

IISER KOLKATA

A Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1

John T. Whelan¹, Santosh Sundaresan² and Prabath Peiris¹

¹Center for Computational Relativity & Gravitation Rochester Institute of Technology, Rochester, NY, USA; ²Indian Institute for Science Education and Research, Kolkata, India john.whelan@astro.rit.edu

Gravitational Waves from LMXBs

Parameter Space Metric

Consider dependence of ρ on parameters $\lambda \equiv \{\lambda_i\}$. Can define Parameter space metric via

> $E[\rho] - E[\rho^{\text{true}}]$

Figure 1: Artist's impression of a low-mass X-ray binary. From Astronomical Illustrations and Space Art, by Fahad Sulehria, http://www.novacelestia.com/

A low-mass X-ray binary is a binary of a compact object (neutron star or black hole) & a companion star. If the CO is a NS, accretion from the companion can produce a hot spot & power GW emission from the non-axisymmetric NS. If GW spindown balances accretion spinup, GW strength can be estimated from X-ray flux, and GW freq \approx constant [1]. Sco X-1, the brightest LMXB, is thought to be a $1.4M_{\odot}$ NS + $0.42M_{\odot}$ companion[2]. Proposed & applied search methods include a fully coherent search over a small amount of data [3], an unmodelled search for a monochromatic stochastic signal [4], a search for a pattern of sidebands arising from the Doppler modulation of the signal by the binary orbit [5], and the modelled cross-correlation search described here[6]. These methods are currently being compared in a Mock Data Challenge; see poster C2.34.

Cross-Correlation Method

$$\frac{E[\rho] E[\rho^{\text{true}}]}{E[\rho^{\text{true}}]} = -g_{ij}(\Delta\lambda^{I})(\Delta\lambda^{J}) + \mathcal{O}([\Delta\lambda]^{3})$$

$$\frac{1}{E[\rho, ij]} \Big|_{\lambda = \lambda_{\text{true}}}$$

 $g_{ij} = -\frac{1}{2} E[\rho^{\text{true}}]$

Assume dominant contribution to $E[\rho_{,ij}]$ is from variation of $\Delta \Phi_{IJ} = \Phi_I - \Phi_J$; get phase metric

$$g_{ij} = \frac{1}{2} \frac{\sum_{\alpha} \Delta \Phi_{\alpha,i} \Delta \Phi_{\alpha,j} |\tilde{\mathcal{G}}_{\alpha}|^2 / \sigma_{\alpha}^2}{\sum_{\beta} |\tilde{\mathcal{G}}_{\beta}|^2 / \sigma_{\beta}^2} \equiv \frac{1}{2} \left\langle \Delta \Phi_{\alpha,i} \Delta \Phi_{\alpha,j} \right\rangle_{\alpha}$$

Note $\langle \rangle_{\alpha}$ is average over pairs weighted by $|\tilde{\mathcal{G}}_{\alpha}|^2/\sigma_{\alpha}^2$; ignoring weighting factor would give usual metric [7]

$\langle \Phi_{I,i} \Phi_{I,j} \rangle_I - \langle \Phi_{I,i} \rangle_I \langle \Phi_{J,j} \rangle_J$

Define $T_{IJ} = T_I - T_J \equiv T_{\alpha}$ as time offset between SFTs; T_{α}^{av} is average time. For each detector pair, avg over pairs is avg over $T_{\alpha} \& T_{\alpha}^{av}$. If we assume the avg over T_{α}^{av} evenly samples orbital phase, the metric in parameters f_0 (signal frequency), ap (orbit radius projected along line of sight), T (time orbit crosses reference point) & P_{orb} (orbit period) is approximately diagonal, with

(For reasonable values of $\sigma_T \sim \text{observation time}, g_{P_{\text{orb}}P_{\text{orb}}}$ is small enough that we don't need to search over P_{orb} .)

where S is a statistical factor. $\tilde{\mathcal{G}}_{\alpha}$ depends on (unknown) spin orientation angles $\iota \& \psi$; standard approach is to average value of $\tilde{\mathcal{G}}_{\alpha}$ over $\cos \iota \& \psi$. The ψ effect is small after average over sidereal time. The ι effect means actually

Net effect is to change statistical factor S, which reduces the sensitivity of the search to h_0 by a factor of $\sqrt{S^{\text{eff}}/S}$.

	S			\mathcal{S}^{eff}			$\sqrt{\mathcal{S}^{eff}/\mathcal{S}}$		
	FD			FD			FD		
FA	0.10	0.05	0.01	0.10	0.05	0.01	0.10	0.05	0.01
0.10	1.81	2.07	2.55	3.49	4.45	6.27	1.39	1.47	1.57
0.05	2.07	2.33	2.81	4.15	5.16	7.03	1.42	1.49	1.58
0.01	2.55	2.81	3.29	5.42	6.52	8.47	1.46	1.52	1.60

Table 1: Approximate modification of search sensitivity, as
 a function of desired false alarm probability and false dis*missal probability, resulting from filtering with a template* averaged over the signal parameters $\cos \iota$ and ψ . The detectable signal amplitude h_0 is proportional to $\sqrt{S^{eff}}$, so the sensitivity is reduced by the factor in the third group of columns. Note that the worst-case value for this is $\sqrt{16/5} \approx 1.79$

- Divide data into segments of length T_{sft} & take "short" Fourier transform" (SFT) $\tilde{x}_{l}(f)$.
- Label segments by *I*, *J*, ... (*I* & *J* can be same or different times or detectors) & pairs by α , β ,
- Use CW signal model $(A_+ = \frac{1 + \cos^2 \iota}{2}; A_{\times} = \cos \iota)$

 $h(t) = h_0 \left[\mathcal{A}_+ \cos \Phi(\tau(t)) \mathcal{F}_+ + \mathcal{A}_\times \sin \Phi(\tau(t)) \mathcal{F}_\times \right]$

• expected cross-correlation between SFTs / & J

$$\begin{split} E\left[\tilde{x}_{I}^{*}(f_{k_{I}})\,\tilde{x}_{J}(f_{k_{J}})\right] &= \tilde{h}_{I}^{*}(f_{k_{I}})\,\tilde{h}_{J}(f_{k_{J}}) \\ &= h_{0}^{2}\,\tilde{\mathcal{G}}_{IJ}\,\delta_{T_{\mathrm{sft}}}(f_{k_{I}} - f_{I})\,\delta_{T_{\mathrm{sft}}}(f_{k_{J}} - f_{J}) \end{split}$$

 f_I is signal freq @ time T_I Doppler shifted for detector *I* ∞ $\delta_{T_{sft}}(f - f') = \int_{-T_{sft}/2}^{T_{sft}/2} e^{i2\pi(f - f')t} dt$ so $\delta_{T_{sft}}(0) = T_{sft}$. • Construct $\mathcal{Y}_{IJ} = \frac{\tilde{x}_{l}^{*}(f_{\tilde{k}_{l}})\tilde{x}_{J}(f_{\tilde{k}_{J}})}{(T_{\text{off}})^{2}}$ (where $f_{\tilde{k}_{l}} \approx f_{l}$) s.t. $E[\mathcal{Y}_{\alpha}] \approx h_0^2 \tilde{\mathcal{G}}_{\alpha} \quad \text{Var}[\mathcal{Y}_{IJ}] \approx \sigma_{IJ}^2 = \frac{S_I(f_0)S_J(f_0)}{4(T_{\text{sft}})^2}$ • Optimally combine into $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*) w/u_{\alpha} \propto \frac{\mathcal{G}_{\alpha}^*}{\sigma^2}$ so $E[\rho] = h_0^2 \sqrt{2 \sum_{\alpha} |\tilde{\mathcal{G}}_{\alpha}|^2 / \sigma_{\alpha}^2} \& \text{Var}[\rho] = 1$

Computational considerations limit coherent integration time. Can make tunable semi-coherent search by restricting which SFT pairs α are included in $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*)$ E.g., only include pairs where $|T_I - T_J| \equiv |T_{\alpha}| \leq T_{max}$

Figure 3: Factor $\langle T_{\alpha}^2 \rangle_{\alpha}$ appearing in metric element $g_{f_0 f_0}$. The metric is slightly over-estimated if geometry factors are ignored, relative to actual calculations for Hanford-Livingston (HL) and Hanford-Livingston-Virgo (HLV) network. Behavior of factor $\left\langle \sin^2 \frac{\pi T_{\alpha}}{P_{orb}} \right\rangle_{\alpha}$ appearing in other metric components is similar.

The metric determines how large a lag time T_{max} can be allowed while keeping computing cost manageable.

We illustrate the sensitivity of the search, and its dependence on the maximum allowed time lag T_{max} , using the advanced LIGO and Virgo design noise spectra from [9], and assuming a one-year observation. We plot the h_0 level that could be detected with 10% false-alarm and falsedismissal.

Figure 5: Sensitivity of a cross-correlation search for Sco X-1 with one year of advanced LIGO and Virgo designsensitivity data, assuming 10% false-alarm &-dismissal. Note that the $T_{max} = 0$ measurement is effectively the directed stochastic "radiometer" search.

Figure 2: SFT pairs for inclusion in sliding cross-correlation search. Left: data from different detectors at same or different times. Right: data from same detector at different times. In this illustrative example, $T_{max} = 3T_{sft}$.

Figure 4: Number of templates needed for a search for GW from Sco X-1 at each frequency as a function of lag time. We allow a 20% mismatch and cover the one-sigma uncertainties in the parameters f_0 , a_p and T from [8].

References [1] Bildsten, *ApJL* **501**, L89 (1998) [2] Steeghs & Casares *ApJ* **568**, 273 (2002) [3] LSC, *PRD* **76**, 082001 (2007) [4] Ballmer, *CQG* **23**, S179 (2006) LSC, *PRD* **76**, 082003 (2007) [5] Messenger & Woan, *CQG* **24**, S469 (2007) [6] Dhurandhar et al, *PRD* **77**, 082001 (2008) [7] Pletsch, *PRD* 82, 042002 (2010) [8] Galloway et al in preparation [9] LSC & Virgo, arXiv:1304.0670 https://dcc.ligo.org/LIGO-P1200087-v18/public

LIGO-G1300509-v2