MIGO
 Example and experience using SIS for aLIGO designing and commissioning

- Field Calculator using FFT + integrated analysis tool
- Field
» FP, CC with stable recycling cavity and BS
" Lock using error signal
" Telescope with arbitrary number of elements - lens, mirror, space
- Analysis tool
" Mode analysis
" Phase map to PSD, PSD to phasemap
" Flexible map manipulation
- Subtract / add zernike terms from / to phasemaps
" Hello-Vinet thermal models

LIGO Optical configuration and source only RC + one arm

Main interface

A simple simulation senario

- Interferometer spec
" ITM.opt.HR_phase $=$ THERMOELASTIC(w on ITM, abs in ITM, abs in coating) + DATAFILE("ITM01.dat",-5)
- Action
" Lock => lock and calculate field
" Summary
- ETM HR

```
(in base):w=0.0619634 R=2245 z =2160.28 z0 = 427.8068 w0 = 0.01203704
(in fit ) : (wX,wY)=( 0.06195, 0.061667) R(x/y) = (2248.252, 2251.826) (x0,y0)=(0.02517 , 0 )
power / HMfrac = 228.6095 / 0.1827
(out fit ) : (wX,wY)=( 0.06195, 0.061667) R(x/y) = (-2251.263, -2247.691) (x0,y0)=(-0.02517,0 ) power /
HMfrac = 228.5973/0.1853
```

" Mode analysis

- Hermite or Laguere mode expansion with arbitrary number of modes
" Modify map and repeat for the new configuration

LMA ETM01 coating accepting test short wavelength spiral pattern

Measured at Caltech - Z1~Z17

P-V 1nm

Using matlab to extract the spiral pattern, and use it as the phasemap in SIS

LMA ETM01 coating accepting test short wavelength spiral pattern

- SIS analysis to understand the effect by this pattern
- Round trip loss ~6ppm \longleftarrow OK
- Any other effects
" Field aberration due to this pattern
- Field in FP with this map - Field in idealistic FP ${ }^{0.6}$
- Very fine grid sizes to make sure FFT is OK
" Mode analysis if any mode could dominate
- No dominant mode for LGpm (2p+m<25) and HGmn ($\mathrm{m}+\mathrm{n}<25$)
" If ITM has similar pattern, can they interfere
- ITM = MAPPING
(DATAFILE("ETM01pattern.dat"), "-x","y") * 0.5

- Loss = loss by ETM + loss by ITM no additional by interference
LIGO-G1300054-v2

LIGO
 LMA ETM01 coating accepting test long wavelength central plateau

- Old coating system, one at a time
" The beam size on ETM is larger than that on ITM and the plateau size on ETM needs to be 20\% wider, when coating to coating variation is taken into account
- New coating using the planetary system, a pair at a time
" Higher order mode, mostly LG20, in the FP cavity is $\sim 100 \mathrm{ppm}$
- Better than old, 120ppm, and two ETMs will be "identical", but is this good enough?
- The plateau size is around the same as the old one
- Astigmatism uncertainty due to the substrate is not a major issue
- Asymmetry in the far outside is better (smaller) in the new coating
" Coupled cavity simulation
- LG20 in PRC is ~2000ppm increase by the ETM coating aberration
- LG20 in SRC shows no increase of LG20 by the mode healing
- Stable signal recycling cavity kills LG2O in SRC

Cross check by other tool is appreciated very much

LIGO ETM01 (new using planetary) vs ETM06 (old)

Tilt, Power, Astigmatism subtracted

2013 January Commissioning Workshop

LMA ETM01 coating accepting test long wavelength central plateau

Why ROC(ITM) < ROC(ETM) Power loss on RM3

Loss function not so beautiful mirror maps

$$
1-\frac{P(a \sin (2 \pi \cdot f \cdot r))}{P(\text { no aberration })}
$$

2q6m So2a

