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Abstract

We compute the GW waveforms for a few common astrophysi-
cal situations, using the equations and conventions of Kip Thorne’s
famous review article (Thorne, 1980).
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1 Overview

In this article I compute the ‘plus’ and ‘cross’ polarisation components of
gravitational waves for a few common astrophysical situations. I follow care-
fully the notation and equations of Thorne (1980). All of this is standard; the
main idea is to spell out carefully the exact form of the equations, getting
all the signs right, and making clear the conventions used. I repeat some
material in the various examples, so that they can be read independently of
oneanother; the reader need only look at section 2 and the section of direct
interest to him/her.

In what follows, an equation number of the form (K4.3) means ‘equation
4.3 of Thorne (1980)’, while an equation number of the form (1, K4.3) means
‘equation (1) of this note, or equivalently equation 4.3 of Thorne (1980)’.

2 Basic equations

I collect here the main equations for GW emission, some specific to the
quadrpole (l = 2 case) for nearly-Newtonian sources.

Also, in the appendices, I give explicit forms for some of the key mathe-
matical functions:

• Appendix A: The scalar spherical harmonics Y2m, evaluated in terms
of polar coordinates (θ, φ).

• Appendix B: The symmetric trace-free tensor basis Y2m
ab , evaluated

with respect to a Cartesian basis (ex, ey, ez).

• Appendix C: The tensor spherical harmonics TE2,2m
ab and TB2,2m

ab , eval-
uated in terms of polar coordinates (θ, φ) and with respect to an or-
thonormal spherical polar basis (er, eθ, eφ).

• Appendix D: The spin-weighted spherical harmonics −2Y
2m, evaluated

in terms of polar coordinates (θ, φ).

The fundamental quantities that appears in the wave generation sections
of Thorne (1980) are the mass quadrupole moment scalars, related to the
source’s density field ρ by (K5.18b), or equivalently (K5.27a):

I2m =
16π
√

3

15

∫
ρY ∗2mr

2 dV, (1)
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and the current quadrupole of (K.18b), sourced by the momentum density
ρv:

S2m =
32π
√

2

15

∫
ρv ·Y∗B,2mr2 dV, (2)

where Ylm is the usual spherical harmonic, and YB,lm is a the magnetic-type
‘pure spin vector harmonic’, given by (K2.18):

YB,2m =
1

61/2
r×∇Y2m. (3)

The transverse traceless (TT) description of the GW field is given by
(K4.3):

hTT
ab (t) =

1

r

∑
m

Ï2mTE2,2m
ab + S̈2mTB2,2m

ab . (4)

The GW luminosity is given by (K4.16):

dE

dt
=

1

32π

∑
m

< |(3)I2m|2 > + < |(3)S2m|2 > . (5)

In most of what follows, we will evaluate hTT
ab with respect to a spherical

polar basis (er, eθ, eφ), so that the non-zero elements of hTT
ab will lie in the

(eθ, eφ) plane, transverse to the direction of wave propagation. Then the
polarisation components can be simply read-off from the matrix expressions
for hTT

ab , with the understanding that the corresponding hypothetical detec-
tor, with respect to which the polarisations are defined, has its 1-arm along
eθ and its 2-arm along eφ. If one wants the polarisation components for a
different detector, still lying in the transverse r = constant space, but with
arms along the orthonormal vectors (e1, e2), one simply contracts the metric
perturbation with the tensors e+

ab/2 and e×ab/2:

h+ =
1

2
hTT
ab e

+
ab, (6)

h× =
1

2
hTT
ab e

×
ab, (7)

where e+
ab and e×ab are the polarisation tensors connected with the hypothetical

detector:

e+
ab = (e1e1 − e2e2)ab, (8)

e+
ab = (e1e2 + e2e1)ab. (9)

4



As an alternative to the mass quadrpole moment scalars I2m, the gravita-
tional wave emission can be related to the symmetric trace-free quadrupole
moment tensor Iab. If we denote the mass quadrupolar tensor itself by Iab,
then

Iab =

∫
ρxaxb dV, (10)

so that

Iab = [Iab]
STF =

∫
ρ(xaxb −

1

3
δabr

2) dV = Iab −
1

3
δabIcc, (11)

where r = (xaxa)
1/2, the radius coordinate. Comparing with the moment of

inertia tensor of rigid body mechanics:

IMoI
ab =

∫
ρ(δabr

2 − xaxb) dV = δabIcc − Iab. (12)

One can go back-and-forth between the mass quadrupole moment scalars
I2m and the symmetric trace-free part of mass quadrupole tensor Iab using
(K4.6a) and (K4.7a):

Iab =
1

2
√

3

∑
m

I2mY2m
ab , (13)

I2m =
16π
√

3

15
(Y2m

ab )∗Iab. (14)

Writing out the second of these relations explicitly, and using a Cartesian
coordinate system:

I2−2 = 2

√
2π

5
[Ixx + 2iIxy − Iyy], (15)

I2−1 = 4

√
2π

5
[Ixz + iIyz], (16)

I20 = −4

√
π

15
[Ixx + Iyy − 2Izz]. (17)

Note that one can use either Iab or Iab here, as these formulae are invariant
under addition of a pure trace to Iab. These can then be used to construct
the GW waveform and luminosity, as described above. This approach is
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particularly useful in rigid-body calculations, where the time dependent STF
moment of inertia tensor Iab can be obtained from its constant body-frame
form by time-dependent active rotation. These relations might also be useful
in a computer code, where the integrals over volume needed to compute Iab
are easily evaluated.

A slightly different formalism seems to be currently popular in the GW
literature, making use of spin-weighted spherical harmonics sY

lm rather than
tensor spherical harmonics. These are mentioned in Thorne (1980), with
their relation to tensor spherical harmonics being given in (K2.38e). They
are developed further in Kidder (2008), whose formalism we will follow here.
We start with Kidder’s equation (11):

h+ − ih× =
∑
m

h2m −2Y
2m ≡ 1

r

∑
m

H2m −2Y
2m, (18)

where we follow Ott’s DCC note in defining H2m = rhlm. The amplitudes
Hlm play a similar role to the Ilm of Kip’s multipole formalism; using Kidder’s
equation (19) we see that for mass quadrupoles the coefficients are related
by

H2m =
1√
2
Ï2m. (19)

These results can then be substituted into equation (18) to provide a slightly
different route to that of equation (4) for calculating the polarisation com-
ponents h+ and h×.

The energy result can also be written in terms of the H2m. Substituting
equation (19) into equation (5) we have

dE

dt
=

1

16π

∑
m

< |Ḣ2m|2 >, (20)

so the spin-weighted spherical harmonic-based luminosity calculation differs
only trivially from that of equation (5), which was based on the scalar mass
multipoles.

3 Example: A ‘mountain’ or bar-mode

Consider a body rotating rigidly at rate Ω with a quadrupolar deformation,
emitting GWs at 2Ω. In the CW context, this is a ‘mountain’, in the burst
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context, it may be a ‘bar mode’. Rather than starting with the quadrupole
moment tensor Iab, we will start with the density distribution ρ(r, t). This
will provide a nice warm-up for the f-mode calculation of the next section.
The relationship between this density-based description and the more usual
description in terms of Ixx − Iyy, the asymmetry in the quadrupole moment
tensor, will be derived in due course.

We will write the density as a spherical piece and a piece proportional to
Y2−2:

ρ(r, t) = ρs(r) + <[ρ−2(r)ei(ωt+Φ−2)Y2−2(θ, φ)], (21)

where ω = 2Ω. Using Ylm(θ, φ) = Ylm(θ, 0)eimφ this becomes

ρ(r, t) = ρs(r) + <[ρ−2(r)ei(ωt−2φ+Φ−2)Y2−2(θ, 0)] (22)

or, extracting the real part,

ρ(r, t) = ρs(r) + ρ−2(r) cos(ωt− 2φ+ Φ−2)Y2−2(θ, 0). (23)

A point of constant density rotates about Oz at a rate that can be found by
looking at points of constant phase:

d

dt
(ωt− 2φ+ Φ−2) = 0→ φ̇pattern =

ω

2
= Ω, (24)

confirming that the pattern speed is equal to the star’s angular velocity.
Having obtained a neat expression for the (real) density field, it is useful to
rewrite in terms of complex exponentials:

ρ(r, t) = ρs(r) +
1

2
ρ−2(r)[ei(ωt−2φ+Φ−2) + e−i(ωt−2φ+Φ−2)]Y2−2(θ, 0). (25)

Using the relation Y22(θ, 0) = Y2−2(θ, 0) this becomes

ρ(r, t) = ρs(r) +
1

2
ρ−2(r)[ei(ωt+Φ−2)Y2−2(θ, φ) + e−i(ωt+Φ−2)Y22(θ, φ)]. (26)

Having written the density field as the sum of two spherical harmonic func-
tions, we can now make use of equation (1, K5.18a) to give the mass quadrupole
moment scalars:

I2±2 =
8π
√

3

15
e∓i(ωt+Φ−2)M−2, (27)

I2±1 = I20 = 0, (28)
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where, for ease of notation, we have defined

M−2 ≡
∫
ρ−2(r)r4 dr. (29)

Note that, even though our density field consisted only of an m = −2 part, as
defined by equation (21), the mass quadrupole moment scalars are non-zero
for both m = +2 and m = −2. This is a consequence of the real part of Y2−2

(as per (21)) being the sum of a linear combination of Y22 and Y2−2 (as per
equation (26)).

These mass quadrupole scalars can then be inserted into equation (4,
K4.3): to give the GW field:

hTT
ab = −

√
2π

15
ω2M−2

{
(1 + cos2 θ) cos(ωt− 2φ+ Φ−2)

[
1 0
0 −1

]
+2 cos θ sin(ωt− 2φ+ Φ−2)

[
0 1
1 0

]}
,

where the matrix elements span the (eθ, eφ) space. The polarisation compo-
nents with respect to the (eθ, eφ) basis can then be read-off:

h+ = −1

r

√
2π

15
ω2M−2(1 + cos2 θ) cos(ωt− 2φ+ Φ−2), (30)

h× = −1

r

√
2π

15
ω2M−22 cos θ sin(ωt− 2φ+ Φ−2). (31)

To make contact with the more familiar way of writing this in terms of the
asymmetry in the mass quadrupole tensor Iab, we can make use of equation
(13, K4.6a) relating the STF form of the quadrupole moment tensor to the
mass quadrupole scalars, to give:

Iab =

√
2π

15
ω2M−2

 cos(ωt+ Φ−2) sin(ωt+ Φ−2) 0
sin(ωt+ Φ−2) − cos(ωt+ Φ−2) 0

0 0 0

 . (32)

As expected, the components of the (STF) quadrupole moment tensor, eval-
uated in the inertial frame, are time dependent. We can transform to the
rotating frame. If a vector has components va in the inertial frame, then its
components v̂a in a frame that rotates at a rate Ω are given by:

v̂a = Rabvb, (33)
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where

Rab =

 cos Ωt sin Ωt 0
− sin Ωt cos Ωt 0

0 0 1

 . (34)

For the SFT-quadrupole moment tensor

Îab = RacRbdIcd = (RIRT)ab, (35)

which leads to

Îab =

√
2π

15
ω2M−2

 cos Φ−2 sin Φ−2 0
sin Φ−2 − cos Φ−2 0

0 0 0

 . (36)

So, in the rotating frame, the components of Iab are constant. If we specialise
to the ‘principal’ frame, i.e. the rotating frame that is orientated onto the
body, such that Φ−2 = 0, we have

Îp
ab =

√
2π

15
ω2M−2

 1 0 0
0 −1 0
0 0 0

 , (37)

from which we see

M−2 =
1

2

√
15

2π
(Ip
xx − Ip

yy). (38)

where we have used Ip
xx − Ip

yy = Ip
xx − Ip

yy. Inserting this into the waveform
of equations (30) and (31) and setting ω = 2Ω leads to the more familiar
expressions:

h+ = −2

r
Ω2(Ip

xx − Ip
yy)(1 + cos2 θ) cos(2Ωt− 2φ+ Φ−2), (39)

h× = −2

r
Ω2(Ip

xx − Ip
yy)2 cos θ sin(2Ωt− 2φ+ Φ−2). (40)

This agrees with the results in the literature, e.g. equation (2) of Zimmer-
mann & Szedenits (1979) (if one sets their wobble angle a to zero, and chooses
−2φ+ Φ−2 = π), or equations (47) and (48) of Jones (2010).

Now look at the GW luminosity, as given by equation (5, K4.16). Making
use of the mass scalar quadrupole moments of equations (27) and (28) we
obtain

dE

dt
=

4π

75
|M−2|2ω6. (41)
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Inserting ω = 2Ω and M−2 as given by equation (38) we obtain

dE

dt
=

32

5
(Ip
xx − Ip

yy)
2Ω6, (42)

in agreement with equation (16.6.9) of Shapiro & Teukolsky (1983).
If we instead use the spin-weighted spherical harmonic formalism, we can

use equation (19) to obtain the scalars H2m from the I2m of equations (27)
and (28), giving

H2±2 = −ω2 8π
√

3

15
√

2
e∓i(ωt+Φ−2)M−2, (43)

H2±1 = H20 = 0. (44)

These can then be substituted into equation (18), together with the spin-
weighted spherical harmonics of Appendix D, to give an expression for (h+−
ih×) consistent with the GW components of equations (30) and (31).

Finally, a more conventional approach would have taken as its starting
point the quadrupole moment tensor in the rotating (body) frame, carried
out a rotation to give its components Iab in the inertial frame, and used (14,
K4.7a)

I22 = 2

√
2π

5
[Ixx − 2iIxy − Iyy] = (I2−2)∗. (45)

to find the mass quadrupole scalars. These can then be used as described
above to give the wave field and luminosity. This of course leads to an
identical result.

4 Example: f-modes

We want to start with a density perturbation, as would come out of a normal-
mode calculation, and end up with the GW field in terms of its ‘plus’ and
‘cross’ polarisations.

Normal mode calculations generally take place on stellar backgrounds
that are both stationary (i.e. not changing in time) and axisymmetric. The
former means that the time-dependence can be written as ∼ eiωt, while the
latter means that the φ-dependence can be written as eimφ. For the f-modes
of spherical (i.e. non-rotating, non-magentic) stars, each mode is in fact
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associated with a single spherical harmonic Ylm(θ, φ) ∼ eimφ. The (real)
density field is then decomposed into modes as:

ρ(r, t) = ρs(r) + <
∑
lm

ρlm(r)ei(ωlmt+Φlm)Ylm(θ, φ), (46)

where ρs(r) is the density of the unperturbed star, ρlm the radial variation
in the mode eigenfunction, ωlm the (inertial frame) mode frequency, and Φlm

are phase-constants. The form of ρlm and value of ωlm would come out of
a detailed mode calculation. The values of Φlm would depend upon how
the glitch is initiated, i.e. the initial conditions. Note that ωlm is also the
gravitational wave frequency.

In fact, for perfectly spherical backgrounds, functions ρlm(r) and the mode
frequencies ωlm (and gravitational wave damping times, not explicitly in-
cluded here) are degenerate, i.e. independent of m, so the m-label need only
be retained on the phase constants Φlm. However, for non-spherical (but still
axisymmetric stars), e.g. rotating or magnetised ones, the situation is more
complicated. Without going into details, each mode will have contributions
from many different Ylm terms, all of the same m, but different l-values. But
those higher than quadrupole (i.e. l > 2) will generally be much weaker grav-
itational wave emitters, so we won’t worry about them; we will include only
l = 2 terms. The broken symmetry also breaks the degeneracy in the damp-
ing times, and more importantly for gravitational wave searches, the mode
frequencies ωlm. We will therefore retain the m-subscripts on the frequencies,
to allow for this possibility, with the understanding that other (higher-than-
quadrupole) contributions to the mode and the gravitational wave emission
have been neglected.

We will now re-write equation (46), putting it in a more useful form for
use in the multipole formalism. The spherical harmonics have the property
that

Ylm(θ, φ) = Ylm(θ, 0)eimφ, (47)

so that
ρ(r, t) = ρs(r) + <

∑
lm

ρlm(r)ei(ωlmt+mφ+Φlm)Ylm(θ, 0). (48)

Extracting the real part we obtain

ρ(r, t) = ρs(r) +
∑
lm

ρlm(r) cos(ωlmt+mφ+ Φlm)Ylm(θ, 0). (49)
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Finally, explicitly set l = 2, following the discussion above:

ρ(r, t) = ρs(r) +
∑
m

ρm(r) cos(ωmt+mφ+ Φm)Y2m(θ, 0). (50)

Note that each separate m 6= 0 mode can be thought of as a propagating
density pattern. A point of constant density moves around with a pattern
speed that can be found by following points of constant phase:

d

dt
(ωlmt+mφ+ Φlm) = 0→ φ̇pattern = −ωlm

m
. (51)

Allowing both ωlm and m to take either sign (positive or negative) would
be redundant, as modes with parameters (ω,m) and (−ω,−m) have the
same phase evolution. We will therefore adopt the convention that all mode
frequencies are positive (ωlm > 0), so that the sign of m controls the sense
of propagation of the density pattern; the pattern propagates in the +φ
direction for m < 0, and in the −φ direction for m > 0. Modes with m = 0
are axisymmetric and so have no propagating density pattern.

Having obtained a real density field, we now want to insert this into
Thorne’s multipole formalism to compute the GW emission. This is best
done by writing the trigonometric functions above in terms of complex ex-
ponentials:

ρ(r, t) = ρs(r) +
1

2

∑
m

ρm(r)[ei(ωmt+mφ+Φm) + e−i(ωmt+mφ+Φm)]Y2m(θ, 0). (52)

Using the relation
Y2m(θ, 0) = (−1)mY2−m(θ, 0) (53)

we find

ρ(r, t) = ρs(r)+
1

2

∑
m

ρm(r)[ei(ωmt+Φm)Y2m(θ, φ)+(−1)me−i(ωmt+Φm)Y2−m(θ, φ)].

(54)
Having written ρ as the sum of spherical harmonic functions, it is now easy

to calculate the scalar mass multipole moments using equation (1, K5.18a):
to give

I2m(t) =
8π
√

3

15
MR2[αme

i(ωmt+Φm) + (−1)mα−me
−i(ω−mt+Φ−m)], (55)
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where we have introduced a dimensionless mode amplitude αm:

αm ≡
1

MR2

∫
ρm(r)r4 dr, (56)

where M and R denote the stellar mass and radius. These amplitudes will
be of order the fractional density perturbation at some point in the star, or
equivalently the fractional change in radius, or equivalently the speed of fluid
motion expressed in terms of the sound speed; the exact details depend upon
the stellar background.

Note that this formalism inevitably mixes up the ρm contributions, i.e.
the quantity I2m that appears in Kip’s multipole equations is made up from
contributions form both the m and −m parts of the density field. This is
a consequence of the real part of Ylm, which appears in equation (46) for ρ,
being the sum of both Ylm and Yl−m terms, as given by equation (54).

The GW field can then be written in terms of equation (4, K4.3); the
mass scalar multipole moments are given in equation (55), while I give the
explicit form of the tensor spherical harmonics TE2,2m

ab in Appendix C, written
out with respect to the spherical polar basis (er, eθ, eφ). A little algebra then
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leads to

rhTT
ab = −

√
2π

15
α2MR2ω2

2

{
(1 + cos2 θ) cos(ω2t+ 2φ+ Φ2)

[
1 0
0 −1

]
−2 cos θ sin(ω2t+ 2φ+ Φ2)

[
0 1
1 0

]}
,

−
√

2π

15
ω2
−2MR2α−2

{
(1 + cos2 θ) cos(ω−2t− 2φ+ Φ−2)

[
1 0
0 −1

]
+2 cos θ sin(ω−2t− 2φ+ Φ−2)

[
0 1
1 0

]}
,

+

√
2π

15
ω2

1MR2α1

{
− 2 sin θ cos θ cos(ω1t+ φ+ Φ1)

[
1 0
0 −1

]
+2 sin θ sin(ω1t+ φ+ Φ1)

[
0 1
1 0

]}
,

+

√
2π

15
ω2
−1MR2α−1

{
2 sin θ cos θ cos(ω−1t− φ+ Φ−1)

[
1 0
0 −1

]
,

+2 sin θ sin(ω−1t− φ+ Φ−1)

[
0 1
1 0

]}
− 2

√
π

5
ω2

0MR2α0 sin2 θ cos(ω0t+ Φ0)

[
1 0
0 −1

]
. (57)

where the matrices are written with respect to the (eθ, eφ) basis. We can
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then easily read-off the polarisation components with respect to this basis:

h+(m = +2) = −1

r

√
2π

15
ω2

2MR2α2(1 + cos2 θ) cos(ω2t+ 2φ+ Φ2), (58)

h×(m = +2) =
1

r

√
2π

15
ω2

2MR2α22 cos θ sin(ω2t+ 2φ+ Φ2), (59)

h+(m = +1) = −1

r

√
2π

15
ω2

1MR2α12 sin θ cos θ cos(ω1t+ φ+ Φ1), (60)

h×(m = +1) =
1

r

√
2π

15
ω2

1MR2α12 sin θ sin(ω1t+ φ+ Φ1), (61)

h+(m = 0) = −2

√
π

5
ω2

0MR2α0 sin2 θ cos(ω0t+ Φ0), (62)

h×(m = 0) = 0, (63)

h+(m = −1) =
1

r

√
2π

15
ω2
−1MR2α−12 sin θ cos θ cos(ω−1t− φ+ Φ−1), (64)

h×(m = −1) =
1

r

√
2π

15
ω2
−1MR2α−12 sin θ sin(ω−1t− φ+ Φ−1), (65)

h+(m = −2) = −1

r

√
2π

15
ω2
−2MR2α−2(1 + cos2 θ) cos(ω−2t− 2φ+ Φ−2),(66)

h×(m = −2) = −1

r

√
2π

15
ω2
−2MR2α−22 cos θ sin(ω−2t− 2φ+ Φ−2). (67)

Clearly, the five different l = 2 modes show up neatly separated in the wave-
form, each with its own amplitude, frequency and phase constant (αm, ωm,Φm).

• Is it worth seeing how the above results, in the appropriate
limit, reduce to the waveform used in the Vela glitch paper?

We can then calculate the energy emission using equation (5, K4.16);
inserting the mass quadrupole moment scalars of equation (55) we find

dE

dt
=

4π

75

∑
m

ω6
m(MR2αm)2. (68)

Note that cross-terms between modes of different m-values are eliminated
by the time-averaging, even in the limit where their frequencies become the
same.
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If we had allowed for decay of the mode, we would have inserted a factor
of e−t/τm into the summation in the expressions for the density perturbation
given above. Assuming that the decay timescale is long compared to the
mode period, i.e. accepting errors related to the parameter 1/(ωmτm) � 1,
the GW waveform of equation (57) simply acquires a factor of e−t/τm in each
separate m-term. The terms in the luminosity sumation each acquire a factor
of e−2t/τm to give

dE

dt
=

4π

75

∑
m

ω6
m(MR2αm)2e−2t/τm . (69)

The total GW energy emitted is then

∆E ≡
∫ ∞

0

dE

dt
dt =

2π

75

∑
m

ω6
m(MR2αm)2τm. (70)

This shows how the total radiated quadrupolar gravitational wave energy
is shared over the five different m-modes. In the limit of a perfectly spherical
background and no viscous dissipation, this must also be how the energy is
shared over the modes themselves, i.e. how the initial excitation distributed
its energy. This is useful, as one may have a total amount of, say, ‘glitch en-
ergy’, that one wants to distribute over the modes; the above sum shows how
it can be divided out. (As a consistency check, note that, for gravitational
wave damping of f-modes, τm ∼ 1/(MR2ω4

m), so that each term in the energy
sum is of the form ∼ MR2α2

m, the expected scaling.) For such a perfectly
spherical star, the τm and ωm quantities are degenerate (i.e. independent of
m), so this amounts to sharing out the energy according to the sum of the
α2
m factors.

However, for non-spherical backgrounds, where this degeneracy is broken,
the modes will have pieces with l > 2, and our calculation misses the grav-
itational wave energy corresponding to this l > 2 emission, so the terms in
the sum of equation (70) will be somewhat smaller than the original energy
deposited in each m-mode. One can still use the above sum to distribute
energy for such non-spherical stars, but with the understanding that it is the
radiated quadrupolar gravitational wave energy that is being fixed, not the
actual energy initially deposited in the mode. With the tools described here,
this is, I believe, the best that can be done.

As a (partial) check on the waveform we can use the spin-weighted spher-
ical harmonic formalism. Using equation (19) that relates the coefficients
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I2m and H2m we have

H2m = −8π
√

3

15
√

2
[ω2
mMR2αme

i(ωmt+Φm) + (−1)mω2
−mMR2α−me

−i(ω−mt+Φ−m)].

(71)
Substituting into equation (18) for h+ − ih×, and making use of the spin-
weighted spherical harmonics−2Y

2m as given in Appendix D, we can verify
equation (57).

We can relate our results to the SFT quadrupole moment tensor using
equation (13, K4.60). Some algebra leads to the following result:

Iab =

√
2π

15
MR2α2

 cos(ω2t+ Φ2) − sin(ω2t+ Φ2) 0
− sin(ω2t+ Φ2) − cos(ω2t+ Φ2) 0

0 0 0


+

√
2π

15
MR2α−2

 cos(ω−2t+ Φ−2) sin(ω−2t+ Φ−2) 0
sin(ω−2t+ Φ−2) − cos(ω−2t+ Φ−2) 0

0 0 0


−

√
2π

15
MR2α1

 0 0 cos(ω1t+ Φ1)
0 0 − sin(ω1t+ Φ1)

cos(ω1t+ Φ1) − sin(ω1t+ Φ1) 0


+

√
2π

15
MR2α−1

 0 0 cos(ω−1t+ Φ−1)
0 0 sin(ω−1t+ Φ−1)

cos(ω−1t+ Φ−1) sin(ω−1t+ Φ−1) 0


+

2

3

√
π

5
MR2α0 cos(ω0t+ Φ0)

 −1 0 0
0 −1 0
0 0 2

 (72)

Each individual m 6= 0 piece of the tensor can be made time-independent by
going into the frame which rotates at the appropriate pattern speed. If we
call the individual pieces Imab we find:

In the frame that rotates at rate φ̇p = −ω2/2:

Im=2
ab =

√
2π

15
MR2α2

 cos Φ2 − sin Φ2 0
− sin Φ2 − cos Φ2 0

0 0 0

 (73)
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In the frame that rotates at rate φ̇p = ω−2/2:

Im=−2
ab =

√
2π

15
MR2α−2

 cos Φ−2 sin Φ−2 0
− sin Φ−2 − cos Φ−2 0

0 0 0

 (74)

In the frame that rotates at rate φ̇p = −ω1:

Im=1
ab = −

√
2π

15
MR2α1

 0 0 cos Φ1

0 0 − sin Φ1

cos Φ1 − sin Φ1 0

 (75)

In the frame that rotates at rate φ̇p = ω−1:

Im=−1
ab =

√
2π

15
MR2α−1

 0 0 cos Φ−1

0 0 sin Φ−1

cos Φ−1 sin Φ−1 0

 (76)

In the inertial (or any other) frame:

Im=0
ab =

2

3

√
π

5
MR2α0 cos(ω0t+ Φ0)

 −1 0 0
0 −1 0
0 0 2

 (77)

I am not sure how useful or insightful these last results are!

5 Example: triaxial star, spinning steadily

about an axis different from a principal axis

As discussed in Jones (2010), superfluid pinning can allow a triaxial star
to spin steadily about an axis, with the axis fixed in space and fixed with
respect to the star, even when that axis does not coincide with a principal
axis of the star’s moment of inertia tensor. The waveform was presented in
Jones (2010). Here is a detailed derivation of this waveform, making use of
the multipole moment formalism.

Given that the star rotates rigidly, the body-frame quadrupole moment
of inertia tensor can be written as

IBF
ab =

 I1

I2

I3

 (78)
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The superfluid pinning allows the star to rotate about an axis whose orien-
tation relative to the inertial frame is specified by the Euler angles:

θ = constant (79)

φ = Ωt+ φ0 (80)

ψ = constant (81)

where φ0 is the position of the line of nodes at t = 0. (The ‘line of nodes’
is the intersection of the inertial and body frame xy planes; see Figure 1 of
Jones (2010)). We need to find Iab with respect to the inertial frame, and
then plug these results into equations (15)–(17) to find the mass quadrupole
scalars I2m.

Let Rab denote the matrix that carries out an active rotation from the
inertial xyz axes to the body-frame axes. Then, to produce a star whose
orientation is specified by the three standard Euler angles (θ, φ, ψ), we need
to first perform a rotation of ψ about the inertial z-axis, then a rotation of θ
about the inertial x-axis, and finally a rotation of φ about the inertial z-axis.
In an obvious notation, we then have

Rab = [Rz(φ)Rx(θ)Rz(ψ)]ab (82)

so that
Iab(t) = (RIBFRT )ab (83)

where RT is the transpose of R. Strictly, is the is STF quadrupole moment
tensor that should appear in our formulae. However, we can reduce the
amount of algebra we need perform by writing

IBF
ab =

 0
I21

I31

+
1

3
(2I1 − I2 − I3)

 1
1

1

 (84)

and noting the second term is a pure trace, and so will not affect the scalar
quadrupole moments. We therefore need only transform the first term:

∆IBF
ab =

 0
I21

I31

 (85)

i.e. we need to evaluate

∆Iab = (R∆IBFRT )ab (86)

=
{
Rz(φ)Rx(θ)Rz(ψ)∆IBF[Rz(φ)]T[Rz(θ)]T[Rz(φ)]T

}
ab

(87)
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The relevant active rotation matrices are:

Rz
ab(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (88)

Rx
ab(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (89)

Rz
ab(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (90)

Crunching through the algebra leads to

∆Ixx = 2I21 sinψ cosψ cos θ sinφ cosφ

+I21(sin2 ψ cos2 φ+ cos2 ψ cos2 θ sin2 φ) + I31 sin2 θ sin2 φ (91)

∆Ixy = I21 sinψ cosψ cos θ(sin2 φ− cos2 φ)

+I21(sin2 ψ − cos2 ψ cos2 θ) sinφ cosφ− I31 sin2 θ sinφ cosφ(92)

∆Ixz = −I21 sinψ cosψ sin θ cosφ

−(I21 cos2 ψ − I31) sin θ cos θ sinφ (93)

∆Iyy = −2I21 sinψ cosψ cos θ sinφ cosφ

+I21(sin2 ψ sin2 φ+ cos2 ψ cos2 θ cos2 φ) + I31 sin2 θ cos2 φ (94)

∆Iyz = −I21 sinψ cosψ sin θ sinφ

+(I21 cos2 ψ − I31) sin θ cos θ cosφ (95)

∆Izz = I21 cos2 ψ sin2 θ + I31 cos2 θ

The mass quadrupole scalars are then:

I2−2 = 2

√
2π

5
e2iφ[I21(sin2 ψ − cos2 ψ cos2 θ)− I31 sin2 θ − 2iI21 sinψ cosψ cos θ]

I2−1 = 2

√
2π

5
eiφ[−I21 sin 2ψ sin θ + i(I21 cos2 ψ − I31) sin 2θ]

I20 = −4

√
π

15

{
I21[sin2 ψ + cos2 ψ(cos2 θ − 2 sin2 θ)] + I31(sin2 θ − 2 cos2 θ)

}
The gravitational wave field is then given by equation (4, K4.3), in terms

of the above quadrupole moment scalars and the tensor spherical harmonics
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of Appendix C. In the latter we use the notation TE2,2m
ab = TE2,2m

ab (ι, φobs),
i.e. we place out observer at a location (ι, φobs), as measured using polar
coordinates defined with respect to the inertial frame. We then find:

rhTT
ab

Ω2
= e+

ab(1 + cos2 ι)2
{
− [I21(sin2 ψ − cos2 ψ cos2 θ)− I31 sin2 θ)] cos 2φgw

−I21 sin 2ψ cos θ sin 2φgw

}
+ e×ab4 cos ι

{
− [I21(sin2 ψ − cos2 ψ cos2 θ)− I31 sin2 θ] sin 2φgw

+I21 sin 2ψ cos θ cos 2φgw

}
+ e+

ab sin ι cos ι
{
− I21 sin 2ψ sin θ cosφgw

−(I21 cos2 ψ − I31) sin 2θ sinφgw

}
+ e×ab sin ι

{
− I21 sin 2ψ sin θ sinφgw

+(I21 cos2 ψ − I31) sin 2θ cosφgw

}
(96)

where the gravitational phase φgw is given by

φgw = Ωt+ φ0 − φobs (97)

and for ease of notation we have defined the two STF basis tensors (i.e.
‘polarisation tensors’), built out of the spherical polar basis vectors (eθ, eφ):

e+, polar
ab = eθaeθb − eφaeφb =

[
1 0
0 −1

]
(98)

e×, polar
ab = eθaeφb + eφaeθb =

[
0 1
1 0

]
(99)

Equation (96) above give the transverse-traceless metric perturbation for an
observer at an arbitrary location (ι, φobs) a distance r from the source. The
polarisation components with respect to (eθ, eφ) can then be easily read-off.

The above results can be checked against those of Jones (2010), which
were arrived by by slightly different means. First compare the mass quadrupole
scalars. The normalisation of the I2m used here and defined in (1) differs from
the Q2m of equation (38) of Jones (2010), which were defined to be

Q2m =

∫
V

ρ(r, t)(Y 2m)∗ dV (100)

so that we would expect

I2m =
16π
√

3

15
Q2m (101)
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Allowing for this, and also for the fact that the quantities I21 and I31 in Jones
(2010) refer to differences in the moment of inertia tensor, not the quadrupole
moment tensor, and so are of opposite sign (see equation (12)) to the I21 and
I31 that appear here, we find that the expressions for Q2m of Jones (2010)
are in fact too large by a factor of 2. In other words, an additional factor
of 1/2 needs to inserted into (40) and (41) of Jones (2010). An additional
factor of 1/2 also needs to be inserted in the expressions for |Q2m| in the
final equalities of equations (56)–(58) of Jones (2010). This appears to be a
typographical error that propagates no further; the corresponding equations
in my hand written notes were in fact correct.

We can also check the formulae for h+, h× given in Jones (2010). To
do so, we need to put φobs = −π/2, φ0 = 0, and again remember that the
quantities I21 and I31 in Jones (2010) are of opposite sign to those used here.
Also, the h+, h× of Jones (2010) refer to a detector with its 1-arm along
e1 = eφ, and its 2-arm along e2 = −eθ. This means we need to use the
projections of equations (6) and (7) to extract the polarisation components
of Jones (2010):

h+,J10 =
1

2
hTT
ab (e1e1 − e2e2)ab =

1

2
hTT
ab (eφeφ − eθeθ)ab (102)

h×,J10 =
1

2
hTT
ab (e1e2 + e2e1)ab =

1

2
hTT
ab (−eφeθ − eθeφ)ab (103)

Carrying out all these operations does indeed lead to the polarisation com-
ponents of equations (42)–(44) of Jones (2010), which I won’t bother writing
out again here.

6 Example: r-modes

In most of the literature, the r-mode velocity field is written as

δv = αΩ
r2

R
YB,22e

iωt, (104)

with ω the mode frequency as viewed from the inertial frame

ω = −4

3
Ω, (105)

where Ω is the angular velocity of the star’s rotation. The perturbation is
then proportional to ei(2φ+ωt) and so has a positive pattern speed relative to
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the inertial frame of

φ̇pattern, I = −ω
2

= +
2

3
Ω, (106)

giving a retrograde pattern motion as viewed from the rotting frame:

φ̇pattern,R = φ̇pattern, I − Ω = −1

3
Ω. (107)

The velocity field given above is complex. To make contact with reality,
we need to specify how this makes contact with a purely real velocity field.
We will write

δvR = <[αRΩ
r2

R
YB,22e

iωt], (108)

where the R subscript notation is to remind us that this is a definition of the
velocity of the perturbation that is purely real. I am calling the amplitude
αR, not α, to allow for a slight difference between the α used in the literature
and the αR introduced here.

We then have

δvR =
1

2
αRΩ

r2

R
[YB,22e

iωt + Y∗B,22e
−iωt]. (109)

Using the property Y∗B,22 = YB,2,−2 this becomes

δvR =
1

2
αRΩ

r2

R
[YB,22e

iωt + YB,2,−2e
−iωt], (110)

showing that the (real) velocity field is a linear combination of the m = ±2
magnetic vector harmonics, weighted by factors e±iωt. [An an aside, one can
easily show that this leads to the explicit result

δvR =
1

4

√
15

π
αRΩ

r2

R
sin θ[eθ sin(ωt+ 2φ) + cos θeφ cos(ωt+ 2φ)], (111)

although this isn’t terribly illuminating.]
We can project out the two non-zero current quadrupole scalars using

equation (2) to give

S2,±2 =
16
√

2

15
παRMR3ΩJ̃e±iωt, (112)
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where J̃ is the integral introduced in Owen et al. (1998):

J̃ =
1

MR4

∫
ρr6 dr. (113)

We can then write down the gravitational wave field in TT gauge using
equation (4) to give the purely real result

hTT
ab =

1

r

√
π

5
MR3J̃αRω

3

{
2 cos θ sin(ωt+ 2φ)

[
1 0
0 −1

]

−(1 + cos2 θ) cos(ωt+ 2φ)

[
0 1
1 0

]}
(114)

Setting θ = 0, we can read-off the h0 favoured when discussing CW sources:

h0 =
1

r
2

√
π

5
MR3J̃αRω

3. (115)

We can calculate the gravitational wave luminosity using equation (5):

ĖGW =
2

25
πα2

RM
2R6ω8J̃2. (116)

Note that the two equations above can be combined to give the result

ĖGW =
1

10
ω2r2h2

0, (117)

which is, I believe, a rather general result, true for any sort of quadrupolar
radiation (whether from mass or current quadrupoles), for a gravitational
wave field of frequency ω, with h0 the amplitude of the circular polarisation
along the z-axis.

6.1 Comparison with other formulae in the literature

In Owen (2010), Ben writes the r-mode velocity perturbation in the usual
complex notation of equation (104), i.e. proportional to YB,22 only, with no
YB,2,−22 piece. He then uses equation (2) to compute S22 in terms of α, with
S2,−2 zero. He then inserts his S22 into equation (5) to give the gravitational
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wave luminosity as a quadratic function of α. This can then be combined
with equation (117) to give h0 as a function of α. The main results are then:

h0 =
1

r
2

√
2π

5
MR3J̃αω3, (118)

ĖGW =
4

25
πα2M2R6ω8J̃2. (119)

These should be contrasted with equations (115) and (116) above, which we
reprodce here:

h0 =
1

r
2

√
π

5
MR3J̃αRω

3, (120)

ĖGW =
2

25
πα2

RM
2R6ω8J̃2. (121)

The quantities agree if one sets

αR =
√

2α. (122)

As an aside, note that our expressions for the ‘intermediate’ quantities
S2m are quite different. I have

SIan
2,±2 =

16
√

2

15
παRMR3ΩJ̃e±iωt, (123)

while Ben has

SBen
2,2 = −32

√
2

15
παMR3ΩJ̃eiωt, (124)

SBen
2,−2 = 0. (125)

When one substitutes αR =
√

2α, one sees

SBen
22 = −

√
2SIan

2,2 , (126)

SBen
2,−2 = 0. (127)

The upshot of all this is that if one choose the convention of equations
(118) and (119) above, then the corresponding real velocity perturbation is
given by

δvR =
√

2<[αΩ
r2

R
YB,22e

iωt]. (128)

Note the factor of
√

2 on the right hand side.
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A Explicit form for the spherical harmonics

Y2m

Following the usual convention:

Y2−2 =
1

4

√
15

2π
sin2 θe−2iφ, (129)

Y2−1 =
1

2

√
15

2π
sin θ cos θe−iφ, (130)

Y20 =
1

4

√
5

π
(3 cos2 θ − 1), (131)

Yl−m = (−1)mY ∗lm. (132)

B Explicit form for the symmetric trace-free

tensors Y2m
ab

The symmetric trace-free tensors Y lma1,a2,...al are defined by (K2.12). They have
the property of generating the spherical harmonics, as in (K2.11):

Ylm = Y lma1,a2,...alna1na2 . . . nal , (133)

where na is the radial unit vector. For l = 2 they are second rank tensors.
Evaluating with respect to a Cartesian basis leads to:

Y2−2
ab =

1

4

√
15

2π

 1 −i 0
−i −1 0
0 0 0

 , (134)

Y2−1
ab =

1

4

√
15

2π

 0 0 1
0 0 −i
1 −i 0

 , (135)

Y20
ab =

1

4

√
5

π

 −1 0 0
0 −1 0
0 0 2

 , (136)

Y l−mab = (−1)m(Y lmab )∗. (137)

26



C Explicit form for tensor spherical harmon-

ics TE2,2m
ab

We give here explicit forms for the TE2,2m
ab and TB2,2m

ab tensor spherical har-
monics. The former are needed to write down the GW field from a mass
quadrupole, and the latter for the field from a mass-current quadrupole. We
work in a spherical polar basis (er, eθ, eφ), so that er is the longitudinal
direction, and (eθ, eφ) span the transverse space.

Using (K2.30d), or alternatively (K2.39e):

TE2,2−2
ab =

1

8

√
5

2π
e−2iφ

 0 0 0
0 1 + cos2 θ −2i cos θ
0 −2i cos θ −(1 + cos2 θ)

 , (138)

TE2,2−1
ab =

1

4

√
5

2π
e−iφ

 0 0 0
0 − sin θ cos θ i sin θ
0 i sin θ sin θ cos θ

 , (139)

TE2,20
ab =

1

8

√
15

π

 0 0 0
0 sin2 θ 0
0 0 − sin2 θ

 . (140)

Using (K2.30f), or alternatively (K2.39f):

TB2,2−2
ab =

1

8

√
5

2π
e−2iφ

 0 0 0
0 2i cos θ 1 + cos2 θ
0 1 + cos2 θ −2i cos θ

 , (141)

TB2,2−1
ab =

1

4

√
5

2π
e−iφ

 0 0 0
0 −i sin θ − sin θ cos θ
0 − sin θ cos θ i sin θ

 , (142)

TB2,20
ab =

1

8

√
15

π

 0 0 0
0 0 sin2 θ
0 sin2 θ 0

 . (143)

The m > 0 tensors can be obtained from the above using (K2.36b)

T J2,lm
ab = (−1)m(T J2,l−m

ab )∗, (144)

where J = (E,B).
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D Explicit form for spin-weighted spherical

harmonics −2Y
2m

We give here explicit for for the s = −2 spin-weighted l = 2 spherical har-
monics. They can be computed using equations (4) and (5) of Kidder (2008).
They can also be evaluated using equation (3.1) of Goldberg et al. (1967),
but only if one inserts an extra factor of (−1)m into their formula, to ensure
the usual normalisation convention for spin-weight zero spherical harmonics
is used.

−2Y
2−2 =

1

8

√
5

π
(1− cos θ)2e−2iφ (145)

−2Y
2−1 =

1

4

√
5

π
sin θ(1− cos θ)e−iφ (146)

−2Y
20 =

1

8

√
30

π
sin2 θ (147)

−2Y
21 =

1

4

√
5

π
sin θ(1 + cos θ)eiφ (148)

−2Y
22 =

1

8

√
5

π
(1 + cos θ)2e2iφ (149)
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