

The LIGO Vacuum Equipment and Beam Tubes: Retrospective and Prospective

Outline

- About LIGO and LIGO India
- Vacuum Requirements & Constraints
- Vacuum Equipment
- Beam Tubes
- Paths for Improvement

Why must there be gravitational waves?

Newton's puzzle:
"instantaneous action at a distance"

General Relativity

Spacetime itself is a medium

Geometry carries information

The GW Spectrum

Some Expected Astrophysical Sources

- Compact binary inspiral: "chirps"
 - » NS-NS, NS-BH, BH-BH

» GW signals observed in coincidence with EM or neutrino detectors

Spin oxis precesses with frequency f...

- Pulsars in our galaxy: "periodic waves"
 - » Rapidly rotating neutron stars
 - » Modes of NS vibration
- Cosmological: "stochastic background"
 - » Probe back to the Planck time (10⁻⁴³ s)

A New 'Sense'- A New Universe

Gravitational Waves will provide complementary information, as different from what we know as sound is from sight.

Great promise, but a great challenge...

A wave's strength is characterized by its strain

$$h = \Delta L / L$$

We can calculate the expected strain at Earth for, say, an orbiting binary system;

$$|h| \approx 4\pi^2 GMR^2 f_{orbit}^2 / c^4 r \approx 10^{-21} \left(\frac{R}{20 \text{km}}\right)^2 \left(\frac{M}{M_{\odot}}\right) \left(\frac{f_{orbit}}{400 \text{Hz}}\right)^2 \left(\frac{10 \text{Mpc}}{r}\right)$$

If we make our interferometer 4,000 meters long,

$$\Delta L = h \times L \approx 10^{-21} \times 4,000 \, m \approx 10^{-18} \, m$$

Laser Interferometer Gravitational-Wave Detector

LIGO Observatory Sites

LIGO Hanford Observatory [LHO]

26 km north of Richland, WA

2 km + 4 km interferometers in same vacuum envelope

LIGO Livingston Observatory [LLO]

42 km east of Baton Rouge, LA

Single 4 km interferometer

LIGO Scientific Collaboration

LIGO

THE UNIVERSITY O

NATIONAL

New Hampshire

No Confirmed Detections Yet...

- First generation detectors reached about 100 galaxies
- Current predictions in range of

10⁻⁴ CBI yr⁻¹ galaxy⁻¹

Need better sensitivity!

Advanced LIGO

- Initial detectors completed in 2000
- Design sensitivity achieved 2005
- Ran ~ 2.5 years
 - » No confirmed detection
- Facilities, vacuum system designed to be compatible with "ultimate" future interferometers
- Advanced LIGO detector upgrade funded '08, now being installed
 - » Design 10x more sensitive
 - » 1,000x greater observable volume (or event rate)

Advanced LIGO: 10x More Range

- Advanced detectors will reach about 100,000 galaxies
- Roughly 1 CBI event per month expected

Milky Way Galaxy

Initial LIGO Range

Advanced LIGO Range

Source Localization and MultiMessenger Astrophysics

- Array working together can determine source location
 - » Analogous to "aperture synthesis" in radio astronomy

Accuracy tied to diffraction limit

Future Global Detector Network

US, Europe and Japan detectors are close to co-planar not optimal

India site out of plane breaks degeneracy, improving sky coverage

LIGO A Network with LIGO India, LIGO US and Virgo

Timing Errors without LIGO-India

Timing Errors with LIGO-India

LIGO India Core Team

IPR, Gandhinagar — Facilities, Beam Tubes, Vacuum Equipment, Controls

RRCAT, Indore – Interferometer Optimization, Installation, Commissioning

IUCAA, Pune – Site survey,
Astrophysical Data Analysis &
Computing

LIGO-US WILL CONTRIBUTE COMPLETE INTERFEROMETER PLUS TECHNOLOGY TRANSFER AND TECHNICAL SUPPORT

LIGO Really Has LIGO Two Vacuum Systems

"Vacuum Equipment:" Chambers, pumps, instruments

- Houses detector apparatus
- Isolation (valves), access (doors)
- Electrical, mechanical, optical penetrations
- Pumping & instrumentation
- Somewhat "conventional"
- $F:A \sim 10^{-2} \, \text{ls}^{-1} \text{cm}^{-2}$

Beam tubes

- A long hole in the air;

 Never to be vented
- Highly "unconventional"
 - 20 million liters (per site)
 - 600 million cm² (per site)
 - 200 l/s char. conductance
 - $F:A \sim 10^{-5} \text{ ls}^{-1}\text{cm}^{-2}$

LIGO Vacuum Requirements

(partial list)

Light scattering phase noise from residual gas

Function of molecular polarizability, transit speed and partial pressure Primary goals for beam tubes:

- → $P(H_2)$ < 10⁻⁹ Torr
- → $P(H_2O)$ < 10^{-10} Torr
- Contamination of optics

Mirror absorption < 0.1 ppm

Hydrocarbons: < 1 monolayer/10 years

→ Aggressive cleaning and vacuum bake of every component

Particles: < one 10 μ m particle on any mirror

- →ISO Class 5 or better cleanroom protocol for worker access, internal components, surface exposure
- Vibration-free environment
 - →No mechanical, turbo or closed-cycle cryo pumps in steady state operation

NB: Unlike accelerator, plasma, or aerospace applications, we have no radiation, thermal, or ion loading; in LIGO outgassing is passive at ambient temperature

Vacuum System Schematic

Corner Station Layout

End Station Arrangement

1.2m Ø gate valves

Beamtube Gate Valves

- 40" & 44" ID gate valves to isolate beamtubes, sections, LN2 traps
- Double O-ring gates
 & bonnet seals with
 pumped annulus*
- Two actuator
 varieties: electric
 (ballscrew) and
 pneumatic (cylinder)
- Custom design by GNB Corp.

^{*} Principal volume is vulnerable when gate is open!

- In US, we installed beam tubes first to allow time for bakeout
- VE contractor supplied valves
 & pumps to tube contractor

BSC chamber

(Basic Symmetric Chamber)

- 2.8m Ø x 5.5m h for large cavity optics
- Upper third is a removable dome
- Thin (10-15mm) 304L SS shell with welded stiffeners, F&D heads
- Combination of GTAW and plasma welding
- Major weldments stress-relieved*
 *NOTE SURFACE FINISH!

Ports < 35cm Ø: ConFlat™

• Ports > 35cm Ø: Dual O-ring

- Treated Viton elastomer
- DRY (no grease)
- Isolated pumped annulus between inner and outer seal
- Permeation and damage tolerant

Particulate control: movable ISO Class 5 cleanrooms

 Part of VE contract due to special features required for chamber access

BSC Equipment Installation

HAM chamber

(Horizontal Access Module)

- House complex input/output optics
- 2.1m Ø x 2m w
- More than 70% of area is removable access doors

End Station Pressure Evolution after Backfill

L

Depleting H from raw SS before fabrication: An economical alternative to high T vacuum bakeout

- SS sheet from mill is baked in air 36 hours at 455 °C
- (Hotter treatment deemed inadvisable due to carbide formation)
- Total dissolved hydrogen is reduced ~ 3x
- Remaining H is tightly bound, high activation T
- Care is required in welding to avoid re-introduction of H

Cleaned with pressurized hot water and detergent

QA by FTIR sampling

Leak Test "Coffin"

Leak Test "Coffin"

Beam Tube Field Assembly

Tube Assembly

- Field butt weld made in movable shelter
- Internal "dam" shields inside of weld with inert gas
- Dam is later filled with He for leak test
- Finally, garbed worker crawls in to remove dam & place optical baffles

LIGO

Welding Shelter

I²R Bakeout to Desorb Water

- Glass wool insulation
- I_{DC} = 2,000 A
- ~ 3 weeks @ 160°C
- Final J_{H20} < 2e-17 Tl/s/cm²
- Tubes never to be vented

How Often do you get a Second Chance??

Some Updates Under Study for LIGO India

- Move to "conventional" large gate valve design?
 - » Reduce cost with single 0-ring gate seal, metallic bonnet seal?
 - » Increase reliability with "standard product"?
 - » Reduce complexity of two actuator styles
- Remove oxide from stress-relieved vessel walls?
 - » Oxide patina was good for suppressing IR scatter, good for vacuum performance, but began to flake off with age— had to be removed!
 - » Considering conventional treatments such as passivation or electropolish
- Is spiral-welding still the most economical tube construction?
- Are there alternative ways to achieve ultralow dissolved hydrogen?
- Should we upgrade monitoring & instrumentation along tubes?
- Should we consider 316L in place of 304L for higher corrosion resistance?
- Should we consider flanging or other means to reversibly isolate tube sections after installation?

LIGO-G1300176

Cautionary Tale: The LLO Y Beamtube Leak

- Discovered only late last year, but...
- Reconstruct t=0 in 2008, F = 2.5e-4 torr-liter/sec (!)
 - » Unnoticed due to sparse instrumentation, masked by detector outgassing
 - » Approximately 1e5 x specification; MUST BE REPAIRED
 - Legacy of water vapor deposited since '08 may persist, even after repairs
- Localized near Y midpoint by gradient methods
- Followed by He MSLD test: VERY DIFFICULT ON THIS SIZE SYSTEM!
- At least 4 distinct leaks discovered to date, in at least 3 zones
 - » Confirms this is no fluke or isolated defect, but a progressive problem
 - » Most likely a spectrum of sources will be found
 - » Largest breach is now sealed but about 1e-5 torr-liter/sec remains unaccounted for
- Those discovered to date coincide with
 - » Welds (both a spiral weld and a stiffener fillet), plus
 - » Animal residues (mice or mud wasps; emit "corrosion accelerants"), plus
 - » Local history of persistent water incursion
- Team (incl. yours truly) has been assigned to find, repair, prevent recurrence
 - » Outside metallurgical & welding specialists under contract
 - » Additional diagnostics on known leaks, representative fab samples
 - » Too soon to reliably bound full \$ and schedule impact!

LIGO-G1300176

Final Remarks

- LIGO facilities are among the largest high-vacuum systems ever built, and have stringent requirements
- Novel and cost-effective methods were developed to meet these challenges successfully in the US
- In trouble-free operation over a decade, LIGO is now installing second-generation instruments in Louisiana and Washington
- A third identical interferometer was built and is now designated for India when the site is available
- With benefit of hindsight, new technology, and Indian innovation, we believe the LIGO India vacuum system will be even better!

--Reference Slides--

LIGO-G1300176 54

*LIGO*Livingston Observatory

LIGO-G130017

*LIGO*Hanford Observatory

LIGO-G1300176

Limits to Sensitivity

- First detectors reached design sensitivity in 2005
- Now installing Advanced detectors
- Vacuum
 requirement
 <10⁻⁹ torr H₂
 <10⁻¹⁰ torr H₂O

Residual Gas Index Fluctuation Noise

$$S_L(f) = \frac{4\rho(2\pi\alpha)^2}{v_0} \int_0^{L_0} \frac{\exp\left[-2\pi f \, w(z)/v_0\right]}{w(z)} \, dz$$

$$\Delta \tilde{L}(f) \equiv \sqrt{S_{\Delta L}(f)} = \sqrt{2S_L(f)}$$

 $\varrho = gas number density (\sim pressure)$

 $\alpha = optical polarizability (\sim index)$

 $w = beam \ radius$

 $v_0 = most \ probable \ thermal \ speed$

 $L_0 = arm \ length$

 $\Delta L = arm \ optical \ path \ difference$

Statistical model verified by interferometer experiment

Residual Gas Pressure Limits in Beam Tubes

Table 1: Residual gas phase noise factor and average pressure

To avoid optical phase noise in laser path

$$h(f) = 4.8 \times 10^{-21} R\left(\frac{x}{H_2}\right) \sqrt{\langle P(torr) \rangle_L}$$

	D/ (TT.)		~
Gas Species	R(x/H ₂)	Requirement (torr)	Goal (torr)
H ₂	1.0	1×10 ⁻⁶	1×10 ⁻⁹
H ₂ O	3.3	1×10 ⁻⁷	1×10 ⁻¹⁰
N ₂	4.2	6×10 ⁻⁸	6×10 ⁻¹¹
СО	4.6	5×10 ⁻⁸	5×10 ⁻¹¹
CO ₂	7.1	2×10 ⁻⁸	2×10 ⁻¹¹
CH ₄	5.4	3×10 ⁻⁸	3×10 ⁻¹¹
AMU 100 hydrocarbon	38.4	7.3×10 ⁻¹⁰	7×10 ⁻¹³
AMU 200 hydrocarbon	88.8	1.4x10 ⁻¹⁰	1.4x10 ⁻¹³
AMU 300 hydrocarbon	146	5×10 ⁻¹¹	5×10 ⁻¹⁴
AMU 400 hydrocarbon	208	2.5x10 ⁻¹¹	2.5x10 ⁻¹⁴
AMU 500 hydrocarbon	277	1.4×10 ⁻¹¹	1.4×10 ⁻¹⁴
AMU 600 hydrocarbon	345	9.0x10 ⁻¹²	9.0x10 ⁻¹⁵

Beam Tube Properties

module length	2 km
25 cm diameter pump ports/module	9
radius of beam tube	62 cm
volume of module	4.831 x 10 ⁶ liters
area of module	1.55 x 10 ⁸ cm ²
initial pumping speed/surface area	1.94 x 10 ⁻⁵ liters/sec/cm ²
length/short section	1.90 x 10 ³ cm
wall thickness	3.23 x 10 ⁻¹ cm
stiffener ring spacing	76 cm
stiffening ring width	4.76 x 10 ⁻¹ cm
stiffening ring height	4.45 cm
expansion joint wall thickness	2.67 x 10 ⁻¹ cm
expansion joint convolutions	9
expansion joint longitudinal spring rate	1.5 x 10 ⁹ dynes/cm

LIGO

BEAM TUBE BAKEOUT ELECTRICAL HEATING POWER

Legend:

XFMR

Power Transformer

Low voltage, high current PS DC power supply

Pressure evolution for major species during 160°C beam tube module bakeout

HX2 RGA PRESSURE, AMU 2 (blk), AMU 18 (blu), AMU 28 (red), AMU 44 (green)

Postbake measurements of module X1 at Hanford

March 11-12, 1999

Table 1: Results from gas model solution of 16.9 hour postbake accumulation ending March 12, 1999 at 10:00AM.

molecule	Outgassing rate @ 10C	pressure@ 10C	outgassing rate @ 23C	pressure@ 23C	
	torr liters/sec/cm ²	torr	torr liters/sec/cm ²	torr	
H ₂	1.6 x10 ⁻¹⁴	1.0 x 10 ⁻⁹	5.2 x10 ⁻¹⁴	3.4 x 10 ⁻⁹	
CH ₄	< 2 x 10 ⁻²⁰	< 3.4 x 10 ⁻¹³	< 8.8 x 10 ⁻²⁰	< 1.5 x 10 ⁻¹²	
H ₂ O	< 3 x 10 ⁻¹⁹	< 5.2 x 10 ⁻¹³	< 1.3 x 10 ⁻¹⁸	< 2.3 x 10 ⁻¹²	
N ₂	< 9 x 10 ⁻¹⁹ **	< 1.5x 10 ⁻¹³			
СО	< 1.3 x 10 ⁻¹⁸	< 1.7 x 10 ⁻¹³	< 5.7 x 10 ⁻¹⁸	<7 x 10 ⁻¹³	
O ₂	< 1.2 x 10 ⁻²⁰	< 2.3 x 10 ⁻¹⁴			
A	< 2.5x 10 ⁻²⁰	< 3.6 x 10 ⁻¹⁴			
CO ₂	< 6.5 x 10 ⁻²⁰	< 1.2x 10 ⁻¹³	< 2.9 x 10 ⁻¹⁹	<5.2 x 10 ⁻¹³	
NO+C ₂ H ₆	< 1.5 x 10 ⁻¹⁹	< 1.6 x 10 ⁻¹³	< 6.6x 10 ⁻¹⁹	< 7.2 x 10 ⁻¹³	
$H_nC_pO_q$	∑amu41,43,55,57 <1.2 x 10 ⁻¹⁹	< 2.2 x 10 ⁻¹³	∑amu41,43,55,57 <5.3 x 10 ⁻¹⁹	< 9.7 x 10 ⁻¹³	

Volume = 2.4×10^6 liters and Area = 7.8×10^7 cm²

Correction from 10C to 23C uses a binding temperature of 8000K for hydrogen and 10000K for all other molecules

^{**} The equivalent air leak into the module Q < 3.5x 10⁻¹¹ torr liters/sec from amu 28.

ـ الالك

Beam Tube Bakeout Results

	Outgassing Rate corrected to 23 °C torr liters/sec/cm ² (All except H ₂ are upper limits)					
molecule	Goal*	HY2	HY1	HX1	HX2	
H ₂	4.7	4.8	6.3	5.2	4.6	× 10 ⁻¹⁴
CH ₄	48000	< 900	< 220	< 8.8	< 95	× 10 ⁻²⁰
H ₂ O	1500	< 4	< 20	< 1.8	< 0.8	× 10 ⁻¹⁸
со	650	< 14	< 9	< 5.7	< 2	× 10 ⁻¹⁸
CO2	2200	< 40	< 18	< 2.9	< 8.5	× 10 ⁻¹⁹
NO+C ₂ H ₆	7000	< 2	< 14	< 6.6	< 1.0	× 10 ⁻¹⁹
H _n C _p O _q	50-2 [†]	< 15	< 8.5	< 5.3	< 0.4	× 10 ⁻¹⁹

air leak	1000	< 20	< 10	< 3.5	< 16	× 10 ⁻¹¹ torr liter/sec
----------	------	------	------	-------	------	------------------------------------

^{*}Goal: maximum outgassing to achieve pressure equivalent to 10^{-9} torr H_2 using only pumps at stations † Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU

Vertex Pressure Evolution after Backfill

Large Flange Design

- Dual "dry" o-ring
- Pumped annulus between
- (independent of main volume, except in open gate valve)
- Seal faces single-point machined
- Controlled circumferential
 32 µinch "tooth" finish
- Custom Viton (Flourel) cord formulation (55 gallon min. order)
- Cleaned & baked after molding to remove volatile compounds and mold release wax

Pumping

- All "dry" pumping
- Initial evacuation by blowers & maglev turbomolecular pumps
- Maintained by noble diode ion pumps and coaxial LN₂

67

80K LN₂ Cryopump

- Special "low vibration" design
 - » LN2 reservoir suspended by compliant springs with Flourel dampers
 - » Dual-phase liquid delivery (horizontal vacuum-jacketed lines) maintain continuous liquid and vapor flow without slugging
 - » Sloped "chute" introduces new liquid to reservoir
 - » Reservoir shape & free surface area designed to preclude boiling
 - » Continuous level control (PID with differential pressure level sensor)
- Low-emissivity aluminum cold surface
- Low-emissivity tube liners reduce thermal flux
- Outdoor storage dewars refilled periodically by truck delivery

Cryopump Design

