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Abstract

We consider the impact of spectral leakage and windowing on the sensitivity of
the cross-correlation search for periodic gravitational waves. We consider the modi-
fication to the expected signal-to-noise ratio (∝ h2

0, so perhaps better thought of as
SNR-squared) in the detection statistic relative to the näıve formula which assumes
rectangular windows and signal frequency always in the center of an SFT bin. On
average we expect the SNR associated with a search of rectangular-windowed data
to be 77.4% of the näıve value. This is still better than the average expected from
Hann-windowed data (60.1%) and data processed with a half-Hann/half-rectangular
Tukey window (69.9%). Even though the Hann and Tukey windows leak a smaller
fraction of their best-case SNR out of the best bin, the best-case scenarios are not as
good–66.7% and 81.8%, respectively, of the näıve SNR is obtained even if the Doppler-
shifted frequency always falls in the center of a bin. The sensitivity of the search can be
improved by including contributions from multiple SFT bins. In general this requires
accounting for correlations between bins, but for rectangularly-windowed data those
correlations vanish and the combination is simpler, and results in an improvement of
SNR from 77.4% to 90.3% of the näıve value when the two closest bins from each SFT
are included in the search, and to 93.1% with the three closest bins. These values
all come from an assumption that the sum over SFT pairs effects an average over the
fractional offset of the signal frequency from the SFT bin center, an assumption which
we investigate for several choices of search parameters.
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1 Introduction

Cross-correlation of Gravitational wave detector streams has been used to perform unmod-
elled searches for isolated astrophysical sources of Gravitational waves, treated as unmodelled
stochastic sources. However, greater sensitivity can be achieved using a modelled cross-
correlation search. We use this method to search for Gravitational Waves emitted from
the Low-mass X-ray binary (LMXB) Scorpius X-1 (Sco X-1) as Sco X-1 is a rich source
of Gravitational Waves. The Sco X-1 is a binary source in a known sky location with un-
known frequency and residual uncertainty in the binary orbital parameters. The standard
cross-correlation search looks for correlations between segments of data taken at the same
or different times in the same or different gravitational wave detectors. By adjusting the
maximum allowed offset time lag, one can achieve an optimum amount balance of sensitivity
and computing cost. Since the signal is mostly monochromatic, the search cross correlates
a single frequency bin in the Fourier transform of each detector, whose frequency is iden-
tified using the Doppler shift associated with the signal parameters (sky position, intrinsic
frequency, spindown etc) and the properties of the detector response (location, orientation
and velocity of the detector). But since this signal frequency is time dependent, we have to
use finite time Fourier transforms.

The standard cross-correlation search for periodic gravitational waves [1, 2] presumes
that the signal contribution comes from a single frequency bin in each SFT, and ignores the
effects of windowing and leakage on that contribution. In reality, the signal contribution will
be spread over several bins, and the details of that leakage will depend on whether and how
the data were windowed before performing the Fourier transform. In this note we give a
careful treatment to these effects, calculating the sensitivity of a search conducted with data
subjected to different windows (rectangular, Hann, and Tukey), and compare this sensitivity
to the näıve expression given in [1].

2 The cross-correlation method

2.1 Short Fourier transforms

The cross-correlation search, like most CW analyses, works with “Short Fourier Transforms”
(SFTs). The data are divided into segments of length ∆T and then Fourier transformed.
We label an SFT with an index I, which refers to both the detector in question and the
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timestamp TI of the midpoint of the data segment used to construct the SFT. If the original
timeseries data are sampled at a rate 1/δt, the SFT is constructed as

x̃Ik =
N−1∑
j=0

xTIj e
−i2πjk/N δt =

N−1∑
j=0

xI(TI −∆T/2 + j δt) e−i2πj δt k/∆T δt

≈ e−iπfk∆T

∫ TI+∆T/2

TI−∆T/2

xI(t) e
−i2πfk(t−TI) dt = (−1)k

∫ TI+∆T/2

TI−∆T/2

xI(t) e
−i2πfk(t−TI) dt

(2.1)

where the frequency corresponding to the kth bin of the SFT is

fk = k δf =
k

∆T
(2.2)

In practice, the data are often multiplied by a window function wj = w(j δt − T ) before
being Fourier transformed, so that (2.1) becomes

x̃wTk =
N−1∑
j=0

wj xTj e
−i2πjk/N δt ≈ (−1)k

∫ T+∆T/2

T−∆T/2

w(t− T )x(t) e−i2πfk(t−T ) dt (2.3)

When considering the signal contribution to a particular SFT, we use the fact that the
signal model generates a signal which can be approximated as monochromatic over the
duration of an SFT:

hI(t) = h0

(
F I

+A+ cos Φ(τ(t)) + F I
×A× sin Φ(τ(t))

)
≈ h0

{
F I

+A+ cos(ΦI + 2πfI [t− TI ]) + F I
×A× sin(ΦI + 2πfI [t− TI ])

} (2.4)

where we have Taylor expanded the phase about the time TI :

Φ(τ(t)) ≈ ΦI + fI(t− TI) (2.5)

The form of (2.4) includes the following parameters and definitions:

• h0 is the intrinsic signal amplitude.

• A+ = 1+cos2 ι
2

and A× = cos ι depend on the inclination ι of the rotation axis to the
line of sight.

• The antenna patterns F I
+ and F I

× depend on the detector in question, the sidereal time
at TI , the sky position α, δ, and the polarization angle ψ.

• The relationship τ(t) between the SSB time and the time at the detector depends on
the sky position and time.1 Thus the phase Φ(τ(t)) depends on time, detector, Φ0,
f0, f1, . . ., sky position and–in the case of a binary–the binary orbital parameters.

1Specifically, if ~rdet is the position of the detector and k̂ is the unit vector pointing from the source to
the SSB, τ(t) ≈ t− ~rdet · k̂/c.
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The signal contribution in bin k of the SFT I, if the data are not windowed, can be shown
to be

h̃Ik ≈ h0(−1)keiΦI
F I

+A+ − iF I
×A×

2
δ∆T (fk − fI) (2.6)

where we have defined

δ∆T (fk − fI) =

∫ T+∆T/2

T−∆T/2

e−i2π(fk−fI)(t−T ) dt =
sin π(fk − fI)∆T

π(fk − fI)
(2.7)

which is a finite-time approximation of the Dirac delta function. If the data are windowed
before constructing the SFTs, the signal contribution in bin k of SFT I is

h̃wIk ≈ h0(−1)keiΦI
F I

+A+ − iF I
×A×

2
δw∆T (fk − fI) (2.8)

where

δw∆T (fk − fI) =

∫ T+∆T/2

T−∆T/2

w(t− T )e−i2π(fk−fI)(t−T ) dt (2.9)

Note that if w(t−T ) has desirable properties like symmetry, monotonicity, and non-negativity,
then δw∆T (κδf) will be real and symmetric, and have a maximum value of

δw∆T (0) =

∫ T+∆T/2

T−∆T/2

w(t− T ) dt =: w∆T (2.10)

2.2 Details of specific windows

We will consider different window functions defined on the interval

− 1

2
≤ t− T

∆T
≤ 1

2
. (2.11)

The “unwindowed” case can also be thought of as applying a rectangular window, w(t−T ) =
1 on that interval. A Hann window is defined as

wHann(ξ∆T ) =
1

2
(1 + cos 2πξ) − 1

2
≤ ξ ≤ 1

2
. (2.12)

The default form of the Tukey window looks like two halves of a Hann window with a flat
top inserted in between:

wTukey(ξ∆T ) =


1
2

(1− cos 4πξ) −1
2
≤ ξ ≤ −1

4

1 −1
4
≤ ξ ≤ 1

4
1
2

(1− cos 4πξ) 1
4
≤ ξ ≤ 1

2

. (2.13)

These three windows are illustrated here:
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They are all special cases of the general Tukey window with a parameter β which specifies
how much of the window is non-constant:

wTukey
β (ξ∆T ) =


1
2

(
1− cos π

β
(2ξ + 1)

)
−1

2
≤ ξ ≤ −

(
1−β

2

)
1 −

(
1−β

2

)
≤ ξ ≤

(
1−β

2

)
1
2

(
1− cos π

β
(2ξ − 1)

) (
1−β

2

)
≤ ξ ≤ 1

2

(2.14)

The Hann window corresponds to β = 1, the rectangular window is β = 0, and the default
Tukey window case is β = 1/2. (In this document, when we write Tukey without specifying
the β value, β = 1/2 is to be understood.)
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For each of the windows we can calculate (2.9), which can also be written

δw∆T (κ δf) = ∆T

∫ 1/2

−1/2

w(ξ∆T ) e−i2πκξ dξ (2.15)

From the general form (2.14), we can work out

δw∆T (κ δf)

∆T
=

1

2
sincκ+

1

2
(1− β) sinc(κ[1− β])

+
β

4
sin

(
πκ

[
1− β

2

])[
sinc

(
1− βκ

2

)
− sinc

(
1 + βκ

2

)] (2.16)

where

sincα =
sin πα

πα
(2.17)

is the normalized sinc function. However, it’s easier to write (and easier to calculate, in fact)
the δw∆T () functions for the three specific windows separately. For the rectangular window
(β = 0), we have

δ∆T (κ∆T )

∆T
= sincκ ; (2.18)

for the Hann window (β = 1), we have

δHann
∆T (κ δf)

∆T
=

1

2
sincκ+

1

4
sinc(1− κ) +

1

4
sinc(1 + κ) ; (2.19)

and for the default Tukey window (β = 1/2), we have

δTukey
∆T (κ δf)

∆T
=

1

2
sincκ− 1

4
sinc(2 + κ)− 1

4
sinc(2− κ)

+
1

4
sinc

κ

2
+

1

8
sinc

(
1 +

κ

2

)
+

1

8
sinc

(
1− κ

2

) (2.20)

We plot these three δw∆T (f − f ′) functions:
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The solid vertical lines, where f − f ′ are half-integer multiples of δf , are relevant to the
frequency bins of the SFTs. The typical argument of δw∆T () is fk − fI , and for any SFT I
with a signal frequency fI , there is some k value for which (fk− fI)/δf is between −1/2 and
1/2. We call that k value

k̃I :=

⌊
fI
δf

⌉
= bfI∆T e (2.21)

and note that whatever the value of

κ̃I =
fk̃I − fI
δf

= k̃I − fI∆T , (2.22)

each possible value of (fk − fI)/δf = k − fI∆T will be κ̃I plus some integer.

2.3 Signal cross-correlation

Now we consider what happens if we cross-correlate the signal in bin kI from SFT I with
bin kJ from SFT J . Using (2.8) we find2

h̃w ∗IkI h̃
w
JkJ

= h2
0GIJ(−1)kI−kJ δw∆T (fkI − fI)δw∆T (fkJ − fJ) (2.23)

where

GIJ =
1

4
e−i∆ΦIJ

[
F I

+F
J
+A2

+ + F I
×F

J
×A2

× − i(F I
+F

J
× − F I

×F
J
+)A+A×

]
(2.24)

and
∆ΦIJ = ΦI − ΦJ . (2.25)

Note that GIJ makes no reference to the windowing of the data or to the choice of bins. The
“näıve” treatment used in [1, 2] notes that δ∆T (0) = ∆T and therefore replaces each of the
finite-time delta functions with the SFT length ∆T , but for a careful treatment, we must
write

h̃w ∗IkI h̃
w
JkJ

(∆T )2
= h2

0GwIkIJkJ = h2
0GIJ(−1)kI−kJ

δw∆T (fkI − fI)
∆T

δw∆T (fkJ − fJ)

∆T
(2.26)

or, specialized to rectangular windows,

h̃∗IkI h̃JkJ
(∆T )2

= h2
0GIkIJkJ = h2

0GIJ(−1)kI−kJ
δ∆T (fkI − fI)

∆T

δ∆T (fkJ − fJ)

∆T

= h2
0GIJ(−1)kI−kJ sinc([fkI − fI ]∆T ) sinc([fkJ − fJ ]∆T )

(2.27)

If we confine attention to the “best bin” of each SFT, closest to the signal frequency, defined
in (2.21), we have

h̃w ∗
Ik̃I
h̃w
Jk̃J

(∆T )2
= h2

0GwIk̃IJk̃J = h2
0G̃wIJ = h2

0GIJ(−1)k̃I−k̃J
δw∆T (fk̃I − fI)

∆T

δw∆T (fk̃J − fJ)

∆T
(2.28)

2Compare eq (3.9) of [1].
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or, specialized to rectangular windows,

h̃∗
Ik̃I
h̃Jk̃J

(∆T )2
= h2

0GIk̃IJk̃J = h2
0G̃IJ = h2

0GIJ(−1)k̃I−k̃J
δ∆T (fk̃I − fI)

∆T

δ∆T (fk̃J − fJ)

∆T

= h2
0GIJ(−1)k̃I−k̃J sinc([fk̃I − fI ]∆T ) sinc([fk̃J − fJ ]∆T )

(2.29)

If we use the definition (2.22) of κ̃I (which ensures −1
2
≤ κ̃I ≤ 1

2
) to write

(fk − fI)∆T = k − k̃I + κ̃I , (2.30)

we can write the general expected cross-correlation as

GwIkIJkJ = GIJ(−1)kI−kJ
δw∆T ([kI − k̃I + κ̃I ]∆T )

∆T

δw∆T ([kJ − k̃J + κ̃J ]∆T )

∆T
(2.31)

which specializes for rectangular windows to

GIkIJkJ = GIJ(−1)kI−kJ sinc(kI − k̃I + κ̃I) sinc(kJ − k̃J + κ̃J) (2.32)

and the “best bin” expected cross-correlation as

G̃wIJ = Gw
Ik̃IJk̃J

= GIJ(−1)k̃I−k̃J
δw∆T (κ̃I∆T )

∆T

δw∆T (κ̃J∆T )

∆T
(2.33)

which specializes for rectangular windows to

G̃IJ = GIk̃IJk̃J = GIJ(−1)k̃I−k̃J sinc(κ̃I) sinc(κ̃J) . (2.34)

2.4 Statistics of cross-correlation

Let the data
xI(t) = hI(t) + nI(t) (2.35)

in SFT I consist of the signal hI(t) plus random instrumental noise nI(t) with one-sided
power spectral density SI(|f |) so that

E [nI(t)] = 0 (2.36)

and

E [nI(t)nJ(t′)] = δIJ

∫ ∞
−∞

SI(|f |)
2

e−i2πf(t−t′) df . (2.37)

If we write the noise contribution to the SFT labelled by I as

ñwIk =
N−1∑
j=0

wjnIj e
−i2πjk/N δt ≈

∫ T+∆T/2

T−∆T/2

w(t− T )nI(t) e
−i2π(t−[T−∆T/2])fk dt (2.38)

then (2.36) implies E [ñwIk] = 0 and we can define a cross-correlation statistic

YwIkIJkJ =
x̃w ∗IkI x̃

w
JkJ

(∆T )2
E
[
Ywαµ

]
= h2

0Gwαµ , (2.39)
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where the index µ refers to the pair of frequency bins chosen from the SFT pair α. Specialized
to rectangular windows, we write

YIkIJkJ =
x̃∗IkI x̃JkJ
(∆T )2

; E [Yαµ] = h2
0Gαµ . (2.40)

If we take the “best bin” from each SFT, we have

ỸwIJ = Yw
Ik̃IJk̃J

=
x̃w ∗
Ik̃I
x̃w
Jk̃J

(∆T )2
; E

[
Ỹwα
]

= h2
0G̃wα , (2.41)

or, specialized to rectangular windows,

ỸIJ = YIk̃IJk̃J =
x̃∗
Ik̃I
x̃Jk̃J

(∆T )2
; E

[
Ỹα
]

= h2
0G̃α . (2.42)

In the low-signal limit h0 � SI(fk̃I )∆T , the variances (and potentially covariances) will be
determined by the statistics of the noise. We can use (2.37) to show

E [ñw∗Ik ñ
w
Jk′ ] = δIJ(−1)k−k

′
∫ ∞
−∞

SI(|f |)
2

δw∗∆T (fk − f) δw∆T (fk′ − f) df

≈ δIJ(−1)k−k
′ SI(fI)

2

∫ ∞
−∞

δw∗∆T (fk − f) δw∆T (fk′ − f) df

(2.43)

Using (2.9) we can show∫ ∞
−∞

δw∗∆T (fk − f) δw∆T (fk′ − f) df =

∫ T+∆T/2

T−∆T/2

ei2π(fk−fk′ )(t−T )[w(t− T )]2dt

= ∆T

∫ 1/2

−1/2

ei2πξ(k−k
′)[w(ξ∆T )]2dξ

(2.44)

In particular, for the “diagonal” term k = k′, this is∫ ∞
−∞
|δw∆T (fk − f)|2 df =

∫ T+∆T/2

T−∆T/2

[w(t− T )]2dt = ∆T w2 , (2.45)

so that

E
[
ñw∗
Ik̃I
ñw
Jk̃J

]
≈ δIJ

SI(fI)

2
∆T w2 (2.46)

For the special case of rectangular windows, the diagonal term is the only one there is:∫ ∞
−∞

δ∗∆T (fk − f) δ∆T (fk′ − f) df = ∆T

∫ 1/2

−1/2

ei2πξ(k−k
′)dξ = ∆T sinc(k − k′) = ∆Tδkk′ ,

(2.47)

so that

E [ñ∗IkñJk′ ] ≈ δIJδkk′
SI(fI)

2
∆T (2.48)

9



In general, though,

E [ñw∗Ik ñ
w
Jk′ ] ≈ δIJ

SI(fI)

2
∆T (−1)k−k

′
∫ 1/2

−1/2

ei2πξ(k−k
′)[w(ξ∆T )]2dξ =: δIJ

SI(fI)

2
∆Tγwkk′

(2.49)
Using (2.46), we can show that, in the low-signal limit,

Cov(Ỹwα , Ỹwβ ) = δαβ Var Ỹwα (2.50)

where the variance is

Var ỸwIJ ≈
E
[
ñw∗
Ik̃I
ñw
Ik̃I

]
(∆T )2

E
[
ñw∗
Jk̃J

ñw
Jk̃J

]
(∆T )2

=
SI(fI)SJ(fJ)

4

(w2)2

(∆T )2
=: σwIJ

2 (2.51)

if we write the rectangular windowed case as

Var ỸIJ ≈
SI(fI)SJ(fJ)

4(∆T )2
=: σIJ

2 (2.52)

this means that
Cov(Ỹwα , Ỹwβ ) = δαβσ

w
α

2 = δαβ(w2)2σ2
α (2.53)

If we now consider the statistic YIkIJkJ constructed from arbitrary bins of rectangular-
windowed SFTs, (2.48) shows that different statistics are still uncorrelated, so

Cov(Yαµ,Yβν) = δαβδµν VarYαµ (2.54)

with the variance

VarYIkIJkJ ≈
E
[
ñ∗IkI ñ

w
IkI

]
(∆T )2

E
[
ñ∗JkJ ñ

w
JkJ

]
(∆T )2

=
SI(fI)SJ(fJ)

4(∆T )2
= σ2

IJ (2.55)

i.e.,
Cov(Yαµ,Yβν) = δαβδµνσ

2
α (2.56)

For the fully general statistic YwIkIJkJ , noise in different bins of the same SFT will be
correlated, so

Cov(YwIkIJkJ ,Y
w
Ik′IJk

′
J
) ≈ E

[
ñwIkI ñ

w∗
Ik′I

]
E
[
ñw∗JkJ ñ

w
Jk′J

]
≈ σ2

IJγ
w
kIk

′
I
γwkJk′J (2.57)

where

γwkk′ = (−1)k−k
′
∫ 1/2

−1/2

ei2πξ(k−k
′)[w(ξ∆T )]2dξ (2.58)

and, if we write
ΓwkIkJk′Ik′J = γwkIk′Iγ

w
kJk

′
J

(2.59)

we can write this compactly as

Cov(Ywαµ,Ywβν) = δαβΓwµνσ
2
α (2.60)
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2.5 Optimal combination

In the case of the best-bin search, where the cross-correlation statistics {Ỹwα } from the various
SFT pairs can be treated as independent random variables with mean and variance

E
[
Ỹwα
]

= h2
0G̃wα Var Ỹwα = σwα

2 (2.61)

the optimal real linear combination of those statistics will be

ρ =

(
2
∑
β

|G̃wβ |2

σwβ
2

)−1/2∑
α

G̃w∗α Ywα + G̃wαYw∗α
σwα

2
(2.62)

which implies that

E [ρ] = h2
0

(
2
∑
β

|G̃wβ |2

σwβ
2

)1/2

(2.63a)

Var ρ = 1 (2.63b)

For a multi-bin rectangular-windowed search, we still have a set of independent cross-
correlation statistics {Ywαµ} with mean and variance

E [Yαµ] = h2
0Gαµ VarYαµ = σ2

α (2.64)

so the optimal combination is

ρ =

(
2
∑
β

∑
ν |Gβν |2

σ2
β

)−1/2∑
α

∑
µ(G∗αµYαµ + GαµY∗αµ)

σ2
α

(2.65)

which implies that

E [ρ] = h2
0

(
2
∑
β

∑
ν |Gβν |2

σ2
β

)1/2

(2.66a)

Var ρ = 1 (2.66b)

Finally, if we wish to combine cross-correlation statistics using multiple bins from win-
dowed SFTs, we have to deal with the fact that the statistics involving different pairs of bins
from the same pair of SFTs will be correlated:

E
[
Ywαµ

]
= h2

0Gwαµ Cov(Ywαµ,Ywβν) = δαβΓwµνσ
2
α (2.67)

This means that, in order to produce the optimal combination

ρ =

(
2
∑
β

∑
λσ(Γ−1

w )λσGw∗βλGwβσ
σ2
β

)−1/2∑
α

∑
µ

∑
ν(Γ

−1
w )µν(Gw∗αµYwαν + GwαµYw∗αν )

σ2
α

(2.68)
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we need the inverse matrix {(Γ−1
w )µν} which comes from inverting the matrix {γwkk′} defined

in (2.58):
(Γ−1

w )kIkJk′Ik′J = (γ−1
w )kIk′I (γ

−1
w )kJk′J . (2.69)

This then produces a statistic with the following mean and variance:

E [ρ] = h2
0

(
2
∑
β

∑
λσ(Γ−1

w )λσGw∗βλGwβσ
σ2
β

)1/2

(2.70a)

Var ρ = 1 (2.70b)

3 Sensitivity estimates for different windowing options

3.1 Näıve sensitivity

The sensitivity estimates in [1] and [2] are based on the assumption that

E [ρ] = h2
0

(
2
∑
α

|Gα|2

σα2

)1/2

(3.1)

which ignores the factors arising from windowing and leakage. This “näıve” formula results
in an overestimate of the expected signal-to-noise of the search.

3.2 Best-bin sensitivities

We calculate the expectation value of ρ by taking the contributions from only the “best”
bins (2.21) and using (2.28)

G̃wIJ = GIJ(−1)k
δw∗∆T (fk̃I − fI)

∆T

δw∆T (fk̃J − fJ)

∆T
. (3.2)

and, from (2.51),

σwIJ
2 =

SI(fk̃I )SJ(fk̃J )

4

(w2)2

(∆T )2
= σ2

IJ(w2)2 (3.3)

So

E [ρ] = h2
0

(
2
∑
IJ

|G̃wIJ |2

σwIJ
2

)1/2

= h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

1

(w2)2

∣∣∣∣δw∆T (fk̃I − fI)
∆T

∣∣∣∣2 ∣∣∣∣δw∆T (fk̃J − fJ)

∆T

∣∣∣∣2
)1/2

(3.4)

3.2.1 Upper bound

For a symmetric, monotonic, non-negative window

δw∆T (fk̃I − fI) ≤ δw∆T (0) = ∆T w , (3.5)
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we have the limit

E [ρ] ≤ (w)2

(w2)
h2

0

(
2
∑
IJ

|GIJ |2

σ2
IJ

)1/2

(3.6)

For the rectangular window, this prefactor of (w)2

(w2)
is 1, For Hann window it is

(1/2)2

3/8
=

2

3
=

√
4

9
(3.7)

while for Tukey, it is

(3/4)2

11/16
=

9

11
=

√
81

121
(3.8)

For a general Tukey window with arbitrary β, it is

(1− β/2)2

1− 5β/8
=

8− 8β + 2β2

8− 5β
(3.9)

Hence for rectangular windows the upper limit of the expectation value of ρ is same as
that of the näıve sensitivity, whereas for Hann it is 2/3 and 9/11 times that of the näıve
sensitivity respectively.

3.2.2 Averaged values

Assuming that the sum over pairs evenly samples the possible values of κ = (fk̃I−fI)∆T and
κ′ = (fk̃J − fJ)∆T we expect the actual reduction due to using the best bin from windowed
data will be

E [ρ] ≈ h2
0

(
1

(w2)2

〈∣∣∣∣δw∆T (κ δf)

∆T

∣∣∣∣2
〉
κ

〈∣∣∣∣δw∆T (κ′ δf)

∆T

∣∣∣∣2
〉
κ′

2
∑
IJ

|GIJ |2

σ2
IJ

)1/2

= h2
0

1

(w2)

〈∣∣∣∣δw∆T (κ δf)

∆T

∣∣∣∣2
〉
κ

(
2
∑
IJ

|GIJ |2

σ2
IJ

)1/2
(3.10)

For each of the windows, we compare the estimate of

E [ρ] ≈ h2
0

1

(w2)

〈∣∣∣∣δw∆T (κ δf)

∆T

∣∣∣∣2
〉
κ

(
2
∑
IJ

|GIJ |2

σ2
IJ

)1/2

(3.11)

to the upper limit

E [ρ]max =
(w)2

(w2)
h2

0

(
2
∑
IJ

|GIJ |2

σ2
IJ

)1/2

(3.12)

and the “näıve” expression

E [ρ]näıve = h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

)1/2

(3.13)
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Window rect Tukey Hann

E [ρ]max /E [ρ]näıve 1.000 0.818 0.667
E [ρ] /E [ρ]näıve 0.774 0.699 0.601
E [ρ] /E [ρ]max 0.774 0.854 0.901

We see that while rectangular windows suffer greater leakage and fractional reduction of
SNR relative to their upper bound, the fact that upper bound is higher means that they still
give the best single-bin sensitivity.

3.3 Multiple-bin sensitivities

We saw in section 2.5 that the contributions from multiple bins could be combined into a
single detection statistic.

We limit attention to the case of rectangular windows, where the contributions from
multiple bins can simple be combined to get

E [ρ] = h2
0

(
2
∑
IJ

∑
kI∈KI

∑
kJ∈KJ

|G̃IkIJkJ |2

σ2
IJ

)1/2

= h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

∑
kI∈KI

[
δ∆T (fkI − fI)

∆T

]2 ∑
kJ∈KJ

[
δ∆T (fkJ − fJ)

∆T

]2
)1/2

= h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

∑
kI∈KI

sinc2([fkI − fI ]∆T )
∑
kJ∈KJ

sinc2([fkJ − fJ ]∆T )

)1/2

(3.14)

For a particular pair of SFTs, the factors
∑

kI∈KI
sinc2([fkI−fI ]∆T ) and

∑
kJ∈KJ

sinc2([fkJ−
fJ ]∆T ) will depend on how close the Doppler shifted frequencies fI and fJ are to the “best
bin” frequencies fk̃I and fk̃J . The contributions from the most sensitive few bins look like
this:
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Note that no matter the value of (fk̃J − fJ)∆T ,∑
kI∈KI

sinc2([fkI − fI ]∆T ) =
∑
kI∈KI

sinc2
(
[fk̃I − fI ]∆T + [kI − k̃I ]

)
≤ 1 , (3.15)

because of the identity3
∑∞

s=−∞ sinc2(κ+s) = 1, valid for any κ. If we assume that, over the
course of an observation, (fk̃I −fI)∆T and (fk̃J −fJ)∆T evenly sample the range of possible

values from −1
2

to 1
2
, in a way that’s uncorrelated with the value of GIJ , we can approximate

E [ρ] = h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

∑
kI∈KI

sinc2([fkI − fI ]∆T )
∑
kJ∈KJ

sinc2([fkJ − fJ ]∆T )

)1/2

≈ h2
0

(
2
∑
IJ

|GIJ |2

σ2
IJ

〈∑
s

sinc2(κ+ s)

〉
κ

〈∑
s′

sinc2(κ′ + s′)

〉
κ′

)1/2

= h2
0

(
2
∑
α

|Gα|2

σ2
α

)1/2∑
s

〈
sinc2(κ+ s)

〉
κ

(3.16)

where
∑

s indicates a sum over the possible integer bin offsets and 〈·〉κ indicates an average
over the possible offsets within the bin. Specifically, if we take the m bins whose centers are
closest to the Doppler-shifted frequencies,∑

s

〈
sinc2(κ+ s)

〉
κ

=

b(m−1)/2c∑
s=−d(m−1)/2e

2

∫ 1/2

0

sinc2(κ+ s) dκ = 2

∫ m/2

0

sinc2κ dκ (3.17)

We summarize these estimates here:

3This is most easily proved by writing sinc(κ + s) =
∫ 1/2

−1/2 e
i2π(κ+s)t dt and using

∑∞
s=−∞ ei2πs(t−t

′) =∑∞
s=−∞ δ(t− t′ + s).
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m 1 2 3 4 5 6 7 8 9
contribution 0.774 0.129 0.028 0.019 0.009 0.007 0.005 0.004 0.003
cumulative 0.774 0.903 0.931 0.950 0.959 0.966 0.971 0.975 0.977

3.4 Examples with specific parameter choices

To investigate the effectiveness of the hypothesized average over κ, we examine some specific
choices of SFT times. We make the simplifying assumption, introduced in [1], of replacing
GIJ with its average over cos ι (from −1 to 1) and ψ (from 0 to π); under that average,

Gβ −→ Gave
IJ =

1

10
e−i∆ΦIJ (aIaJ + bIbJ) (3.18)

where aI and bI are the amplitude modulation factors[3] and depend only on the SFT
(detector and sidereal time) and sky position.

Here in the section, we check if the values in the 2 tables which we got theoretically using
the averaged templates match with simulated data and numerically performing the entire
calculation without any averaging assumed. We initially consider a monochromatic source
at the sky position of Sco X-1, without any binary Doppler modulation. To get a look at the
variation of the received signal frequency due to the daily and annual Doppler shift, consider
the case where f0 = 150 Hz:

We can look at the scatter and histogram of the κ̃I values and see that it is mostly spread
out throughout the year:
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If the signal frequency is f0 = 50 Hz so that the fractional Doppler shift works out to fewer
bins, we see more structure and a less uniform average.

If the signal frequency is f0 = 450 Hz we see that the structure washes out and the average
is rather good:

Now we look at the multiple bin cross correlation sensitivity statistic examples. The default
parameters are the following

• A year’s worth of data

17



• Signal frequency f0 = 150 Hz

• SFT duration is ∆T = 1800 s

• The maximum allowed offset lag is 3 hours

• The H1 and L1 detectors are involved.

With the default parameters we get the following results (R, T or H refer to rectangular,
Tukey and Hann windows respectively, and R1, R2, etc refer to a search which combines the
1, 2, etc best bins from each SFT):

Window naive R1 H1 T1 R2 R3

E [ρ] /E [ρ]näıve 1.000 0.783 0.602 0.702 0.903 0.931

E [ρ] /
(
h2

0∆T/
√
SI(f0)SJ(f0)

)
37.812 29.605 22.745 26.528 34.156 35.210

If we restrict attention to only SFTs from one detector, L1, and keep the remaining param-
eters the same, we get

Window naive R1 H1 T1 R2 R3

E [ρ] /E [ρ]näıve 1.000 0.788 0.602 0.703 0.903 0.931

E [ρ] /
(
h2

0∆T/
√
SI(f0)SJ(f0)

)
31.005 24.431 18.652 21.784 27.993 28.856

If we use 4 months worth of data from H1 and L1 instead of a year and keep the remaining
parameters the same.

Window naive R1 H1 T1 R2 R3

E [ρ] /E [ρ]näıve 1.000 0.784 0.602 0.702 0.904 0.932

E [ρ] /
(
h2

0∆T/
√
SI(f0)SJ(f0)

)
21.662 16.987 13.040 15.214 19.579 20.180

If we change the signal frequency f0 to 50 Hz instead and use the defaults for the other
parameters, we get

Window naive R1 H1 T1 R2 R3

E [ρ] /E [ρ]näıve 1.000 0.798 0.605 0.708 0.906 0.933

E [ρ] /
(
h2

0∆T/
√
SI(f0)SJ(f0)

)
37.812 30.165 22.860 26.768 34.267 35.289

If the signal frequency f0 is 450 Hz and the other parameters have their default values, we
see

Window naive R1 H1 T1 R2 R3

E [ρ] /E [ρ]näıve 1.000 0.767 0.600 0.697 0.902 0.931

E [ρ] /
(
h2

0∆T/
√
SI(f0)SJ(f0)

)
37.812 29.016 22.700 26.366 34.121 35.201
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3.4.1 Caveats

Our results seem to show that the sensitivity impacts of windowing and leakage are close to
the values we approximated by assuming an average over κ values. However, the example
of an isolated neutron star at the Sco X-1 location was a bit artificial. For instance, if we
include the Doppler modulation to Sco X-1’s best-fit binary orbital parameters, we get a
rather different looking frequency vs time plot:

This should average even better over κ̃, but brings up its own issues. For instance, the
assumed choice of 30-minute SFTs will not be enough to track the rapid changes in Doppler-
shifted frequencies, so shorter SFTs will be used, and in the process the best-bin frequencies
will be spaced further apart.

Finally, the approximate κ̃ averaging is in part a consequence of the sky position of Sco
X-1 being close to the ecliptic plane. If we look at a monochromatic source in the sky position
of SN1987A, we find a rather different frequency behavior:
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with the result that the distribution of κ̃ values is not at all uniform:

We have not yet investigated the consequences of this on the best-bin and multi-bin sensi-
tivity estimates.
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