be run.

= Setup
Switches to enable loading of previously saved results instead of recalculating from scratch

useprecomputed = True; (* set to True to use saved results from precomputed subdirectory *)
If[useprecomputed,
exceptdamping
exceptdamping
1;

loadcasefromuser|[ "ASUS3L2ModelCaseDefn.m"];

True, (* False by default, True to recalculate just damping-dependent stuff¥*)
True (* DON"T CHANGE ¥*)

overridesorig = overrides;
modelcase

{mark.barton, 20120120hstsMC2damp}
modelcasecomment

Equivalent to Jeff K's hstsopt_metal.m revision
2007 of 1/19/12, but with independent damping on lower wires.

Reset[All]
Calculate[constval];
= Parameters of interest
Wire length
13 /. constval
0.22
Young’s modulus
¥3 /. constval
2.119 x 10!
Wire radius
r3 /. constval
0.0000597
Mass (nominal value from model)
m3 /. constval
2.889
Mass of bare IMCC-03 (L1, MC2) from nebula
MC2bare = 2.898;
Mass of primary prism
prismmassl = 3980 % (0.197 * 0.0254) % (0.223 % 0.0254) % (0.79 % 0.0254) / 2
0.00113175
Mass of secondary prism
prismmass2 = rhosteel » (0.079 * 0.0254) » (0.091 *x 0.0254) » (0.787 *x0.0254) /2 /. constval
0.000361584

Mass of MC2 with prisms
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MC2mass = MC2bare + 2 * prismmassl + 2 * prismmass2
2.90099

Flexure length (nominal)

flex3 /. constval

0.000546237

Twice flexure length as a fraction of total (cf. beta=2a/L)

2 xflex3 /13 /. constval

0.00496579

Half front-back wire separation

sl /. constval

0.005

Half left-right wire separation

n5 /. constval

0.08

COM offset due to 0.5° horizontal wedge

COMy = 0.17 / 1000;

Wire tension (nominal value from model)

tension = m3 *xg/nw3 /. constval

7.08527

Roll torque due to wedge

rolltorque = m3 * COMy *g /. constval
0.00481799

rolltorque * n5 /. constval

0.000385439

Extra tension to offset roll torque

deltatensionroll = rolltorque /n5/4 /. constval
0.0150562

Extra tension as a percentage

100 » deltatensionroll / tension

0.2125

Pitch torque due to 0.1 mm prism offset (gluing tolerance)
pitchtorque = 0.0001 *xm3 xg /. constval
0.00283411

Extra tension to offset pitch torque

deltatensionpitch = pitchtorque /sl /. constval
0.566822

0.528 * s1 / pitchtorque /. constval

0.93151

0.528 x sl /. constval

0.00264



1.201 » sl / pitchtorque /. constval

2.11883

100 » deltatensionpitch / tension

8.

Wire second moment of area

M31 /. constval (* a.k.a. I *)

9.97671x 10718

Fundamental violin mode for wires above mass 3 (the optic)

f3n =n*Sqrt[(m3 xg/c3 /nw3) / (rhosteel *xA3)] /
(2%13 % (1-2%xflex3/13-n"2*Pi"2xflex372/2/13"2))

gm3
n P e
A3 c3 nw3 rhosteel

2 flex3 flex32 n? n? )
13 21372

213 (1 -
£31 = £3n/.n-> 1 /. constval
650.585

£32 = £3n /. n-» 2 /. constval
1301.29

£33 = £3n /. n-» 3 /. constval
1952.23

Giles’ formula for dissipation dilution, D

D1 = (2/13) »Sqrt[Y2 » M31 / tension] *
(1+(1/2/13) * (Pi*n) "2 %Sqrt[Y2 *M31 / tension]) /. constval /. n-> 1

0.00502663

D2 = (2/13) »Sqrt[Y2 » M31 / tension] *
(1+(1/2/13) * (Pi%*n) "2 %Sqrt[Y2 «+M31 / tension]) /. constval /. n-» 2

0.00520916

D3 = (2/13) *Sqrt[Y2 * M31 / tension] *
(1+(1/2/13) * (Pi%*n) "2 %Sqrt[Y¥2 «+M31 / tension]) /. constval /. n-> 3

0.00551338

Structural component of wire phi (before dissipation dilution)

phisteel /. constval

0.0002

Expected Q at fundamental violin mode neglecting thermoelastic damping
Ostruct = 1/ (D1 » phisteel) /. constval

994 702.

Total phi(f) including thermoelastic (note damping tag is “fibreatype” but model really does have wire parameters)
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LogLinearPlot [damping[imag, fibreatype] [f] /. constval,
{f, 1, 10000}, PlotRange -» {0, Automatic}, AxesLabel » {"f (Hz)", "¢"}]
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Total phi at fundamental violin mode (before dissipation dilution)
damping[imag, fibreatype] [£31] /. constval
0.000988535

Total phi at fundamental violin mode (after dissipation dilution)

D1 » damping[imag, fibreatype] [£31] /. constval

4.969x10°

Q at fundamental violin mode (after dissipation dilution)

01 = 1/ (D1 x damping[imag, fibreatype] [£31]) /. constval
201 248.

02 = 1/ (D2 x damping[imag, fibreatype] [£32]) /. constval
135720.

03 = 1/ (D3 x damping[imag, fibreatype] [£33]) /. constval

119571.

Keiko’s data
Raw data from https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=5097

keikodata20121029 = {

{{631.56, 247105}, {1263.3, 163943}, {1895.19, 141496}},
{{644.977, 251198}, {1290.09, 172007}, {1935.45, 150543}},
{{660.305, 249889}, {1320.62, 187364}, {1981.46, 177 172}},
{{671.023, 229827}, {1342.16, 175060}, {2013.56, 169019}}

}i

Refitted data from https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=5280

keikodata20121114 = {

{{631.56, 234598}, {1263.3, 160933}, {1895.19, 195142}},
{{644.977, 238817}, {1290.09, 165250}, {1935.45, 178511}},
{{660.305, 239867}, {1320.62, 167053}, {1981.46, 174990}},
{{671.023, 229072}, {1342.16, 164167}, {2013.56, 177825}}

}i

Analysis of tensions
The frequency expressed as a function of tension

fls = keikodata20121029[[All, 1, 1]];



foftension = (Sqrt[(m3 xg/nw3) / (rhosteel *xA3)] / (2 (13 -2 » flexoften))) /.

M31 nw3 Y3
flexoften » —— /.g*xm3/nw3 > ten /. nw3/ (g*xm3) - 1/ ten /. constval
gm3

53.5024 +/ten

0.22 -0.00290796 |
ten

The tensions required to account for the observed frequencies (N)

tensions = Table[ten /. NSolve[fls[[i]] == foftension, ten] [[1]], {i, 4}]
{6.67533, 6.96346, 7.30009, 7.54019}

Deviations from the mean (N)

tensions - Mean[tensions]

{-0.444438, -0.156303, 0.18032, 0.420421}
Percentage deviations from the mean

100 » (tensions - Mean[tensions]) / Mean[tensions]
{-6.24231, -2.19535, 2.53266, 5.90499}

Net tension

netten = Plus @@ tensions

28.4791

Net load force

load = MC2mass *g /. constval

28.4587

Percent tension-load discrepancy

100 * (netten/ load -1)

0.0716248

Plot of tensions

ListPlot[tensions, PlotLabel » "Histogram of tensions",
AxesLabel » {"wire number", "tension (N)"}, AxesOrigin - {0.5, 6.5}]

Histogram of tensions
tension (N)

741

70
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Functions giving the three linear combinations representing tension imbalances
pitch[{{FL_, FR_}, {BL_, BR_}}] := BL+BR-FL-FR
roll[{{FL_, FR_}, {BL_, BR_}}] := FL+BL-FR-BR

pringle[{{FL_, FR_}, {BL_, BR_}}] := FL+BR-FR-BL
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Most likely mapping of tension values to the four corners of the optic, in {{FL,FR},{BL,BR}} order
corners = {{tensions[[1]], tensions[[3]]}, {tensions[[4]], tensions[[2]]}};
The imbalances for the likely mapping

{pitch[corners], roll[corners], pringle[corners]}

{0.528236, -0.0480325, -1.20148}

The torque corresponding to the pitch imbalance

pitch[corners] * sl /. constval

0.00264118

The roll torque corresponding to the roll imbalance

roll[corners] *n5 /. constval

-0.0038426

Damping comparison using mostly stock parameters but correcting for tension differences

Doftension[n_] =
(2/13) »Sqrt[¥3+M31/ten] * (1+ (1/2/13) » (Pi*n) "2 *Sqrt[¥3 *M31/ ten]) /. constval

1
0.013218 [1+0.0326142 n? — —_—
ten ten

Doftension[1l] /. ten » tensions[[1]]
0.00518057
The dissipation dilution factors allowing for different tensions, for the four wires and three harmonics

Ds = Table[(2/13) »Sqrt[¥3 *M31 / tensions[[i]]] *
(1+(1/2/13) » (Pi%*n) "2 %Sqrt[¥3 +*M31/ tensions[[i]]]) /. constval, {i, 4}, {n, 3}]

{{0.00518057, 0.00537432, 0.00569722}, {0.00507094, 0.00525666, 0.0055662},
{0.00495123, 0.00512839, 0.00542366}, {0.00487083, 0.00504235, 0.00532822}}

The thermoelastic tau expressed as a function of tension (actually tension-independent)
tauoftension = taufibre /. constval

0.0000813372

taus = Table[tauoftension /. ten - tensions[[i]], {i, 4}]
{0.0000813372, 0.0000813372, 0.0000813372, 0.0000813372}

The thermoelastic delta parameter expressed as a function of tension

deltaoftension = deltafibre /. overrides /. g*m3 / nw3 - ten /. constval

1.62106 x 107 (0.000012 + 1.05368 x 10 7 ten)’

The delta values for the four wires, allowing for the tension differences
deltas = Table[deltaoftension /. ten - tensions[[i]], {i, 4}]
{0.00261599, 0.00262851, 0.00264317, 0.00265366}

The phi function from the standard damping model in terms of the three constants to be fitted

phifn[f_ , phi_, tau_, delta_] =
damping[imag, fibreatype] [f] /. overrides /. taufibre » tau /. deltafibre - delta /.
phisteel - phi

6.28319 delta f tau

phi +
1+ 39.4784 £? tau?

Dissipation diluted phi as a function of tension



fitfn[f , n_, ten_, phi_, tau_, delta_] = Doftension[n] * phifn[f, phi, tau, delta]

6.28319 delta f tau 1 1
0.013218 |phi + 1+0.0326142n% | — —_—
1+39.4784 2 tau? ten ten

Analysis of “improved” Q’s
keikodata = keikodata20121114;
Equations expressing the requirement that the fitted curves pass through the data points

Do [
wireeqns[w] = Table[fitfn[keikodata[[w, n, 1]], n, tensions[[w]], phi, tau, delta] =
1/ keikodatal[[w, n, 2]1, {n, 3}1,
{w, 1, 4}
1

Convert to expressions, LHS-RHS

Do [
wireexp[w] = wireeqns[w] /. x_=y »Hx-Y,
{w, 1, 4}

1

Solve using FindRoot[] (which turns out to do a better job than NSolve[] and Minimize[]

wireroot[1l] = FindRoot[wireexp[1l], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[2] = FindRoot[wireexp[2], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[3] = FindRoot[wireexp[3], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[4] = FindRoot[wireexp[4], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];

Quick summary table

TableForm[Table[{phi, tau, delta} /. wireroot([w], {w, 1, 4}],
TableHeadings » {keikodata[[All, 1, 1]], {phi, "tau (s)", delta}}]

phi tau (s) delta
631.56 -0.00112109 0.000139954 0.00457979
644.977 -0.00056371 0.000126003 0.00343057
660.305 -0.000407667 0.000118878 0.00315013
671.023 -0.00049905 0.000122863 0.00341633

A function to give the expected phi from the stock model, except with corrections for observed tension.

netphitencorronly[w_, n_] :=
Ds[[w, n]] » damping[imag, fibreatype] [keikodata[[w, n, 1]]] /. overrides /.
taufibre » taus[[w]] /. deltafibre -» deltas[[w]] /. constval

Summary plot
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Show [
LogLinearPlot[fitfn[f, £/ £31, m3 xg / 4, phisteel, taufibre, deltafibre] /. constval,
{f, 20, 2000}, PlotStyle -» {Black, Dotted}],
ListLogLinearPlot[{{£f31, 1/01}, {£32, 1/02}, {£33, 1/03}},
PlotStyle -» {Black, PointSize[Medium]}],

ListLogLinearPlot [keikodata[[1]] /. {f_, 9 } :> {f, 1/ 0},
PlotStyle » {Red, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[1l, n, 1]], netphitencorronly[1l, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Red}],
LogLinearPlot[fitfn[f, f / keikodata[[1l, 1, 1]], tensions[[1]], phi, tau, delta] /.
wireroot[1], {f, 20, 2000}, PlotStyle » {Red, Dotted}],

ListLogLinearPlot [keikodata[[2]] /. {f_, ©_} :> {f, 1/ 0},
PlotStyle » {Blue, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[2, n, 1]], netphitencorronly[2, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Blue}],
LogLinearPlot[fitfn[f, f / keikodata[[2, 1, 1]], tensions[[2]], phi, tau, delta] /.
wireroot[2], {f, 20, 2000}, PlotStyle » {Blue, Dotted}],

ListLogLinearPlot [keikodata[[3]] /. {f_, 0 } :> {f, 1/ 0},
PlotStyle » {Green, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[3, n, 1]], netphitencorronly[3, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Green}],
LogLinearPlot[fitfn[f, f / keikodata[[3, 1, 1]], tensions[[3]], phi, tau, delta] /.
wireroot[3], {f, 20, 2000}, PlotStyle » {Green, Dotted}],

ListLogLinearPlot [keikodata[[4]] /. {f_, Q0 } :> {f, 1/ 0},
PlotStyle » {Brown, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[4, n, 1]], netphitencorronly[4, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Brown}],
LogLinearPlot[fitfn[f, f / keikodata[[4, 1, 1]], tensions[[4]], phi, tau, delta] /.
wireroot[4], {f, 20, 2000}, PlotStyle » {Brown, Dotted}],

AxesOrigin -» {Automatic, 0},

PlotRange - All,

AxesLabel » {"f (Hz)", "1/0"}
1
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Averages and standard deviations



fmean = Mean|
{keikodata[[1, 1, 1]], keikodata[[2, 1, 1]], keikodata[[3, 1, 1]], keikodata[[4, 1, 1]]}]

651.966
fstdev = StandardDeviation]|
{keikodata[[1, 1, 1]], keikodata[[2, 1, 1]], keikodata[[3, 1, 1]], keikodata[[4, 1, 1]]}]
17.3009
phimean =
Mean[{phi /. wireroot[1], phi /. wireroot[2], phi /. wireroot[3], phi /. wireroot[4]}]
-0.00064788
phistdev = StandardDeviation|
{phi /. wireroot[1], phi /. wireroot[2], phi /. wireroot[3], phi /. wireroot[4]}]
0.000321904
deltamean = Mean|[
{delta /. wireroot[1l], delta /. wireroot[2], delta /. wireroot[3], delta /. wireroot[4]}]
0.0036442
deltastdev = StandardDeviation|
{delta /. wireroot[1l], delta /. wireroot[2], delta /. wireroot[3], delta /. wireroot[4]}]
0.000636916
taumean =
Mean[{tau /. wireroot[1], tau /. wireroot[2], tau /. wireroot[3], tau /. wireroot[4]}]
0.000126925

taustdev = StandardDeviation|[
{tau /. wireroot[1l], tau /. wireroot[2], tau /. wireroot[3], tau /. wireroot[4]}]

9.16241 x10°°

ffmean = Mean[{1/ (2 * Pi x tau) /. wireroot[1], 1/ (2 » Pi * tau) /. wireroot[2],
1/ (2*Pixtau) /. wireroot[3], 1/ (2 *Pi*tau) /. wireroot[4]}]

1258.62

ffstdev = StandardDeviation[{1/ (2 * Pi » tau) /. wireroot[1l], 1/ (2 * Pi » tau) /. wireroot[2],
1/ (2*Pix*tau) /. wireroot[3], 1/ (2*Pix*tau) /. wireroot[4]}]

86.6895

Summary table for publication

fitted = {

{£31, phisteel, deltafibre, taufibre, 1/ taufibre /2 /Pi} /. constval,
{keikodata[[1, 1, 1]], phi, delta, tau, 1 /tau/2/Pi} /. wireroot[1],
{keikodata[[2, 1, 1]], phi, delta, tau, 1 /tau/2/Pi} /. wireroot[2],
{keikodata[[3, 1, 1]], phi, delta, tau, 1 /tau/2/Pi} /. wireroot[3],
{keikodata[[4, 1, 1]], phi, delta, tau, 1 /tau/2/Pi} /. wireroot[4],
{fmean, phimean, deltamean, taumean, ffmean},

{fstdev, phistdev, deltastdev, taustdev, ffstdev}

}i

TableForm[fitted, TableHeadings - {{"stock", "#1", "#2", "#3", "#4", "mean", "stdev"},
{"f1 (Hz)", "phi", "delta", "tau (s)", "1/(2xpixtau) (Hz)"}}]

f1 (Hz) phi delta tau (s) 1/ (2xpixtau) (Hz)

stock 650.585 0.0002 0.00263381 0.0000813372 1956.73
71 631.56 -0.00112109 0.00457979 0.000139954 1137.2

72 644.977 -0.00056371 0.00343057 0.000126003 1263.11
73 660.305 -0.000407667 0.00315013 0.000118878 1338.81
4 671.023 -0.00049905 0.00341633 0.000122863 1295.38
mean 651.966 -0.00064788 0.0036442 0.000126925 1258.62
stdev 17.3009 0.000321904 0.000636916 9.16241x107° 86.6895

Average fitted delta as percentage
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100 x deltamean / deltafibre /. constval

138.362

Analysis of older Q’s

keikodata = keikodata20121029;

Equations expressing the requirement that the fitted curves pass through the data points

Do [

wireeqns[w] = Table[fitfn[keikodata[[w, n, 1]], n, tensions[[w]], phi, tau, delta] =

1/ keikodata[[w, n, 2]], {n, 3}],
{w, 1, 4}
1

Convert to expressions, LHS-RHS

Do [

wireexp[w] = wireeqns[w] /. x_=y_ > x-Y,
{w, 1, 4}

1

Solve using FindRoot[] (which turns out to do a better job than NSolve[] and Minimize[]

wireroot[1l] = FindRoot [wireexp[l], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[2] = FindRoot [wireexp[2], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[3] = FindRoot [wireexp[3], {phi, phisteel /. constval},
{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
wireroot[4] = FindRoot [wireexp[4], {phi, phisteel /. constval},

{delta, deltafibre /. constval}, {tau, taufibre /. constval}];
Quick summary table

TableForm[Table[{phi, tau, delta} /. wireroot[w], {w, 1, 4}],
TableHeadings -» {keikodata[[All, 1, 1]], {phi, "tau (s)", delta}}]

| phi tau (s) delta
631.56 0.00016832 0.0000789362 0.00214845
644.977 0.000212517 0.0000794312 0.00196291
660.305 0.000227039 0.0000984017 0.00166091
671.023 0.000218143 0.000103027 0.00184757

A function to give the expected phi from the stock model, except with corrections for observed tension.

netphitencorronly[w_, n_] :=
Ds[[w, n]] » damping[imag, fibreatype] [keikodata[[w, n, 1]]] /. overrides /.
taufibre » taus[[w]] /. deltafibre - deltas[[w]] /. constval

Summary plot



Show [
LogLinearPlot[fitfn[f, £/ £31, m3 xg / 4, phisteel, taufibre, deltafibre] /. constval,
{f, 20, 2000}, PlotStyle -» {Black, Dotted}],
ListLogLinearPlot[{{£f31, 1/01}, {£32, 1/02}, {£33, 1/03}},
PlotStyle -» {Black, PointSize[Medium]}],

ListLogLinearPlot [keikodata[[1]] /. {f_, 9 } :> {f, 1/ 0},
PlotStyle » {Red, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[1l, n, 1]], netphitencorronly[1l, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Red}],
LogLinearPlot[fitfn[f, f / keikodata[[1l, 1, 1]], tensions[[1]], phi, tau, delta] /.
wireroot[1], {f, 20, 2000}, PlotStyle » {Red, Dotted}],

ListLogLinearPlot [keikodata[[2]] /. {f_, ©_} :> {f, 1/ 0},
PlotStyle » {Blue, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[2, n, 1]], netphitencorronly[2, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Blue}],
LogLinearPlot[fitfn[f, f / keikodata[[2, 1, 1]], tensions[[2]], phi, tau, delta] /.
wireroot[2], {f, 20, 2000}, PlotStyle » {Blue, Dotted}],

ListLogLinearPlot [keikodata[[3]] /. {f_, 0 } :> {f, 1/ 0},
PlotStyle » {Green, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[3, n, 1]], netphitencorronly[3, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Green}],
LogLinearPlot[fitfn[f, f / keikodata[[3, 1, 1]], tensions[[3]], phi, tau, delta] /.
wireroot[3], {f, 20, 2000}, PlotStyle » {Green, Dotted}],

ListLogLinearPlot [keikodata[[4]] /. {f_, Q0 } :> {f, 1/ 0},
PlotStyle » {Brown, PointSize[Medium]}],
ListLogLinearPlot [Table[{keikodata[[4, n, 1]], netphitencorronly[4, n]}, {n, 3}],
AxesOrigin -» {20, 0}, PlotStyle » {Brown}],
LogLinearPlot[fitfn[f, f / keikodata[[4, 1, 1]], tensions[[4]], phi, tau, delta] /.
wireroot[4], {f, 20, 2000}, PlotStyle » {Brown, Dotted}],

AxesOrigin -» {Automatic, 0},

PlotRange - All,

AxesLabel » {"f (Hz)", "1/0"}
1
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Averages and standard deviations

fmean = Mean|
{keikodata[[1, 1, 1]], keikodata[[2, 1, 1]], keikodata[[3, 1, 1]], keikodata[[4, 1, 1]]}]

651.966

fstdev = StandardDeviation|
{keikodata[[1, 1, 1]], keikodata[[2, 1, 1]], keikodata[[3, 1, 1]], keikodata[[4, 1, 1]]}]

17.3009
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phimean =
Mean[ {phi /. wireroot[1], phi /. wireroot[2], phi /. wireroot[3], phi /. wireroot[4]}]

0.000206505
phistdev = StandardDeviation|

{phi /. wireroot[1], phi /. wireroot[2], phi /. wireroot[3], phi /. wireroot[4]}]
0.0000261493
deltamean = Mean|[

{delta /. wireroot[1l], delta /. wireroot[2], delta /. wireroot[3], delta /. wireroot[4]}]
0.00190496
deltastdev = StandardDeviation|

{delta /. wireroot[1l], delta /. wireroot[2], delta /. wireroot[3], delta /. wireroot[4]}]
0.000204534
taumean =

Mean[{tau /. wireroot[1], tau /. wireroot[2], tau /. wireroot[3], tau /. wireroot[4]}]

0.0000899491
taustdev = StandardDeviation|[

{tau /. wireroot[1], tau /. wireroot[2], tau /. wireroot[3], tau /. wireroot[4]}]
0.000012575
ffmean = Mean[{1/ (2 * Pi x tau) /. wireroot[1l], 1/ (2 * Pi x tau) /. wireroot[2],

1/ (2*Pixtau) /. wireroot[3], 1/ (2 *Pi*tau) /. wireroot[4]}]
1795.53
ffstdev = StandardDeviation[{1/ (2 * Pi » tau) /. wireroot[1], 1/ (2 * Pi » tau) /. wireroot[2],
1/ (2%Pix*tau) /. wireroot[3], 1/ (2 *Pi*tau) /. wireroot[4]}]

249.431

Summary table for publication

fitted = {
{£f31, phisteel, deltafibre, taufibre, 1/ taufibre /2 /Pi} /. constval,
{keikodata[[1l, 1, 1]], phi, delta, tau, 1/tau/2/Pi} /. wireroot[1],
{keikodata[[2, 1, 1]], phi, delta, tau, 1/tau/2/Pi} /. wireroot[2],
{keikodata[[3, 1, 1]], phi, delta, tau, 1/tau/2/Pi} /. wireroot[3],
{keikodata[[4, 1, 1]], phi, delta, tau, 1/tau/2/Pi} /. wireroot[4],
{fmean, phimean, deltamean, taumean, ffmean},
{fstdev, phistdev, deltastdev, taustdev, ffstdev}

}i

TableForm[fitted, TableHeadings - {{"stock", "#1", "#2", "#3", "#4", "mean", "stdev"},

{"£f1 (Hz)", "phi", "delta", "tau (s)", "1/ (2xpixtau) (Hz)"}}]

f1 (Hz) phi delta tau (s) 1/ (2+pistau) (Hz)
stock 650.585 0.0002 0.00263381 0.0000813372 1956.73

1 631.56 0.00016832 0.00214845 0.0000789362 2016.25

2 644.977 0.000212517 0.00196291 0.0000794312 2003.68

3 660.305 0.000227039 0.00166091 0.0000984017 1617.4

4 671.023 0.000218143 0.00184757 0.000103027 1544.78

mean 651.966 0.000206505 0.00190496 0.0000899491 1795.53

stdev 17.3009 0.0000261493 0.000204534 0.000012575 249.431

Average fitted delta as percentage

100 » deltamean / deltafibre /. constval

72.3272

Plots with damping

tablefs = Table[N[10"logf], {logf, -1, 3, 1/ 2}]

{0.1, 0.316228, 1., 3.16228, 10., 31.6228, 100., 316.228, 1000.}



= Calculate/plot thermal noise with stock damping

useprecomputed = True; (* set to True to use saved results from precomputed subdirectory *)
If[useprecomputed,
exceptdamping
exceptdamping
1;

overrides = overridesorig;

True, (* False by default, True to recalculate just damping-dependent stuff¥*)
True (* DON"T CHANGE ¥*)

Reset[All]; Calculate[Stage2]

stocktn = Table[Sqrt[noise2[eom2, opticxoutput, tablefs[[i]]]], {i, Length[tablefs]}]

{1.07x10*, 8.73506x 10 '°, 7.82564 x 10 '3, 2.13397 x 10 *?,
1.19274x107"7, 6.98528 x10*%, 4.60104 x 107%%, 3.5083 x 10°%", 2.83237 x 10 %?}

DoWithStatus["Plotting stage 2 x thermal noise",
stocktnplot = plotTN[eom2,opticxoutput,0.1,100,1,PlotStyle->{Black}]]
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= Calculate/plot thermal noise with fitted damping parameters

overrides = Override[

overridesorig,

{
phisteellf -> phi /. wireroot[1],
deltafibrelf -> delta /. wireroot[1],
taufibrelf -> tau /. wireroot[1],
phisteellb -> phi /. wireroot[3],
deltafibrelb -> delta /. wireroot[3],
taufibrelb -> tau /. wireroot[3],
phisteelrf -> phi /. wireroot[4],
deltafibrerf -> delta /. wireroot[4],
taufibrerf -> tau /. wireroot[4],
phisteelrb -> phi /. wireroot[2],
deltafibrerb -> delta /. wireroot[2],
taufibrerb -> tau /. wireroot[2]

11

useprecomputed = True; (* set to True to use saved results from precomputed subdirectory *)
If[useprecomputed,
exceptdamping
exceptdamping

1;
Reset[All]; Calculate[Stage2]

True, (* False by default, True to recalculate just damping-dependent stuff¥*)
True (* DON"T CHANGE *)
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fittedtn = Table[Sqgrt[noise2[eom2, opticxoutput, tablefs[[i]]]], {i, Length[tablefs]}]

{1.0738x10**, 8.75147 x 10 **, 7.8366 x 10 *%, 2.16377 x 10 *?,
1.20306 x107'7, 6.95182x 10*%, 4.45137 x 107%%, 3.26725x 107%", 2.53209 x 10°%?}

fittedtnplot = plotTN[eom2,opticxoutput,0.1,100,1,PlotStyle->{Red}]
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= Comparison

Show[stocktnplot, fittedtnplot,
PlotLabel -» "MC2 thermal noise with stock damping (black) and fitted damping (red)",
AxesLabel -» {"f (Hz)", "x (m/rtHz)"}]

MC2 thermal noise with stock damping (black) and fitted damping (red)
x (m/rtHz)

lofll

10—13
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10—19

I I I I I f (Hz)
0.5 1.0 50 10.0 50.0 1000



TableForm[Transpose|[{tablefs, stocktn, fittedtn, fittedtn / stocktn}], TableHeadings -
{None, {"f (Hz)", "x (m/rtHz), stock"”, "x (m/rtHz), fitted", "fitted/stock"}}]

f (Hz)

(m/rtHz), stock

x (m/rtHz), fitted

fitted/stock

0.1
0.316228
1.
3.16228
10.
31.6228
100.
316.228
1000.

X
1.07 x10714

8.73506 x 10°*°
7.82564 x 10713
2.13397x10715
1.19274 x 1077
6.98528 x 1071?
4.60104 x 1072°
3.5083x 10721
2.83237 x107%2

1.0738x10°**
8.75147 x 10713
7.8366 x 10713
2.16377x 10718
1.20306 x 1077
6.95182x107%°
4.45137 x1072°
3.26725x 10721
2.53209 x 10722

1.00356
1.00188
1.0014
1.01396
1.00865
0.99521
0.96747
0.931292
0.893982



