

Stefan Ballmer
For the LVC
Miami 2012
Dec 18, 2012
LIGO-G1201293

Outline

- Introduction:
 - What are Gravitational Waves?
 - The brief history of LIGO
 - The Advanced LIGO project

Where are we now?

Where are we going?

The weakness of Gravity

 Gravitational waves produced by orbiting masses:

$$h_{\mu\nu} = \frac{2G}{c^4 d} \ddot{I}_{\mu\nu}$$

 For 2 1.4M_{Sun} Neutron stars, at 1 Mpc (3 million light years):

$$h = \frac{dL}{L} \approx 3 \times 10^{-21} \left(\frac{f}{100 \text{Hz}} \right)^{\frac{2}{3}}$$

 $Flux_{GW} \sim 1 \text{ mWatt / m}^2$

The wave's field

"Ripples in Space-Time"

Amplitude:

dL/L = h

Image credit: Google

Measureable effect:

 Stretches/contracts distance between test masses perpendicular to propagation

+ polarization

x polarization

LIGO

A short history of LIGO

- Electromagnetically coupled broad-band gravitational wave antenna, R.Weiss, MIT RLE QPR 1972
- NSF funding and construction in the 1990's
- Design sensitivity and observation in 2005

Noise Cartoon

LIGO

Initial LIGO Sensitivity

What is Advanced LIGO?

- Two completely new interferometers in the US LIGO vacuum enclosures and infrastructure in Louisiana and Washington
- 3rd interferometer, to be installed in India in a new LIGO-India Observatory
- Compared to initial LIGO, a factor of 10 better sensitivity, down to 10Hz

NS-NS standard candle (sky-averaged distances)

 Initial LIGO (1st gen.)
 20 Mpc

Adv LIGO
 (2nd gen)
 ~200Mpc

Interferometer Sensitivity

(Numbers for aLIGO design)

Outline

- Introduction:
 - What are Gravitational Waves?
 - The brief history of LIGO
 - The Advanced LIGO project

• Where are we now?

Where are we going?

LIGO

1) Installation

Mating of suspension and seismic isolation

Transmission telescope installation

2) Integrated Testing

- Hierarchical testing process is key to rapid success
- Currently testing two significant items:
 - » A 4km long arm ('One Arm Test' or OAT)
 - » An input mode cleaner and prestabilized laser (MC-PSL)

LIGO-G1200982-v1 21

One-Arm Test (OAT)

- A single, complete 4km arm at Hanford Observatory
- Two complete chambers: Optics, suspensions, seismic isolation
- Arm-length stabilization system using second color of light
 - » New for aLIGO; addresses biggest initial challenge locking

One-Arm Test

- Successful by every measure
 - » Locking came very quickly
 - » Very stable locks

Allows whole-interferometer integration with ½ interferometer

Mode Cleaner - Pre-Stabilized Laser

- A 200W Nd:YAG laser, from AEI Hannover, Germany
- A suspended-mirror ring cavity, ~15m length, in transmission
- The two most complex vacuum chambers in aLIGO

Mode Cleaner – Pre-Stabilized Laser

Goals:

- » Achieve robust operation of the Input Mode Cleaner
- » Evaluate the thermal effects in IMC and FI: transmission, isolation ratio, absorption, mode distortion, drift
- » Optimize low frequency performance of seismic isolation

Livingston mode cleaner first lock, 7/28/2012

Outline

- Introduction:
 - What are Gravitational Waves?
 - The brief history of LIGO
 - The Advanced LIGO project

Where are we now?

Where are we going?

LIGO-India

- aLIGO currently has 2 sites, 3 interferometers
- 3 sites with long baselines scientifically more valuable
 - » Better source localization
- Goal: build the 3rd LIGO interferometer on Indian soil
- LIGO Lab provides components for one Advanced LIGO interferometer
- India provides the infrastructure, "shipping & handling," staff for installation & commissioning, operating costs for 10 years beyond construction

LIGO-India network

LIGO-India network

The localization accuracy for binary neutron stars located at 160 Mpc

LIGO-India news

 In August the National Science Board approved a change in scope, enabling plans for the relocation of one detector to India.

 The NSB resolution empowers the NSF to make the decision to proceed with LIGO-India.

Discussions now: How will LIGO India be implemented and managed.

What's next?

- Installation complete:
 - » Livingston May 2013, Hanford Sept 2013
- ^(*) 'Acceptance' (definition: 2-hour lock):
 - » Livingston April 2014, Hanford May 2014
- Full-Interferometer locking may come quite quickly...
- ...but lots of follow-up work only possible with whole interferometer required

Timeline

- US interferometer acceptance:
 - » Summer 2014

- First science run near design sensitivity:
 - » maybe 2016
- CLIGO-India:
 - » Facility construction begins: Aug 2014
 - » First science run (all interferometers): 2020

Conclusion

 Advanced LIGO hardware installation progressing at good pace

 Integrated tests successful (one-arm & mode cleaner)

 LIGO-India has passed major thresholds in the US – it's moving forward

