

Searching for Gravitational Waves

John T. Whelan john.whelan@astro.rit.edu

Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology

Hamilton College Physics Colloquium 2012 October 8 LIGO-G1201067-v1

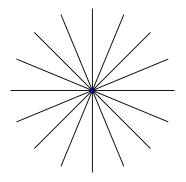
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- 8 Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Gravitational Waves
Upper Limit Results
Advanced Detectors

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- 3 Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Gravitational Waves
Upper Limit Results
Advanced Detectors

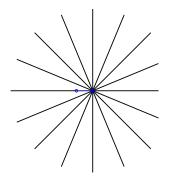
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- 3 Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars



Basics GW Sources GW Detectors

Action at a Distance

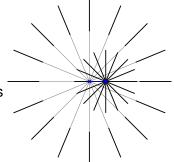
- Newtonian gravity: mass generates gravitational field
- Lines of force point towards object



Basics GW Sources GW Detectors

Issues with Causality

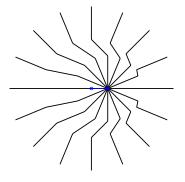
- Move object; Newton says: lines point to new location
- Relativity says: can't communicate faster than light to avoid paradoxes
- You could send me supraluminal messages via grav field



Basics GW Sources GW Detectors

Gravitational Speed Limit

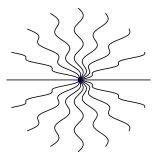
- If I'm 10 light years away, I can't know you moved the object 6 years ago
- Far away, gravitational field lines have to point to old location of the object



Basics GW Sources GW Detectors

Gravitational Shock Wave

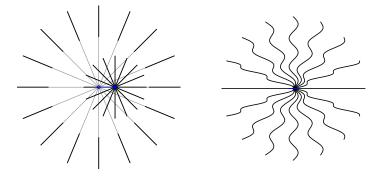
 Sudden motion (acceleration) of object generates gravitational shock wave expanding at speed of light



Basics GW Sources GW Detectors

Ripples in the Gravitational Field

- Move object back & forth → gravitational wave
- Same argument applies to electricity:
 - can derive magnetism as relativistic effect
 - accelerating charges generate electromagnetic waves propagating @ speed of light



Basics GW Sources GW Detectors

Gravity + Causality = Gravitational Waves

- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

Gravity as Geometry

 Minkowski Spacetime (Special Relativity): Invariant spacetime interval (all inertial observers agree):

$$ds^{2} = -c^{2}(dt)^{2} + (dx)^{2} + (dy)^{2} + (dz)^{2}$$

$$= \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix}^{\text{tr}} \begin{pmatrix} -c^{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

• General Spacetime:

$$ds^{2} = \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\text{tr}} \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Metric tensor $\{g_{\mu\nu}(\{x^{\lambda}\})\}$ determined by masses via Einstein's equations. (10 non-linear PDEs!)

9/39 G1201067-v1 2012 Oct 8 John T. Whelan

Searching for Gravitational Waves

Gravitational Wave as Metric Perturbation

• For GW propagation & detection, work to 1st order in $h_{\mu\nu} \equiv$ difference btwn actual metric $g_{\mu\nu}$ & flat metric $\eta_{\mu\nu}$:

 $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

($h_{\mu\nu}$ "small" in weak-field regime, e.g. for GW detection)

- *h*_{µν} is like electromagnetic potentials φ, *A*; small coordinate changes like gauge transformations
- Convenient choice of gauge is transverse-traceless: In this gauge:
 - Test particles w/constant coords are freely falling
 - Vacuum Einstein eqns ⇒ wave equation for {*h_{ij}*}:

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}+\nabla^2\right)\boldsymbol{h}_{ij}=0$$

Basics GW Sources GW Detectors

Gravitational Wave Polarization States

Far from source, GW looks like plane wave prop along \vec{k} TT conditions mean, in convenient basis,

$$\{k_i\} \equiv k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \{h_{ij}\} \equiv \mathbf{h} = \begin{pmatrix} h_+ & h_\times & 0 \\ h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where $h_+\left(t - \frac{x^3}{c}\right)$ and $h_{\times}\left(t - \frac{x^3}{c}\right)$ are components in "plus" and "cross" polarization states

Basics GW Sources GW Detectors

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Plus (+) Polarization	Cross (\times) Polarization

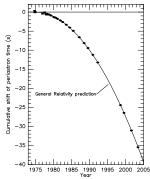
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- 3 Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Generation of Gravitational Waves

- EM waves generated by moving/oscillating charges
- GW generated by moving/oscillating masses
- Lowest multipole is quadrupole
- Different types of signals:
 - Burst (transient, unmodelled)
 - Stochastic (long-lived, unmodelled)
 - Binary coalescence (transient, modelled)
 - Periodic (long-lived, modelled)

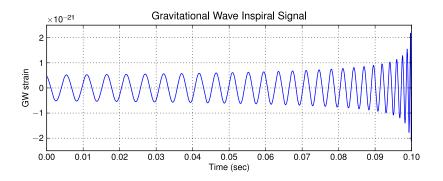
Basics GW Sources GW Detectors

Gravitational Waves from Binary Orbit


 $\bullet~\mbox{Orbital}$ motion $\rightarrow~\mbox{oscillating}$ quadrupole moment $\rightarrow~\mbox{GWs}$

Gravitational Waves from Binary Orbit

- $\bullet~\mbox{Orbital}$ motion $\rightarrow~\mbox{oscillating}$ quadrupole moment $\rightarrow~\mbox{GWs}$
- $\bullet~$ GW emission removes energy \rightarrow orbit gets tighter
 - ightarrow amplitude & freq increase in "chirp"
- Hulse & Taylor saw this evolution in binary pulsar 1993 Nobel Prize



Gravitational Waves from Binary Orbit

- $\bullet~\mbox{Orbital}$ motion $\rightarrow~\mbox{oscillating}$ quadrupole moment $\rightarrow~\mbox{GWs}$
- GW emission removes energy → orbit gets tighter
 → amplitude & freg increase in "chirp"

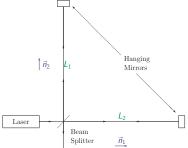
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Basics GW Sources GW Detectors

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Plus (+) Polarization	Cross (\times) Polarization

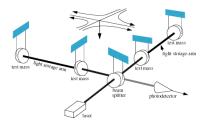


Basics GW Sources GW Detectors

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes

- Measure small change in $L_1 - L_2 \approx L_0 \frac{h_{11} - h_{22}}{2} \sim L_0 h_+$
- Plausible signals: $h \lesssim 10^{-20}$ \rightarrow need L_0 very big!
- For LIGO, $L_0 = 4 \text{ km} = 2.5 \text{ mi}$



Basics GW Sources GW Detectors

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes

- Measure small change in $L_1 - L_2 \approx L_0 \frac{h_{11} - h_{22}}{2} \sim L_0 h_+$
- Plausible signals: $h \lesssim 10^{-20}$ \rightarrow need L_0 very big!
- For LIGO, $L_0 = 4 \text{ km} = 2.5 \text{ mi}$

Basics GW Sources GW Detectors

Rogues' Gallery of Ground-Based Interferometers

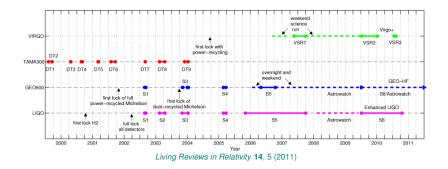
LIGO Hanford (Wash.)

GEO-600 (Germany)

LIGO Livingston (La.)

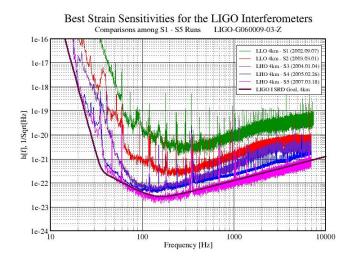
Virgo (Italy)

Initial Gravitational Wave Detector Network

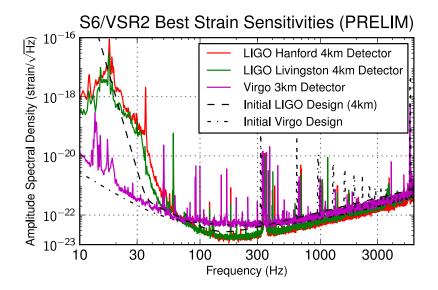

- "1st generation" ground-based interferometertic GW detectors (kilometer scale):
 - TAMA 300 (Tokyo, Japan) first online, late 90s; now offline
 - LSC (LIGO Scientific Collaboration) detectors conducting science runs since 2002
 - LIGO Hanford (4km H1 & 2km H2)
 - LIGO Livingston (4km L1)
 - GEO-600 (600m G1)
 - Virgo (3km V1) started science runs in 2007
 - LSC-Virgo long joint runs @ design sensitivity 2005-2010
- LIGO and Virgo being upgraded to 2nd generation "advanced" detectors (10× improvement in sensitivity)
- GEO-600 remains operational in "astrowatch" mode in case there's a nearby supernova

Basics GW Sources GW Detectors

Initial Gravitational Wave Detector Network



Basics GW Sources GW Detectors



Evolution of LIGO Sensitivity S1-S5

Basics GW Sources GW Detectors

Advanced Gravitational Wave Detector Network

- "2nd generation" ground-based interferometric GW detectors:
 - Adv LIGO expected to take science data from 2015 4km detectors in Livingston, La. & Hanford, Wa.
 - Advanced Virgo should be on comparable timescale
 - KAGRA (cryogenic detector in Kamioka mine, Japan) uses 2.5-generation technology
 - Third advanced LIGO detector (4km) may be installed in India, taking data c.2019+ Big payoff for sky localization via triangulation
- Planning for 3rd generation already underway:
 - Einstein Telescope in Europe
 - USA 3G plans still under development

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

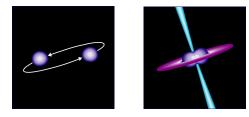
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Results of Initial Detector Observations

- 70+ Observational papers from initial LIGO/Virgo/GEO: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
- No detections (although some analyses still trickling out)
- Assortment of null results and upper limits
- As sensitivity improves, some of these results give new information to complement astronomical observations: "Multi-Messenger Astronomy"
- Some highlights ...

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

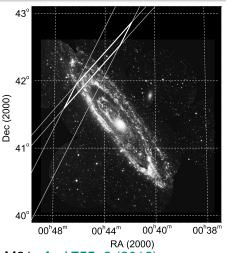

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- Upper Limit Results from Initial Detectors
 Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Gravitational Waves from Gamma-Ray Bursts

- GRBs are bursts of high energy photons observed by orbiting satellites like Swift and Fermi
- One possible source is the merger of a neutron star w/another neutron star or a black hole
- Search for the GWs emitted by the neutron star as it inspirals; search is "triggered" by the GRB, so can compare data at GRB time to data at other times

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds


- 2007 Feb 1: short GRB whose error box overlapped spiral arm of M31 (770 kpc* away)
- LHO 4 km & 2 km detectors operating & sensitive to inspiral out to 35.7& 15.3 Mpc
- No GW seen; rule out binary progenitor in M31 w/> 99% conf
- ApJ 681, 1419 (2008)

Similar result for GRB051103 & M81; ApJ 755, 2 (2012)

*1 parsec (pc) = 3.26 light years

25/39 G1201067-v1 2012 Oct 8 John T. Whelan

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds
- Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Searching for Known Pulsars

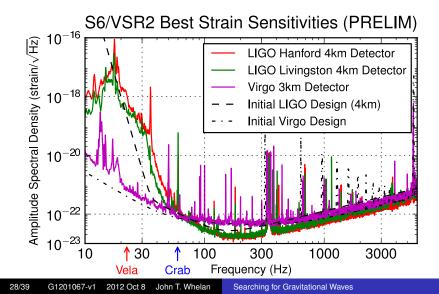
- Pulsar=rapidly rotating neutron star emitting radio or X-ray "pulses" as it spins (pulse comes when magnetic pole points at Earth)
- Pulsars spin down mostly due to drag of magnetic field through nebula
- If pulsar has small bump, will emit GWs
- Can search for periodic GW signal modulated by Doppler effect as Earth rotates & orbits Sun
- Parameters like freq, sky position, etc known from pulsar
- Spindown produces indirect upper limit
 - GW emission above limit \longrightarrow more spindown than seen
 - Pulsars w/rapid spindown have "more room" for GW
 - LIGO/Virgo have surpassed spindown limit for Crab & Vela

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Crab Pulsar Upper Limit

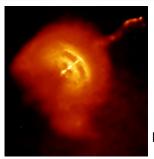
- Pulsar in Crab Nebula
- Created by SN 1054
- \sim 2 kpc away
- *f*_{rot} = 29.7 Hz
- *f*_{gw} = 59.4 Hz

Image credit: Hubble/Chandra


- Initial LIGO (S5) upper limit beats spindown limit
- Abbott et al (LSC) ApJL 683, L45 (2008)
- Abbott et al (LSC & Virgo) + Bégin et al ApJ 713, 671 (2010)
- No more than 2% of spindown energy loss can be in GW

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Initial Virgo Targets the Vela Pulsar



Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Vela Pulsar Upper Limit

- Pulsar in Vela SN remnant
- Created \sim 12,000 years ago
- $\bullet \sim 300\, {
 m pc}$ away
- $f_{\rm rot} = 11.2 \, \rm Hz$
- *f*_{gw} = 22.4 Hz

Image credit: Chandra

- GW frequency below initial LIGO "seismic wall"
- Virgo has better low-frequency sensitivity
- VSR2 upper limit beats spindown limit
- No more than 10% of spindown energy loss can be in GW

Abadie et al (LSC & Virgo) + Buchner et al ApJ 737, 93 (2011)

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

2 Upper Limit Results from Initial Detectors

- Gamma-Ray Bursts
- Known Pulsars
- Gravitational-Wave Backgrounds
- Prospects for Detections with Advanced Detectors
 - Compact Binaries
 - Unknown Neutron Stars
 - Accreting Neutron Stars

Searching for a Stochastic Background

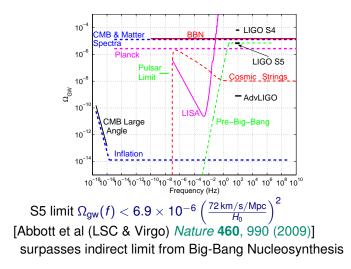
- Expect a random (stochastic) background of GWs left over from Big Bang (like the cosmic microwave background radiation) or from confusions of many faint sources
- Need to find a random signal in random noise!
- Noisy data from GW Detector:

 $x(t) = n(t) + h(t) = n(t) + \overleftrightarrow{h}(t) : \overleftrightarrow{d}$

Look for correlations between detectors

$$\langle x_1 x_2 \rangle = \overbrace{\langle n_1 n_2 \rangle}^{\text{avgto0}} + \overbrace{\langle n_1 h_2 \rangle}^{\text{avgto0}} + \overbrace{\langle h_1 n_2 \rangle}^{\text{avgto0}} + \langle h_1 h_2 \rangle$$

 Details of expected correlation will depend on sky distribution of background


Allen & Romano PRD 59, 102001 (1999)

Gamma-Ray Bursts Known Pulsars Gravitational-Wave Backgrounds

Isotropic Stochastic Background Limit

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds

Prospects for Detections with Advanced Detectors

- Compact Binaries
- Unknown Neutron Stars
- Accreting Neutron Stars

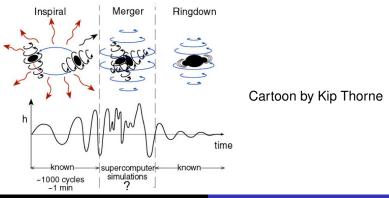
Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds

Prospects for Detections with Advanced Detectors

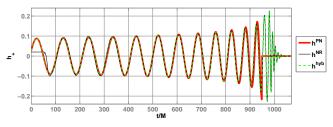
- Compact Binaries
- Unknown Neutron Stars
- Accreting Neutron Stars



Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Template Waveforms for Binary Coalescence

- Inspiralling binaries produce well-modelled GW signals; Search with pattern-match filter
- Compact object binary coalescence consists of inspiral / plunge / merger / ringdown



Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Template Waveforms for Binary Coalescence

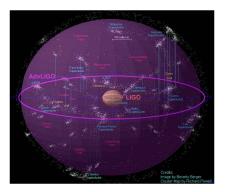
- Inspiralling binaries produce well-modelled GW signals; Search with pattern-match filter
- Compact object binary coalescence consists of inspiral / plunge / merger / ringdown

Ajith et al, CQG 24, S689 (2007)

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Template Waveforms for Binary Coalescence

- Compact object binary coalescence consists of inspiral / plunge / merger / ringdown
- For first part of inspiral, orbits not too relativistic can expand in powers of ^ν/_c → post-Newtonian methods Can estimate orb vel from Kepler's 3rd law: v ≈ (πGMf)^{1/3}
 - Low Mass \rightarrow plunge @ high freq 1.4 M_{\odot} /1.4 M_{\odot} NS/NS binary has $v \approx 0.3c$ @ 800 Hz; PN OK in LIGO band
 - High Mass \rightarrow plunge @ low freq 10 $M_{\odot}/10M_{\odot}$ BH/BH binary has $v \approx 0.4c$ @ 200 Hz; merges in LIGO band
- Different template families used for different mass ranges


Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Expected Event Rates w/Advanced Detectors

CQG 27, 173001 (2010)

- Advanced detectors should see NS binary inspiral up to 400 Mpc & BH binary coalescence up to 2 Gpc away
- ullet \Longrightarrow Expect between a few and hundreds of events/year

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds

Prospects for Detections with Advanced Detectors

- Compact Binaries
- Unknown Neutron Stars
- Accreting Neutron Stars

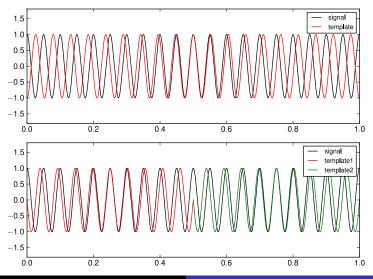
Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Searching for Unknown Neutron Stars

- Look for GWs from NSs not seen as pulsars
- Since freq, spindown, sky position, etc unknown, need to try different guesses in matched filter "template bank"
- Need to make bank dense enough so that true signal close to some template
- The longer you observe, the finer the needed resolution in frequency, sky position, etc

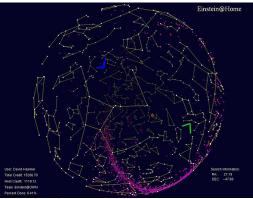
E.g, for all-sky search with one spindown,

$$N_{ ext{tmplts}} \sim rac{1}{\Delta f} rac{1}{\Delta \dot{f}} rac{1}{\Delta ext{sky}} \sim T \cdot T^2 \cdot (fT)^2 \propto T^5$$


 Need to combine shorter coherent searches semicoherently

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Coherent vs Semicoherent Searches



Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Searching for Unknown NSs: Einstein@Home

Semicoherent methods needed to handle phase param space; Increase computing resources by enlisting volunteers Distributed using BOINC & run as screensaver

http://www.einsteinathome.org/

36/39 G1201067-v1 2012 Oct 8 John T. Whelan

Searching for Gravitational Waves

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- 2 Upper Limit Results from Initial Detectors
 - Gamma-Ray Bursts
 - Known Pulsars
 - Gravitational-Wave Backgrounds

Prospects for Detections with Advanced Detectors

- Compact Binaries
- Unknown Neutron Stars
- Accreting Neutron Stars

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Gravitational Waves from Low-Mass X-Ray Binaries

- LMXB: compact object (neutron star or black hole) in binary orbit w/companion star
- If NS, accretion from companion provides "hot spot"; rotating non-axisymmetric NS emits gravitational waves
- Bildsten ApJL 501, L89 (1998) suggested GW spindown may balance accretion spinup; GW strength can be estimated from X-ray flux
- Torque balance would give \approx constant GW freq
- Signal at solar system modulated by binary orbit

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Brightest LMXB: Scorpius X-1

- Scorpius X-1
 - $1.4M_{\odot}$ NS w/0.4 M_{\odot} companion
 - unknown params are f_0 , $a \sin i$, orbital phase
- LSC/Virgo searches for Sco X-1:
 - Coherent *F*-stat search w/6 hr of S2 data Abbott et al (LSC) *PRD* **76**, 082001 (2007)
 - Directed stochastic ("radiometer") search (unmodelled) Abbott et al (LSC) *PRD* 76, 082003 (2007) Abbott et al (LSC) arXiv:1109.1809
- Proposed directed search methods:
 - Look for comb of lines produced by orbital modulation Messenger & Woan, *CQG* **24**, 469 (2007)
 - Cross-correlation specialized to periodic signal Dhurandhar et al *PRD* **77**, 082001 (2008)
- Promising source for Advanced Detectors

Compact Binaries Unknown Neutron Stars Accreting Neutron Stars

Resources for Further Investigation

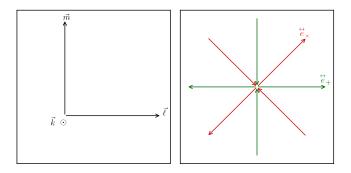
- LIGO Science Pages: http://www.ligo.org/science/overview.php
- List of LSC and Virgo papers: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html Includes links to free versions of papers on arXiv.org
- Summaries of recent LIGO science publications: http://www.ligo.org/science/outreach.php
- LIGO data releases: http://www.ligo.org/science/data-releases.php

EXTRA SLIDES

40/39 G1201067-v1 2012 Oct 8 John T. Whelan Searching for Gravitational Waves

Multipole Expansion for Gravitational Radiation

- "Electric Dipole"?
 - No, "dipole moment" $\int \vec{r} \, dm \propto \text{ctr of mass}$ COM can't oscillate (also no negative "charge" in GR)
- "Magnetic Dipole"? No, "mag moment" $\frac{1}{2} \int \vec{r} \times \vec{v} \, dm \propto \text{spin}$, another conserved quantity
- "Electric Quadrupole"? Yes! E.g., orbiting/rotating system w/ang vel Ω has GW frequency f_{gw} = 2 Ω/2π

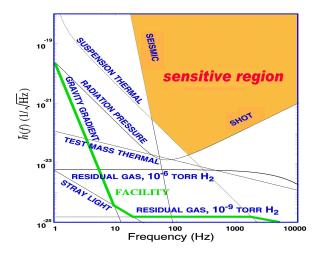


The Polarization Basis

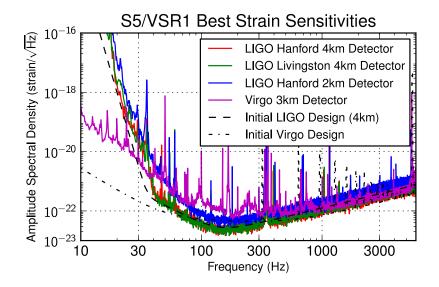
• wave propagating along \vec{k} ; construct $\vec{e}_{+,\times}$ from \perp unit vectors $\vec{\ell} \& \vec{m}$:

$$\overleftrightarrow{e}_{+} = \vec{\ell} \otimes \vec{\ell} - \vec{m} \otimes \vec{m} \qquad \overleftrightarrow{e}_{\times} = \vec{\ell} \otimes \vec{m} + \vec{m} \otimes \vec{\ell}$$

Some Sources of Gravitational Waves


Useful to divide up by frequency band:

- Very Low Freq (10⁻⁹ Hz $\lesssim f_{\rm gw} \lesssim 10^{-7}$ Hz)
- Low Freq (10⁻³ Hz $\lesssim f_{\rm gw} \lesssim 10^{-1}$ Hz)
- High Freq (10¹ Hz $\lesssim f_{gw} \lesssim 10^3$ Hz)
- Binary coalescence (inspiral+merger+ringdown):
 - Supermassive black hole binary
 - extreme mass ratio (stellar mass + SMBH)
 - Stellar mass BH and/or neutron star
- Galactic white dwarf binary orbit (continuous source)
- Rotating neutron star (pulsar, LMXB, etc)
- Supernova, Soft Gamma Repeater
- Cosmological background (primordial, phase transitions, cosmic superstrings, etc)
- SMBH flyby



LIGO's Sensitive Frequency Band

