## MECHANICAL LOSS IN SILICA SUBSTRATES

Jonathan Newport American University Gregg Harry, Raymond Robie, David Belyea, Matt Abernathy LIGO-G1300309

> LVC Meeting Bethesda, MD March 18<sup>th</sup> 2013



## Introduction



- Thermal noise from internal degrees of freedom of interferometer test masses is a limiting noise source in the sensitive mid-frequency bands.
- Must quantify mechanical loss in both Silica Substrate and Coating Layers.





### History: Old Formalism for Loss

**"Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings"** [Harry, et al., Classical & Quantum Gravity, 19 (2002) 897-917]



- Derives thermal noise power spectrum in terms of  $\phi_{substrate}$  and coating losses  $\phi_{\parallel}$  and  $\phi_{\perp}$ .
- Assuming  $\sigma = \sigma' = 0$ ,

$$S_{x}(f) = \frac{1}{wY} \frac{2k_{B}T}{f\pi^{3/2}} \left\{ \phi_{substrate} + \frac{1}{\sqrt{\pi}} \frac{d}{w} \left( \frac{Y'}{Y} \phi_{\parallel} + \frac{Y}{Y'} \phi_{\perp} \right) \right\}$$

• Finding  $\phi_{\parallel}$ ,



- Finding  $\phi_{\perp}$  ...???
- Assumes  $\phi_{\parallel} = \phi_{\perp}$



### Impetus: New Formalism for Loss

"Brownian Thermal Noise in Multilayer Coated Mirrors" [Hong, et al, LIGO-G1200614-v1, Submitted to Phys. Rev. D]



vsis to

substrate

- $\phi_{\parallel}$  and  $\phi_{\perp}$  formalism of Harry, et al. can lead to erroneous values require new formalism.
- When applying a force with known pressure profile:

$$U_{coating} = U_B + U_S = \iiint_{coating} \left( \frac{K}{2} \Theta^2 + \mu \Sigma_{ij} \Sigma_{ij} \right) dV$$

New formalism for mechanical loss in coating starting from elastic energy • contained in *bulk energy*  $U_B$  and *shear energy*  $U_S$ . loss in coating

$$\phi_{coated} = \frac{U_{substrate}}{U_{Total}} \phi_{substrate} + \frac{U_B}{U_{Total}} \phi_B + \frac{U_S}{U_{Total}} \phi_S$$

$$\phi_{substrate} = \frac{U_{B,Sub}}{U_{Total}} \phi_{B,Sub} + \frac{U_{S,Sub}}{U_{Total}} \phi_{S,Sub}$$
• Without a coating, should be able to extend this analysis to bulk and shear loss in



### Measurement Techniques: FEA



▲ 3.6802

• A finite element analysis of an uncoated silica sample is used to find its approximate resonance frequencies.







Eigenfrequency=9353.680051 Surface: Total displacement (m)





## Measurement Techniques: Hanging Sample







### Measurement Techniques: Bell Jar Upgrade











### Measurement Techniques: Birefringence Sensor



LIGO



### Measurement Techniques: Mode Hunting





#### Network/Signal Analyzer



# Matlab + Waveform Generator + Lockin Amplifer allows for complete control of all sweep parameters: input filter bandwidth, step time and step size down to $1\mu$ Hz.

#### Matlab Instrument Control



### Measurement Techniques: Ringdowns







## Measurement Techniques: Q Results



| Sample    | Mode Freq [Hz] | Q                     |
|-----------|----------------|-----------------------|
| Sample 24 | 2706.5         | 2.009×10 <sup>7</sup> |
|           | 6162.4         | 1.47×10 <sup>7</sup>  |
|           | 9445.8         | 5.49×10 <sup>6</sup>  |
| Sample 25 | 2699.2         | 1.9×10 <sup>7</sup>   |
|           | 6149.6         | 1.89×10 <sup>7</sup>  |
|           | 9438.3         | 1.326×10 <sup>7</sup> |
|           | 10,612.5       | 7.66×10 <sup>6</sup>  |
| Sample 26 | 2758.1         | 1.911×10 <sup>7</sup> |
|           | 4163.2         | 8.88×10 <sup>6</sup>  |
|           | 37,039.1       | 1.488×10 <sup>7</sup> |



# Analysis: Return to FEA with New Formalism



• Elastic energy can be divided into *bulk energy*  $U_B$  and *shear energy*  $U_S$  when applying a force with a known pressure profile,

$$U_{Total} = U_{B,Sub} + U_{S,Sub} = \iiint_{Sub} \left(\frac{K}{2}\Theta^{2} + G\Sigma_{ij}\Sigma_{ij}\right)dV$$
  
Bulk:  
$$D = S_{11} + S_{22} + S_{33}$$
  
$$\psi_{Substrate} = \underbrace{\bigcup_{B,Sub}}_{Sub} \phi_{B,Sub} + \underbrace{\bigcup_{S,Sub}}_{U_{Total}} \phi_{S,Sub}$$



### Analysis: FEA Energy Ratios







### Preleminary Results



• Bulk and Shear loss can be then be calculated:

$$\begin{bmatrix} \phi_{a} \\ \phi_{b} \end{bmatrix} = \begin{bmatrix} \frac{U_{a,Bulk}}{U_{a,Tot}} & \frac{U_{a,Shear}}{U_{a,Tot}} \\ \frac{U_{b,Bulk}}{U_{b,Tot}} & \frac{U_{b,Shear}}{U_{b,Tot}} \end{bmatrix} \begin{bmatrix} \phi_{Bulk} \\ \phi_{Shear} \end{bmatrix}$$

| Sample 26 | $\phi_{Bulk}$         | $\phi_{Shear}$        |
|-----------|-----------------------|-----------------------|
|           | $1.96 \times 10^{-7}$ | $4.24 \times 10^{-8}$ |
|           | $1.67 \times 10^{-7}$ | $6.66 \times 10^{-8}$ |

• Note that we lose frequency information! (or it's buried, at least)



### "Frequency and surface dependence of mechanical loss in fused silica"

[Penn, et al., Physics Letters A, 352 (2006) 3-6]



- Shows that mechanical loss of silica substrate  $\phi_{substrate}$  depends on frequency and surface-to-volume ratio.

$$\phi\left(f,\frac{V}{S}\right) = \phi_{surf} + \phi_{vol} + \phi_{th}$$
$$= C_1 \left(\frac{V}{S}\right)^{-1} + C_2 \left(\frac{f}{(1\text{Hz})}\right)^{C_3} + C_4 \phi_{th}$$
$$Type \quad C_1 (pm) \quad C_2 (\times 10^{-11}) \quad C_3 \quad C_4$$
Suprasil 2 12.1 1.18 0.77 0.61



 Frequency dependence of loss agrees well with results of modeling asymmetric double-well potential in Si-O-Si bond angle. [Weidersich, et al., Phys. Rev. Lett. 84 (2000) 2718]

| Туре         | C <sub>3</sub> |
|--------------|----------------|
| Suprasil 300 | ≈0.75          |





### Still Lots to Do!



- Frequency Dependence  $\phi(f)$ :
  - More Data Pairs easier to probe higher order modes with wideband HV Amplifier and computer control
  - Design second sample with different energy ratios, but similar mode frequencies
- Include dependence of loss on Surface to Volume ratio in analysis  $\phi\left(\frac{V}{s}\right)$
- Include Shear/Bulk loss in Surface analysis
- Compare to other theoretical models (Hai Ping Cheng, etc.)
- Annealing
- More modes, reanalyzing old data

$$\phi\left(f,\frac{V}{S}\right) = \phi_{surf} + \phi_{vol} \quad \longrightarrow \quad \phi\left(f,\frac{V}{S}\right) = \phi_{surf,B} + \phi_{surf,S} + \phi_{vol,B} + \phi_{vol,S}$$