T1300403 Wide Angle Scatter from ETM 8-20-12

Displacement noise requirement @ 100 Hz, m/rt Hz	$D_{req} \coloneqq 1 \cdot 10^{-21}$
Motion of manifold @ 100 Hz, m/rt Hz	$x_{manifold} \coloneqq 8 \cdot 10^{-11}$
motion of ACB @ 100 Hz, m/rtHz	$x_{ACB} \coloneqq 1 \cdot 10^{-12}$
motion of ISI optical table @ 100 Hz, m/rtHz	$\mathbf{x}_{\mathbf{ISI}} \coloneqq 3 \cdot 10^{-14}$
Transfer function @ 100 Hz, ITM HR	$\mathrm{TF}_{\mathrm{itmhr}} \coloneqq 1.1 \cdot 10^{-9}$
BRDF of chamber wall, sr^-1	$BRDF_{wall} \coloneqq 0.1$
BRDF of oxidized un-polished steel, sr^-1	BRDF _{oxiunpolish} := 0.05
laser wavelength, m	$\lambda := 1.064 \cdot 10^{-6}$
wave number, m^-1	$k := 2 \cdot \frac{\pi}{\lambda} \qquad \qquad k = 5.905 \times 10^6$
wide angle hemispherical scattering loss fraction from TM wide, ref: T070089	$\alpha_{L} := 10 \times 10^{-6}$
see T070303 with arm cavity gain = 13000	
arm power, W	$P_a := 8.125 \times 10^5$
input laser power, W	$P_{psl} := 125$
arm cavity length, m	L:= 4000

The following data comes from ZEMAX sensor data; see /ALIGO/SLC/ACB ETM power summary.xlsx

SCATTER PATH LENGTH

distance from spool 7A2, m	L _{7A2} := 7.446
distance from PCal structure, m	L _{PCal} := 2.371
distance from BSC bottom, m	$L_{bscbottom} \coloneqq 2.248$
distance from BSC front, m	L _{bscfront} := 1.566
distance from BSC back, m	$L_{bscback} \coloneqq 1.967$
distance from SUS mid, m	L _{SUS} := 0.172
distance from ACB PLATE Top ETM, m	$L_{acbptop} \coloneqq 0.764$
distance from ACB PLATE Bottom ETM, m	$L_{acbpbot} \coloneqq 0.572$
distance from ACB PLATE 2 ETM, m	L _{acbp2} := 0.716
distance from ACB PLATE 3 ETM, m	L _{acbp3} := 0.605
distance from ACB PLATE 4 ETM, m	L _{acbp4} := 0.468
distance from ACB PLATE 5 ETM, m	L _{acbp5} := 0.475
distance from ACB PLATE 6 ETM, m	L _{acbp6} := 0.443
distance from ACB PLATE 7 ETM, m	L _{acbp7} := 0.231
distance from peak and cabling, m	$L_{cable} \coloneqq \frac{L_{acbp2} + L_{acbp6}}{2}$

	$L_{cable} = 0.58$
distance from ETM to WIDE ANGLE BAF TOP LEDGE ITMX, m	L _{wabtop} := 0.901
distance from ETM to WIDE ANGLE BAF BOTTOM LEDGE ETM m	L _{wabbot} := 0.748
distance from WIDE ANGLE BAF SIDE right, m	L _{wabsr} := 0.895
distance from WIDE ANGLE BAF SIDE left, m	$L_{wabsl} := 0.788$
SCATTER ANGLE	
angle from spool 7A2, rad	$\theta_{7A2} \coloneqq 0.1$
angle from PCal structure, rad	$\theta_{\text{PCal}} \coloneqq 0.09$
angle from BSC bottom, rad	$\theta_{bscbottom} \coloneqq 1.8$
angle from BSC front, rad	$\theta_{bscfront} \coloneqq 1.83$
angle from BSC back, rad	$\theta_{bscback} \coloneqq 1.73$
angle from SUS mid, rad	$\theta_{SUS} \coloneqq 1.81$
angle from ACB PLATE Top ETM, rad	$\theta_{acbptop} \coloneqq 0.99$
angle from ACB PLATE Bottom ETM, rad	$\theta_{acbpbot} \coloneqq 0.67$
angle from ACB PLATE 2 ETM, rad	$\theta_{acbp2} \coloneqq 0.82$

angle from ACB PLATE 3 ETM, rad	$\theta_{acbp3} \coloneqq 0.605$
angle from ACB PLATE 4 ETM, rad	$\theta_{acbp4} := 0.45$
angle from ACB PLATE 5 ETM, rad	$\theta_{acbp5} \coloneqq 0.34$
angle from ACB PLATE 6 ETM, rad	$\theta_{acbp6} \coloneqq 0.31$
angle from ACB PLATE 7 ETM, rad	$\theta_{acbp7} \coloneqq 0.15$
angle from peak and cabling, m	$\theta_{cable} \coloneqq \frac{\theta_{acbp2} + \theta_{acbp6}}{2}$
	$\theta_{cable} = 0.565$
angle from ETM to WIDE ANGLE BAF TOP LEDGE ITMX, rad	$ \theta_{\text{wabtop}} \coloneqq 0.71 $
angle from ETM to WIDE ANGLE BAF BOTTOM LEDGE ETM, rad	$\theta_{wabbot} \coloneqq 0.51$
angle from WIDE ANGLE BAF SIDE right, rad	$\theta_{\text{wabsr}} \coloneqq 0.54$
angle from WIDE ANGLE BAF SIDE left, rad	$\theta_{\text{wabsl}} \coloneqq 0.46$

FRACTION of LAMBERTIAN SCATTER FROM COC HITTING SURFACE

fractional power from spool 7A2, W	$PF_{7A2} := 0.0122$
fractional power hitting PCal structure, W	$PF_{PCal} := 0.0278$
fractional power passing through hole in ACB, W	$PF_{acbhole} := PF_{7A2} + PF_{PCal}$

 $PF_{acbhole} = 0.04$

fractional power from BSC bottom, W	PF _{bscbottom} := 0.0311
fractional power from BSC front, W	PF _{bscfront} := 0.0544
fractional power from BSC back, W	$PF_{bscback} \coloneqq 0.00444$
fractional power from SUS mid, W	PF _{SUS} := 0.0456
fractional power from ACB PLATE Top ETM, W	$PF_{acbptop} := 0.00444$
fractional power from ACB PLATE Bottom ETM, W	$PF_{acbpbot} := 0.0278$
fractional power from ACB PLATE 2 ETM, W	PF _{acbp2} := 0.0689
fractional power from ACB PLATE 3 ETM, W	$PF_{acbp3} \coloneqq 0.0211$
fractional power from ACB PLATE 4 ETM, W	$PF_{acbp4} \coloneqq 0.00889$
fractional power from ACB PLATE 5 ETM, W	$PF_{acbp5} := 0.0578$
fractional power from ACB PLATE 6 ETM, W	PF _{acbp6} := 0.0633
fractional power from ACB PLATE 7 ETM, W	PF _{acbp7} := 0.00778
fractional power hitting ACB box, W	

 $PF_{acbbox} := PF_{acbp2} + PF_{acbp3} + PF_{acbp4} + PF_{acbp5} + PF_{acbp6}$

 $PF_{acbbox} = 0.22$

fractional power from ETM to WIDE ANGLE BAF TOP LEDGE ITMX, W	$PF_{wabtop} := 0.0722$
fractional power from ETM to WIDE ANGLE BAF BOTTOM LEDGE ETM, W	PF _{wabbot} := 0.219
fractional power from WIDE ANGLE BAF SIDE right, W	$PF_{wabsr} := 0.192$
fractional power from WIDE ANGLE BAF SIDE left, W	$PF_{wabsl} \coloneqq 0.0567$

fractional power hitting ACB plus wide angle box, W

 $PF_{acb} := PF_{acbp2} + PF_{acbp3} + PF_{acbp4} + PF_{acbp5} + PF_{acbp6} + PF_{acbp7} + PF_{wabtop} + PF_{wabbot} + PF$ $PF_{acb} = 0.768$

INCIDENT POWER

incident power from spool 7A2, W	$P_{7A2} := P_a \cdot PF_{7A2} \cdot \alpha_L$	$P_{7A2} = 0.099$
incident power hitting PCal structure, W	$P_{PCal} := P_a \cdot PF_{PCal} \cdot \alpha_L$	$P_{PCal} = 0.226$
incident power from BSC bottom, W	$P_{bscbottom} \coloneqq P_a \cdot PF_{bscbottom} \cdot \alpha_L$	$P_{bscbottom} = 0.253$
incident power from BSC front, W	$P_{bscfront} := P_a \cdot PF_{bscfront} \cdot \alpha_L$	$P_{bscfront} = 0.442$
incident power from BSC back, W	$P_{bscback} \coloneqq P_a \cdot PF_{bscback} \cdot \alpha_L$	$P_{bscback} = 0.036$
incident power from SUS mid, W	$P_{SUS} := P_a \cdot PF_{SUS} \cdot \alpha_L$	$P_{SUS} = 0.37$
incident power from ACB PLATE Top ETM, W	$P_{acbptop} \coloneqq P_a \cdot PF_{acbptop} \cdot \alpha_L$	$P_{acbptop} = 0.036$
incident power from ACB PLATE Bottom ETM, W	$P_{acbpbot} \coloneqq P_a \cdot PF_{acbpbot} \cdot \alpha_L$	$P_{acbpbot} = 0.226$

incident power from ACB PLATE 2 ETM, W	$P_{acbp2} \coloneqq P_a \cdot PF_{acbp2} \cdot \alpha_L$	$P_{acbp2} = 0.56$
incident power from ACB PLATE 3 ETM, W	$P_{acbp3} \coloneqq P_a \cdot PF_{acbp3} \cdot \alpha_L$	$P_{acbp3} = 0.171$
incident power from ACB PLATE 4 ETM, W	$P_{acbp4} := P_a \cdot PF_{acbp4} \cdot \alpha_L$	$P_{acbp4} = 0.072$
incident power from ACB PLATE 5 ETM, W	$P_{acbp5} := P_a \cdot PF_{acbp5} \cdot \alpha_L$	$P_{acbp5} = 0.47$
incident power from ACB PLATE 6 ETM, W	$P_{acbp6} \coloneqq P_a \cdot PF_{acbp6} \cdot \alpha_L$	$P_{acbp6} = 0.514$
incident power from ACB PLATE 7 ETM, W	$P_{acbp7} := P_a \cdot PF_{acbp7} \cdot \alpha_L$	$P_{acbp7} = 0.063$
incident power from ETM to WIDE ANGLE BAF TOP LEDGE ITMX, W	$P_{wabtop} \coloneqq P_a \cdot PF_{wabtop} \cdot \alpha_L$	P _{wabtop} = 0.587
incident power from ETM to WIDE ANGLE BAF BOTTOM LEDGE ETM, W	$P_{wabbot} \coloneqq P_a \cdot PF_{wabbot} \cdot \alpha_L$	P _{wabbot} = 1.779
incident power from WIDE ANGLE BAF SIDE right, W	$P_{wabsr} \coloneqq P_a \cdot PF_{wabsr} \cdot \alpha_L$	$P_{wabsr} = 1.56$
incident power from WIDE ANGLE BAF SIDE left, W	$P_{wabsl} := P_a \cdot PF_{wabsl} \cdot \alpha_L$	$P_{wabsl} = 0.461$

POWER SCATTERED INTO IFO MODE

 $P_{inc} := 1 \qquad \qquad L_s := 1$ $w_{ifo} := 1$ $BRDF_s := 1$

 $\theta_{inc} \coloneqq 1$

 $θ_{s1} := 1$ $θ_{s2} := 1$ θ := 1 dΩ := 1 $P_{sTM} := 1$ $A_{TM} := 1$

Lambertian scatter function for the TM

$$\mathsf{BRDF}_{\mathsf{L}} \coloneqq \alpha_{\mathsf{L}} \cdot \frac{\cos(\theta)}{\pi}$$

differential wide angle scattered light from TM onto adjacent surfaces

$$dP_{sadj} \coloneqq P_a \cdot BRDF_L \cdot d\Omega$$

total wide angle scattered light from TM onto each adjacent surfaces

$$P_{\text{sadj}} \coloneqq P_{a} \cdot \alpha_{L} \cdot \int_{\theta_{s1}}^{\theta_{s2}} \frac{\cos(\theta)}{\pi} \, d\Omega$$

ZEMAX power fraction

$$\mathsf{PF}_{\mathsf{s}} \coloneqq \int_{\theta_{\mathsf{s}1}}^{\theta_{\mathsf{s}2}} \frac{\cos(\theta)}{\pi} \, \mathrm{d}\Omega$$

incident power hitting the adjacent surface is

$$P_{a} \cdot \alpha_{L} \cdot PF_{s}$$

irradiance of TM by power scattered from adjacent surface, W/m^2

$$E_{s} := P_{inc} \cdot BRDF_{s} \cdot \frac{1}{L_{s}^{2}}$$

Flanagan-Thorne scattering cross-section

$$\sigma := \lambda^2 \cdot \text{BRDF}_L$$

power scattered by TM into IFO mode

$$P_{sifo} := E_s \cdot \sigma$$

$$\underset{\text{Monitor}}{\text{Period}} = P_{\text{inc}} \cdot \text{BRDF}_{s} \cdot \frac{\lambda^{2}}{L_{s}^{2}} \cdot \alpha_{L} \cdot \frac{\cos(\theta_{\text{inc}})}{\pi}$$

incident power hitting the adjacent surface is

$$P_{a} \cdot \alpha_{L} \cdot PF_{s}$$

combining these equations, we get

$$P_{sTMifo} \coloneqq P_{inc} \cdot BRDF_{s} \cdot \frac{\lambda^{2}}{L_{s}^{2}} \cdot \alpha_{L} \cdot \frac{\cos(\theta_{inc})}{\pi}$$

spool 7A2, W

$$P_{7A2ifo} \coloneqq \sqrt{4} \cdot P_{7A2} \cdot BRDF_{wall'} \left(\frac{\lambda^2}{L_{7A2}^2} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{7A2}) \right|}{\pi} \right)$$

$$P_{7A2ifo} = 1.282 \times 10^{-21}$$

9

PCal structure, W

$$P_{PCalifo} \coloneqq \sqrt{4} \cdot P_{PCal} \cdot \left(\frac{\lambda^2}{L_{PCal}^2} \cdot BRDF_{wall} \cdot \alpha_L \cdot \frac{|\cos(\theta_{PCal})|}{\pi} \right)$$
$$P_{PCalifo} = 2.884 \times 10^{-20}$$

BSC bottom, W

$$P_{bscbottomifo} \coloneqq \sqrt{4} \cdot P_{bscbottom} \cdot \left(\frac{\lambda^2}{L_{bscbottom}^2} \cdot BRDF_{wall} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{bscbottom}) \right|}{\pi} \right)$$

 $P_{bscbottomifo} = 8.188 \times 10^{-21}$

BSC front, W

$$P_{bscfrontifo} := \sqrt{4} \cdot P_{bscfront} \cdot \left(\frac{\lambda^2}{L_{bscfront}^2} \cdot BRDF_{wall} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{bscfront}) \right|}{\pi} \right)$$

 $P_{bscfrontifo} = 3.329 \times 10^{-20}$

BSC back, W

$$P_{bscbackifo} \coloneqq \sqrt{4} \cdot P_{bscback} \cdot \left(\frac{\lambda^2}{L_{bscback}^2} \cdot BRDF_{wall} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{bscback}) \right|}{\pi} \right)$$

 $P_{bscbackifo} = 1.065 \times 10^{-21}$

SUS mid, W

$$P_{SUSifo} \coloneqq \sqrt{4} \cdot P_{SUS} \cdot \left(\frac{\lambda^2}{L_{SUS}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{|\cos(\theta_{SUS})|}{\pi} \right)$$

$$P_{SUSifo} = 1.069 \times 10^{-18}$$

ACB PLATE TOP ETM, W

$$P_{acbptopifo} \coloneqq \sqrt{4} \cdot P_{acbptop} \cdot \left(\frac{\lambda^2}{L_{acbptop}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbptop}) \right|}{\pi} \right)$$

$$P_{acbptopifo} = 1.222 \times 10^{-20}$$

ACB PLATE Bottom ETM, W

$$P_{acbpbotifo} \coloneqq \sqrt{4} \cdot P_{acbpbot} \cdot \left(\frac{\lambda^2}{L_{acbpbot}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbpbot}) \right|}{\pi} \right)$$

 $P_{acbpbotifo} = 1.95 \times 10^{-19}$

ACB PLATE 2 ETM, W

$$P_{acbp2ifo} := \sqrt{4} \cdot P_{acbp2} \cdot \left(\frac{\lambda^2}{L_{acbp2}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp2}) \right|}{\pi} \right)$$

11

$$P_{acbp2ifo} = 2.685 \times 10^{-19}$$

ACB PLATE 3 ETM, W

$$P_{acbp3ifo} := \sqrt{4} \cdot P_{acbp3} \cdot \left(\frac{\lambda^2}{L_{acbp3}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp3}) \right|}{\pi} \right)$$

$$P_{acbp3ifo} = 1.388 \times 10^{-19}$$
 $L_{acbp3} = 0.605$

ACB PLATE 4 ETM, W

$$P_{acbp4ifo} := \sqrt{4} \cdot P_{acbp4} \cdot \left(\frac{\lambda^2}{L_{acbp4}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp4}) \right|}{\pi} \right)$$

$$P_{acbp4ifo} = 1.07 \times 10^{-19}$$

ACB PLATE 5 ETM, W

$$P_{acbp5ifo} \coloneqq \sqrt{4} \cdot P_{acbp5} \cdot \left(\frac{\lambda^2}{L_{acbp5}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp5}) \right|}{\pi} \right)$$

$$P_{acbp5ifo} = 7.071 \times 10^{-19}$$

ACB PLATE 6 ETM, W

$$P_{acbp6ifo} := \sqrt{4} \cdot P_{acbp6} \cdot \left(\frac{\lambda^2}{L_{acbp6}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp6}) \right|}{\pi} \right)$$

$$P_{acbp6ifo} = 8.994 \times 10^{-19}$$

ACB PLATE 7 ETM, W

$$P_{acbp7ifo} \coloneqq \sqrt{4} \cdot P_{acbp7} \cdot \left(\frac{\lambda^2}{L_{acbp7}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{acbp7}) \right|}{\pi} \right)$$

 $P_{acbp7ifo} = 4.221 \times 10^{-19}$

WIDE ANGLE BAF TOP LEDGE ITMX, W

$$P_{\text{wabtopifo}} \coloneqq \sqrt{4} \cdot P_{\text{wabtop}} \cdot \left(\frac{\lambda^2}{L_{\text{wabtop}}^2} \cdot BRDF_{\text{oxiunpolish}} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{\text{wabtop}}) \right|}{\pi} \right)$$

$$P_{wabtopifo} = 1.975 \times 10^{-19}$$

WIDE ANGLE BAF BOTTOM LEDGE ETM, W

$$P_{\text{wabbotifo}} \coloneqq \sqrt{4} \cdot P_{\text{wabbot}} \cdot \left(\frac{\lambda^2}{L_{\text{wabbot}}^2} \cdot BRDF_{\text{oxiunpolish}} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{\text{wabbot}}) \right|}{\pi} \right)$$

 $P_{wabbotifo} = 1 \times 10^{-18}$

WIDE ANGLE BAF SIDE right W

$$P_{wabsrifo} \coloneqq \sqrt{4} \cdot P_{wabsr} \cdot \left(\frac{\lambda^2}{L_{wabsr}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{wabsr}) \right|}{\pi} \right)$$

$$P_{\text{wabsrifo}} = 6.019 \times 10^{-19}$$

WIDE ANGLE BAF SIDE left, W

$$P_{wabslifo} := \sqrt{4} \cdot P_{wabsl} \cdot \left(\frac{\lambda^2}{L_{wabsl}^2} \cdot BRDF_{oxiunpolish} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{wabsl}) \right|}{\pi} \right)$$

$$P_{\text{wabslifo}} = 2.396 \times 10^{-19}$$

DIFFUSE SCATTERING FROM PEEK AND CABLING

length of cabling, m $l_c := 2$ diameter of cabling, m $d_c := 0.006$ frontal area of cabling, m^2 $A_c := l_c \cdot d_c = 0.012$ diameter of peek end cap, m $d_{pc} := .025$ number of peek end caps $N_{pc} := 4$

total area of scattering surfaces, m^2 $A_{tpc} := A_c + N_{pc} \cdot \frac{\pi}{4} \cdot d_{pc}^2$ $A_{tpc} = 0.014$ frontal area of ACB, m^2 $A_{acb} := 0.7$

Incident Power, W

PEEK AND CABLING, W
$$P_{ipc} := P_a \cdot PF_{acbbox} \cdot \frac{A_{tpc}}{A_{acb}} \cdot \alpha_L = 0.036$$

$$PF_{acbcable} \coloneqq PF_{acbbox} \cdot \frac{A_{tpc}}{A_{acb}}$$
$$PF_{acbcable} = 4.388 \times 10^{-3}$$

Power Scattered into IFO Mode, W

PEEK AND CABLING, W

$$P_{pcifo} \coloneqq \sqrt{4} \cdot P_{ipc} \cdot \left(\frac{\lambda^2}{L_{cable}^2} \cdot BRDF_{wall} \cdot \alpha_L \cdot \frac{\left| \cos(\theta_{cable}) \right|}{\pi} \right)$$

$$P_{pcifo} = 6.463 \times 10^{-20}$$

TOTAL ACB BACK, W

$$P_{wacbbackifo} := \left(P_{acbptopifo}^{2} + P_{acbpbotifo}^{2} + P_{acbp2ifo}^{2} + P_{acbp3ifo}^{2} + P_{acbp4ifo}^{2} + P_{acbp5ifo}^{2} + P_{ac$$

 $P_{wacbbackifo} = 1.278 \times 10^{-18}$

TOTAL ACB BACK AND BOX, W

$$P_{wacbboxifo} := \left(P_{wacbbackifo}^{2} + P_{wabtopifo}^{2} + P_{wabbotifo}^{2} + P_{wabsrifo}^{2} + P_{wabsrifo}^{2}\right)^{0.5}$$

 $P_{wacbboxifo} = 1.758 \times 10^{-18}$

TOTAL BSC Walls, W

$$P_{bscifo} := \left(P_{bscbottomifo}^{2} + P_{bscfrontifo}^{2} + P_{bscbackifo}^{2}\right)^{0.5}$$

 $P_{bscifo} = 3.43 \times 10^{-20}$

DISPLACEMENT NOISE @ 100 Hz, m/rtHz

 $\theta_t := 0$ $x_s := 1$

Displacement Noise Requirement @ 100 Hz, m/rt Hz

 $D_{req} = 1 \times 10^{-21}$

 $P_{\text{sites}} = 1$

Amplitude spectral density of sine phase fluctuations of the injected field

$$S_{MA} := \sqrt{8 \cdot \pi^2 \cdot \frac{x_s^2}{\lambda^2}}$$

displacement noise according to Flanagan-Thorne

$$DN_{s_thorne} \coloneqq \left(\frac{P_{sifo}}{P_a}\right)^{0.5} \cdot \frac{\lambda}{4 \cdot \pi \cdot L} \cdot S \cdot L$$

displacement noise using Smith_Yamamoto formalism

$$DN_{s_smith} := TF_{itmhr} \cdot \left(\frac{P_{sifo}}{P_{psl}}\right)^{0.5} \cdot \frac{2 \cdot k \cdot x_s}{\sqrt{2}}$$

where the factor 1/rt2 was added to correct for the slow phase motion that is below the gravity wave band

The two different approaches give results within < 5%

TOTAL ACB BACK AND BOX

$$S_{ACB} := \sqrt{8 \cdot \pi^2 \cdot \frac{x_{ACB}^2}{\lambda^2}}$$

 $DN_{wacbboxifo_thorne} \coloneqq \left(\frac{P_{wacbboxifo}}{P_a}\right)^{0.5} \cdot \frac{\lambda}{4 \cdot \pi \cdot L} \cdot S_{ACB} \cdot L$

$$DN_{wacbboxifo_thorne} = 1.04 \times 10^{-24}$$

$$DN_{wacbboxifo_smith} := TF_{itmhr} \cdot \left(\frac{P_{wacbboxifo}}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot 2 \cdot \frac{k}{\sqrt{2}}$$

 $DN_{wacbboxifo_smith} = 1.089 \times 10^{-24}$

 $\frac{DN_{wacbboxifo_smith}}{DN_{wacbboxifo_thorne}} = 1.047$

SUS

$$DN_{sus} := TF_{itmhr} \cdot \left(\frac{P_{SUSifo}}{P_{psl}}\right)^{0.5} \cdot x_{ISI} \cdot 2 \cdot \frac{k}{\sqrt{2}}$$

$$DN_{sus} = 2.549 \times 10^{-26}$$

TOTAL BSC Walls

$$DN_{bsc} \coloneqq TF_{itmhr} \cdot \left(\frac{P_{bscifo}}{P_{psl}}\right)^{0.5} \cdot x_{manifold} \cdot 2 \cdot \frac{k}{\sqrt{2}}$$

$$DN_{bsc} = 1.217 \times 10^{-23}$$

17

spool 7A2

$$DN_{7A2} \coloneqq TF_{itmhr} \cdot \left(\frac{P_{7A2ifo}}{P_{psl}}\right)^{0.5} \cdot x_{manifold} \cdot 2 \cdot \frac{k}{\sqrt{2}}$$
$$DN_{7A2} = 2.354 \times 10^{-24}$$

PCal structure

$$DN_{PCal} := TF_{itmhr} \cdot \left(\frac{P_{PCalifo}}{P_{psl}}\right)^{0.5} \cdot x_{manifold} \cdot 2 \cdot \frac{k}{\sqrt{2}}$$

$$DN_{PCal} = 1.116 \times 10^{-23}$$

wabsr + PFwabsl

+ $P_{acbp6ifo}^{2}$ + $P_{acbp7ifo}^{2}$ + P_{pcifo}^{2} $\Big)^{0.5}$