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LIGO Why must there be gravitational waves?

Newton’s puzzle:
“Instantaneous action at a
distance”

General Relativity
Spacetime itself is a medium
Geometry carries information







LIGO The GW Spectrum
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LIGO Some Expected Astrophysical Sources

Compact binary inspiral: “chirps”
» NS-NS, NS-BH, BH-BH

* Supernovas or GRBs: “bursts”

» GW signals observed in coincidence
with EM or neutrino detectors

* Pulsars in our galaxy: “periodic waves”
» Rapidly rotating neutron stars 2
» Modes of NS vibration

|
* Cosmological: “stochastic background”
» Probe back to the Planck time (1043 s)

LIGO-G1300176




LIGO

A New ‘Sense’- A New Universe

Gravitational Waves will provide
, as
different from what we know as

is from )

LIGO-G1300176 7



LIGO Great promise, but a great challenge...

A wave’s strength is characterized by its strain
h =AL/L

We can calculate the expected strain at Earth for, say,
an orbiting binary system;

/

R \'(M N/ 10M
= 47" GMR 12, [c*r =107 ) ( Fown \ (10 pe)
\20km/ \ M, J\400Hz) \

If we make our interferometer 4,000 meters long,

—
AL=hxL=10""x4,000m~=10"m
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Laser Interferometer

LIGO Gravitational-Wave Detector

4 kilometer long “arm” cavities
1 Megawatt circulating laser power
Free-floating 40 kg quartz test mirrors

Nd:YAG LASV
Q Beamsplitter
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- /,\,/
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Photodetector .



LIGO Observatory Sites

LIGO Hanford Observatory [LHO] LIGO Livingston Observatory [LLO]
26 km north of Richland, WA 42 km east of Baton Rouge, LA

2 km + 4 km interferometers in same vacuum envelope Single 4 km interferometer




LIGO Scientific Collaboration
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LIGO No Confirmed Detections Yet...

* First generation detectors reached
about 100 galaxies

* Current predictions in range of

10+ CBI yr' galaxy

Virgo Supercluster

* Need better sensitivity!

Milky Way Galaxy

LIGO-G1300176



LIGO

Initial detectors completed in
2000

Design sensitivity achieved
2005

Ran ~ 2.5 years

» No confirmed detection
Facilities, vacuum system
designed to be compatible
with “ultimate” future
interferometers

Advanced LIGO detector
upgrade funded ‘08, now

being installed
» Design 10x more sensitive

» 1,000x greater observable
volume (or event rate)

LIGO-G1300176

Advanced LIGO
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LIGO

Advanced LIGO:
10x More Range

about 100,000 galaxies

expected

Milky Way Galaxy

LIGO-G1300176

Virgo Supercluster
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Source Localization and MultiMessenger

GO Astrophysics

* GW detectors are nearly omni-
directional

* Array working together can determine

source location

» Analogous to “aperture synthesis” in radio
astronomy

* Accuracy tied to diffraction limit

| YGx9168017601272-v 1 ICGC, Goa 15



Future Global Detector Network

LIGO

GEO

tttttttttt

Virgo

KAGRA

LIGO-G1300176

US, Europe and

==== Japan detectors are
close to co-planar—
not optimal

India site out of
i plane breaks

representation

=W degeneracy,

LIGO-India

improving sky
coverage

16



LIGO A Network with LIGO India, LIGO US and Virgo
o

HLVI contains four 3-way
networks

Baselines with India
are1.5x longer

~ 4x better directionality
(for given SNR)

B. S. Sathyaprakash et al,
‘Scientific benefits of moving
one of LIGO Hanford detectors
to India’, LIGO-T1200219-v1
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Timing Errors with LIGO-India

75°
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LIGO Really Has
LIGO T7wo Vacuum
Systems

“Vacuum Equipment:”
Chambers, pumps, instruments
* Houses detector apparatus
* Isolation (valves), access
(doors)
* Electrical, mechanical, optical
penetrations
* Pumping & instrumentation
« Somewhat “conventional”
* F:A~102Is'cm
Beam tubes
* Along hole in the air;
Never to be vented
* Highly “unconventional”
20 million liters (per site)
« 600 million cm? (per site)
» 200 I/s char. conductance
* F2A~10°Is'cm

LIGO-G1300176




LIGO Vacuum Requirements
LIGO (partial /ist)q

* Light scattering phase noise from residual gas
Function of molecular polarizability, transit speed and partial pressure
Primary goals for beam tubes:
2>P(H,) <10° Torr
2>P(H,0) <109 Torr
* Contamination of optics
Mirror absorption < 0.1 ppm
Hydrocarbons: < 1 monolayer/10 years
=>» Aggressive cleaning and vacuum bake of every component
Particles: < one 10 ym particle on any mirror
=SS0 Class 5 or better cleanroom protocol for worker access,
internal components, surface exposure
* Vibration-free environment

=>»No mechanical, turbo or closed-cycle cryo pumps in steady state
operation

NB: Unlike accelerator, plasma, or aerospace applications, we have no radiation,
thermal, or ion loading ; in LIGO outgassing is passive at ambient temperature

LIGO-G1300176 23



LIGO

Vacuum System Schematic

10m

4,000 m
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LIGO Corner Station Layout
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LIGO

End Station Arrangement

LN, storage
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LIGO Beamtube Gate Valves

* 40" & 44” |D gate
valves to isolate
beamtubes,
sections, LN2 traps

* Double O-ring gates
& bonnet seals with
pumped annulus®

* Two actuator
varieties: electric
(ballscrew) and
pneumatic (cylinder)

* Custom design by
GNB Corp.

* Principal volume is vulnerable when
gate is open!

LIGO-G1300176 27



LIGO

In US, we
Installed beam
tubes first to
allow time for
bakeout

VE contractor
supplied valves
& pumps to tube
contractor

LIGO-G1300176




LIGO BSC chamber

(Basic Symmetric Chamber)

« 2.8m @ x 5.5m h for large cavity optics

» Upper third is a removable dome

* Thin (10-15mm) 304L SS shell with welded
stiffeners, F&D heads

« Combination of GTAW and plasma welding
* Major weldments stress-relieved”

*NOTE SURFACE FINISH!

* Ports < 35cm @: ConFlat™
* Ports > 35cm @: Dual O-ring
» Treated Viton elastomer
* DRY (no grease)
* Isolated pumped annulus
between inner and outer seal
* Permeation and damage tolerant

LIGO-G1300176






Particulate control:
LIGO movable ISO Class 5 cleanrooms

* Part of VE contract due to
special features required for
chamber access

LIGO-G1300176 31
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LIGO

* House complex
input/output
optics

e 21TM @ X 2mw

* More than 70%
of area is
removable
access doors

LIGO-G1300176

HAM chamber

(Horizontal Access Module)
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LIGO End Station Pressure Evolution after Backfill

LLO EX PT810B

1.E-05

1.E-06

1.E-07

P (torr)

1.E-08

1.E-09

1.E-10
10 100 1000 10000 100000

t (hfrom 7/31/2001 19:00 UT)



Beam Tubes

304L SS, 3.2 mm thick with external
stiffeners

raw coiled stock air baked 36h @ 455C
to deplete hydrogen
»  Jyp < 1e-13 Tl/s/cm?
»  permits ultimate P without distributed pumps
»  process developed by LIGO

prepared coil spiral-welded into 1.2m
tube on modified culvert mill

16m sections cleaned, leak checked, and
capped

FTIR analysis to confirm HC-free

sections field butt-welded together in
travelling clean room

Over 50 linear km of weld—






LIGO Depleting H from raw SS before fabrication:
An economical alternative to high T vacuum bakeout

1.00e-7
m .
TQ 2.5ppm weight

e ] TS 5\ ot
SS sheet from mill is baked / :
in air 36 hours at 455 °C ~ /
(Hotter treatment deemed S 6.00e-8 -
inadvisable due to carbide <
formation) =
Total dissolved hydrogenis = 4.00e-8-
reduced ~ 3x N After
Remaining H is tightly = Airbake
bound, high activation T £.000-8
Care is required in welding
to avoid re-introduction of H 0.000+0 - ' oss.mL

o 500 1000 1500

C. Bradaschia INFN, Pisa o
A.Marraud  CNRS, Orsay Sample Temperature (°C)

data courtesy of Virgo

LIGO-G1300176



LIGO

Cleaned with
pressurized hot water
and detergent

QA by FTIR sampling

LIGO-G1300176




Leak Test “Coffin”




Leak Test “Coffin”







Tube
_ g Assembly

* Field butt weld
made in movable
shelter

* Internal “dam”
shields inside of
weld with inert gas

« Dam is later filled
with He for leak
test

 Finally, garbed
worker crawls in to
remove dam &
place optical

baffles




Shelter

Welding

LIGO




LIGO PR Bakeout to Desorb Water

» Glass wool insulation

* I =2,000 A

« ~ 3 weeks @ 160°C

* Final Jy,, < 2e-17 Tl/s/cm?
* Tubes never to be vented

2km -

g

¢——— 467m —T— 476m —T— 515m 4+——— 507m 41
34.6 m(2 353 mi2 38.2 m2 37.5 mQ2

N '8 [an! ! ]
175&34‘: +| +60 V de 175&:“ -1.6 Vdc 4+ +65 Vde
S =
O T 19V de Q = 10.6 ma2 . 20V de

10.9 m2 1.4 mQ
1.E-05
1.E-06 -
5 1e07 — HY2
o —HY1
5 —HX1
08 4 —HX2
2 1E08
1.E-09 4
1.E-10

0 200 400 600 800 1000 1200




LIGO 'Tow Often do you get a Second Chance??

Some Updates Under Study for LIGO India

Move to “conventional”’ large gate valve design ?
» Reduce cost with single 0-ring gate seal, metallic bonnet seal?
» Increase reliability with “standard product”?
» Reduce complexity of two actuator styles

Remove oxide from stress-relieved vessel walls?

» Oxide patina was good for suppressing IR scatter, good for vacuum performance, but
began to flake off with age— had to be removed!

» Considering conventional treatments such as passivation or electropolish
Is spiral-welding still the most economical tube construction?
Are there alternative ways to achieve ultralow dissolved hydrogen?
Should we upgrade monitoring & instrumentation along tubes?

Should we consider 316L in place of 304L for higher corrosion
resistance?

Should we consider flanging or other means to reversibly isolate tube
sections after installation?

LIGO-G1300176 48



Cautionary Tale:
LIGO The LLO Y Beamtube Leak

* Discovered only late last year, but...

* Reconstruct =0 in 2008, F = 2.5e-4 torr-liter/sec (!)
» Unnoticed due to sparse instrumentation, masked by detector outgassing
»  Approximately 1e5 x specification; MUST BE REPAIRED
— Legacy of water vapor deposited since ‘08 may persist, even after repairs
* Localized near Y midpoint by gradient methods
* Followed by He MSLD test: VERY DIFFICULT ON THIS SIZE SYSTEM !

* Atleast 4 distinct leaks discovered to date, in at least 3 zones
»  Confirms this is no fluke or isolated defect, but a progressive problem
»  Most likely a spectrum of sources will be found
»  Largest breach is now sealed but about 1e-5 torr-liter/sec remains unaccounted for

* Those discovered to date coincide with
»  Welds (both a spiral weld and a stiffener fillet), plus
»  Animal residues (mice or mud wasps; emit “corrosion accelerants”), plus
»  Local history of persistent water incursion

* Team (incl. yours truly) has been assigned to find, repair, prevent recurrence
»  Outside metallurgical & welding specialists under contract
»  Additional diagnostics on known leaks, representative fab samples
»  Too soon to reliably bound full $ and schedule impact!

LIGO-G1300176
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P(t,z) for 60 sec injection at 3.0e-04 torr-liter/sec rate

pressure transient vs.
distance for He
injection
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LIGO Final Remarks

* LIGO facilities are among the largest high-vacuum
systems ever built, and have stringent requirements

* Novel and cost-effective methods were developed to meet
these challenges successfully in the US

* Introuble-free operation over a decade, LIGO is now
installing second-generation instruments in Louisiana and
Washington

* A third identical interferometer was built and is now
designated for India when the site is available

* With benefit of hindsight, new technology, and Indian
innovation, we believe the LIGO India vacuum system will
be even better!

LIGO-G1300176 52






LIGO

--Reference Slides--



LIGO

LIGO

Livingston Observatory

LIGO-G130017
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LIGO
LIGO Hanford Observatory
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LIGO

Limits to Sensitivity

First detectors
reached design
sensitivity in
2005

Now installing
Advanced
detectors

Vacuum
requirement
<109 torr H,
<10"% torr H,0O

LIGO-G1300176
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LIGO Residual Gas Index Fluctuation Noise

AL(f) = /Sar(f) = V250(F)

Q = gas number density (~ pressure)
a = optical polarizability (~ index)
w = beam radius

v, = most probable thermal speed

L, = arm length

AL = arm optical path difference

Statistical model
verified by
interferometer
experiment

LIGO-G1300176

Hz)

(m/

AL(f)

(interferometer

LIGO Nov 11 14

107'®

background)

:02:20 1992 MEZ/SEW

P (Torr)

S. Whitcomb and MZ, Proc. 7th Marcel Grossmann Meeting on GR,

R. Jantzen and G. Keiser, eds. World Scientific, Singapore (1996).
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LIGO Residual Gas Pressure Limits in Beam Tubes

To avoid optical phase
noise in laser path

h(f) = 4.8x10 ZIR(I'%-)J(P(mrr))L

LIGO-G1300176

Table 1: Residual gas phase noise factor and average pressure

Gas Species R(x/H;) Requirement (torr) | Goal (torr)
H, 1.0 1x10°6 110
B0 3.3 1x10° 1x10°1°
N2 4.2 6x10% 6x10°!!
co 4.6 5x10°8 5x10°!!
CO, 7.1 2x10°8 2x107!!
CH, 54 3x10° 3x10°1!
AMU 100 hydrocarbon | 38.4 73%10°10 751013
AMU 200 hydrocarbon | 88.8 1 4x10°1° 1 4x10°13
AMU 300 hydrocarbon | 146 5x10°!1 510714
AMU 400 hydrocarbon | 208 2.5x10°!! 2.5x10°14
AMU 500 hydrocarbon | 277 1 4x10-11 1 4x10-14
AMU 600 hydrocarbon | 345 9.0x107'2 9.0x10°!




LIGO

LIGO-G1300176

Beam Tube Properties

module length

25 cm diameter pump ports/module

radius of beam tube

volume of module

area of module

initial pumping speed/surface area
length/short section

wall thickness

stiffener ring spacing

stiffening ring width

stiffening ring height

expansion joint wall thickness

expansion joint convolutions

expansion joint longitudinal spring rate

2km

9
62 cm

4831 x 10° liters
1.55 x 10® cm?

1.94 x 107 liters/sec/cm?

1.90 x 103 cm

323x 10 cm

76 cm

476 x 107" cm

445 cm

267x 107" cm

9

1.5 x 10? dynes/cm 60




LIGO
-~ BEAM TUBE BAKEOUT ELECTRICAL HEATING POWER

«— 467m ——%4——  A476m —’h 515m —T— 507m —
34.6 mQ 353 mQ 38.2mQ 37.5mQ
| 1750 A dc +60Vdc 1750 Adc 1.6V dc +65 V dc ]
J be * e | _l* |
() PS1 ) ‘ PS2
A\:\ . & | L\ |
i -19vde J = 10.6 mQ J\ 20vde
: 10,1 mQ 4
HESiS ~ DC return cables ~ et
A A
460 VAC, 30 | 460 VAC, 30
b | XFWR |
13.2 kV from DEMCO
Legend: xsur | Power Transformer | Low voltage, high current

Ps DC power supply



Pressure evolution for major species
LIGO during 160°C beam tube module bakeout

HX2 RGA PRESSURE, AMU 2 (blk), AMU 18 (blu), AMU 28 (red), AMU 44 (green)

1.E-05

Pressure, torr
=
2
‘-h- o-u!

1E-12
3199 AT 41459 42199 428099




Postbake measurements of module X1 at Hanford

LIGO

March 11-12, 1999
Table 1: Results from gas model solution of 16.9 hour postbake accumulation ending March

12,1999 at 10:00AM .
molecule | Outgassing rate @ 10C | pressure@ 10C | outgassing rate @ 23C | pressure@ 23C
toer liters/sec/cm? torr toer liters/sec/em? toer

H; 16 x107 10x 107 52x10™ 34x10”
CH, <2x10¥ <34x10"7 | <88x107 <15x107?
HO <3x10" <52x10" | <13x10® <23x10%
Nz <9x 1077+ <15x 10"

co <13x1078 <17x10 | <57x107% <7x 1073
O, <12x10% <23x 10

A <25x10% <36x10™

€O, <65x 107 <12x 10 <29x107 <52x 107"
NO+CHs | <15x 10" <16x10" | <66x10" <72x10"
H,C;0, 2amu41,435557 <22x10? 2amu4l 435557 | <97x107"

<12x10" <53x10"

Volume = 2.4 x 10° liters and Arca =78 x 10" cm?
**  The equivalent air leak into the module Q < 3.5x 10" torr liters/sec from amu 28,

Correction from 10C to 23C uses a binding temperature of 8000K for hydrogen and 10000K for
all other molecules

LIGO-G1300176

The data shows the outgassing rates of the tube are acceptable. The higher temperature bake at 168C for a shorter
time has accomplished a better result than the longer bakes at 150C.



Beam Tube Bakeout Results

Outgassing Rate corrected to 23 °C

torr liters/sec/cm?

(All except H, are upper limits)

molecule Goal* HY2 HY1 HX1 HX2
H, 4.7 4.8 6.3 5.2 4.6 x 10714
CH, 48000 <900 <220 <8.8 <95 x 1020
H,0 1500 <4 <20 <18 <0.8 10718
co 650 <14 <9 <5.7 <2 x 10718
CO, 2200 <40 <18 <29 <85 x 10719
NO+C,Hg 7000 <2 <14 <6.6 <1.0 10719
HhCpOq 50-2t <15 <8.5 <5.3 <04 x 10719
air leak 1000 <20 <10 <35 <16 x 107 orr iterssec

*Goal: maximum outgassing to achieve pressure equivalent to 10° torr H, using only pumps at stations

tGoal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU

5/24/99 wea



LIGO Vertex Pressure Evolution after Backfill

LLO Vertex Pumpdowns
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LIGO

Large Flange Design

* Dual “dry” o-ring

 Pumped annulus between
* (independent of main
volume, except in open gate
valve)

 Seal faces single-point
machined

 Controlled circumferential
32 pinch “tooth” finish

» Custom Viton (Flourel) cord
formulation (55 gallon min.
order)

* Cleaned & baked after
molding to remove volatile
compounds and mold
release wax

LIGO-G1300176
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LIGO Pumping

* All “dry” pumping

* Initial evacuation by blowers & maglev
turbomolecular pumps

* Maintained by noble diode ion pumps
and coaxial LN,
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LIGO 80K LN, Cryopump

Special “low vibration” design
» LN2 reservoir suspended by compliant springs with Flourel dampers

» Dual-phase liquid delivery (horizontal vacuum-jacketed lines) maintain continuous liquid and vapor
flow without slugging

» Sloped “chute” introduces new liquid to reservoir
» Reservoir shape & free surface area designed to preclude boiling
» Continuous level control (PID with differential pressure level sensor)

Low-emissivity aluminum cold surface
Low-emissivity tube liners reduce thermal flux
Outdoor storage dewars refilled periodically by truck delivery

LIGO-G1300176 68



LIGO

Cryopump Design
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