T1300404 ACB scatter 3-28-13

radius of baffle edge, m	r := 0.004	
length of baffle plate edge, m	H _p := 0.655	
length of baffle bend edge, m	$H_b := 2.0.239 = 0.478$	
laser wavelength, m	$\lambda := 1.064 10^{-6}$	
wave number, m^-1	$k := 2 \cdot \frac{\pi}{\lambda}$	
	$k = 5.905 \times 10^{6}$	
IFO waist size, m	$w_{ifo} \coloneqq 0.012$	
solid angle of IFO mode, sr	$\Delta \Omega_{\text{ifo}} \coloneqq \frac{\lambda^2}{\pi \cdot w_{\text{ifo}}^2} = 2.502 \times 10^{-9}$	
Transfer function @ 100 Hz, ITM HR	$\text{TF}_{\text{itmhr}} \coloneqq 1.1 \cdot 10^{-9}$	
Gaussian beam radius at ITM, m	w := 0.055	
IFO arm length, m	L _{arm} := 4000	
PSL laser power, W	$P_{psl} := 125$	
arm cavity gain	G _{ac} := 13000	
arm cavity power, W	$\mathbf{P}_{\mathbf{a}} \coloneqq \frac{\mathbf{P}_{\mathbf{psl}}}{2} \cdot \mathbf{G}_{\mathbf{ac}}$	
	$P_a = 8.125 \times 10^5$	
radius of Cryopump aperture, m	R _{cp} := 0.3845	

height of manifold/cryo baffle ledge, m
height of opening above ledge, m
$$H_L := 0.769 - 0.655 = 0.114$$

 $H_1 := R_{cp} - H_L = 0.271$

radius of ACB hole, m

area of ACB hole, m^2

 $A_h := \pi \cdot r_{acbhole}^2 = 0.093$

half-angle from centerline to Rcp, rad

$$\theta_{cp} := \frac{R_{cp}}{L_{arm}}$$

 $r_{acbhole} := 0.172$

BRDF, sr^-1; CSIRO, surface 2, S/N 2 BRDF₁(θ) := $\frac{2755.12}{\left(1 + 8.50787 \cdot 10^8 \cdot \theta^2\right)^{1.23597}}$

transformation to x, y, coords $\theta(x, y, x_0, y_0) \coloneqq \frac{\sqrt{(x - x_0)^2 + (y - y_0)^2}}{L_{arm}}$

BRDF, sr^-1; CSIRO, surface 2, S/N 2 in xy coords

$$BRDF_{xy}(x, y, x_0, y_0) \coloneqq \frac{2755.12}{\left[1 + 8.50787 \cdot 10^8 \cdot \left[\frac{\sqrt{(x - x_0)^2 + (y - y_0)^2}}{L_{arm}}\right]^2\right]^{1.2359}}$$

motion of ACB @ 100 HZ, m/rt HZ

break-over angle, rad

$$x_{ACB} \coloneqq 1 \cdot 10^{-12}$$

BRDF porcelainized steel, #2, 3 deg inc.

Reflectivity of baffle surface
$$R := 0.02$$

$$\theta_1 := 0.9 \cdot \frac{\pi}{180} = 0.016$$

micro-roughness angle, rad
$$\theta_2 :=$$

$$\theta_2 \coloneqq 6 \cdot \frac{\pi}{180}$$

$$BRDF_0 := 50$$

 $\beta := 2.7$

final slope modifier

micro-roughness constant

 $C_{mr} := \frac{2^{(\beta)} - 1}{\theta_1^2}$ $C_{mr} = 1.186 \times 10^3$

large angle BRDF, sr^-1

 $\text{BRDF}_{\theta 2} \coloneqq 0.035$

 $BRDF_{ACB}(\theta_{i}) \coloneqq \frac{BRDF_{0}}{\left(1 + C_{mr} \cdot \theta_{i}^{2}\right)^{\beta}} + BRDF_{\theta 2}$ parametric BRDF function, sr^-1

BRDF #4 Oxidized stainless steel, 3 deg inc.

Reflectivity	of	baffle	surface
--------------	----	--------	---------

break-over angle, rad

max BRDF, sr^-1

final slope modifier

R:= 0.02

 $\theta_{\rm MM} := .8 \cdot \frac{\pi}{180} = 0.014$

 $BRDF_0 = 7.5$

 $\beta := 0.7$

micro-roughness constant

 $C_{\text{NNMAX}} = \frac{2^{\frac{1}{(\beta)}} - 1}{\theta_1^2}$

 $C_{mr} = 8.678 \times 10^3$

 $BRDF_{\Theta 2} := 0.03$

large angle BRDF, sr^-1

BRDF function, sr^-1
BRDF_{ACBoxy3}(
$$\theta_i$$
) := $\frac{BRDF_0}{\left(1 + C_{mr} \cdot \theta_i^2\right)^{\beta}} + BRDF_{\theta_2^2}$
BRDF #4 Oxidized stainless steel, 57 deg inc.

Reflectivity of baffle surface

<u>R</u>:= .04

 $\theta_{\rm MM} = 0.6 \cdot \frac{\pi}{180} = 0.01$

 $\theta_{22} = 10 \cdot \frac{\pi}{180} = 0.175$

 $BRDF_0 := 40$

 $\beta := 0.95$

break-over angle, rad

micro-roughness angle, rad

max BRDF, sr^-1

final slope modifier

micro-roughness constant

$$C_{mr} = \frac{2^{\frac{1}{(\beta)}} - 1}{\theta_1^2}$$
$$C_{mr} = 9.797 \times 10^3$$

 $BRDF_{0.02} = 0.03$

BRDF function, sr^-1 BRDF_{ACBoxy57} $(\theta_i) := \frac{BRDF_0}{\left(1 + C_{mr} \cdot \theta_i^2\right)^{\beta}} + BRDF_{\theta 2}$

$$\theta_{\text{deg}}(\theta_i) \coloneqq \theta_i \cdot \frac{180}{\pi}$$

angle in deg

 $\theta_i := 0, 0.00001 \dots 10 \cdot \theta_2$

aperture (hits the arm cavity baffle), W

integration variable y, m

horizontal offset, m $x_0 := 0.2$

vertical offset, m

power scattered out to radius Rcp, W

check the x, y calculation with no offset

 $P_{acb\theta} = 14.096$

 $\mathbf{x} \coloneqq \mathbf{0}$

y := 0

 $y_0 := 0.08$

$$x_{0} = 0$$

$$\mathbb{R} \coloneqq \mathbb{R}_{cp}$$

$$P_{acb} \coloneqq P_a \cdot \left(\int_{-R}^{R} \int_{-\sqrt{R^2 - y^2}}^{\sqrt{R^2 - y^2}} \frac{BRDF_{xy}(x, y, x_0, y_0)}{L_{arm}^2} dx dy \right)$$

 $P_{acb} = 14.096$ on-axis BRDF(x,y) function $P_{acb\theta} = 14.096$

on-axis BRDF(θ) function

new value with offset

$$x_{0} = 0.2$$

$$x_{0} = 0.08$$

$$R_{c} = R_{cp}$$

$$\underset{R}{P_{acb}} \coloneqq P_{a} \cdot \left(\int_{-R}^{R} \int_{-\sqrt{R^{2}-y^{2}}}^{\sqrt{R^{2}-y^{2}}} \frac{BRDF_{xy}(x, y, x_{0}, y_{0})}{L_{arm}^{2}} dx dy \right)$$

power hitting ACB with COC off-set, W

 $P_{acb} = 12.363$

Area of cryopump baf aperture, m²

 $A_{cp} := \pi \cdot R_{cp}^2 = 0.464$

incident intensity, W/m^2
$$I_i := \frac{P_{acb}}{A_{cp}} = 26.619$$

reference tilt angle of baffle edge, rad

 $\theta_t := 0$

incident angle, rad

$$\theta_i(\theta_t, \theta_{xy}) := a\cos(\cos(\theta_{xy}) \cdot \cos(\theta_t))$$

input angle range, bend, rad
 $\theta_{xymaxb} := 33 \cdot \frac{\pi}{180} = 0.576$

input angle range, plate rad

input angle range, plate deg

$$\theta_{\text{xymaxbdeg}} \coloneqq \theta_{\text{xymaxb}} \cdot \frac{180}{\pi} = 33$$

$$\theta_{\text{xymaxp}} \coloneqq \frac{\pi}{2} = 1.571$$

 $\theta_{\text{xymaxpdeg}} \coloneqq \theta_{\text{xymaxp}} \cdot \frac{180}{\pi} = 90$

Scatter function from baffle plate edge

$$s_{poxy}(\theta_{t}) \coloneqq \int_{0}^{\theta_{xymaxp}} \left[\int_{2\cdot\theta_{i}(\theta_{t},\theta_{xy}) + \frac{w_{ifo}}{L_{arm}}}^{2\cdot\theta_{i}(\theta_{t},\theta_{xy}) + \frac{w_{ifo}}{L_{arm}}} BRDF_{ACBoxy3}(\theta_{s} + 2\cdot\theta_{i}(\theta_{t},\theta_{xy})) \cdot \sqrt{w_{ifo}^{2} - \left[L_{arm} \cdot (\theta_{s} - \theta_{sy}) - \frac{w_{ifo}}{L_{arm}}} \right] \right]$$

 $S_{\text{poxy}}(\theta_{\text{t}}) = 1.264 \times 10^{-12}$

power scattered by the ACB baffle plate edge, W

$$P_{acboxyedgepsifo}(\theta_{t}, r) := 4 \cdot I_{i} \cdot r \cdot H_{p} \cdot BRDF_{1}(30 \cdot 10^{-6}) \cdot \Delta\Omega_{ifo} \cdot (S_{poxy}(\theta_{t}))$$
$$P_{acboxyedgepsifo}(\theta_{t}, 0.004) = 1.204 \times 10^{-18}$$

power scattered by baffle plate edge into IFO mode, W

ACB displacement @ 100 HZ, m/rt $x_{ACB} = 1 \times 10^{-12}$ HZ

baffle plate edge scatter displacement noise @ 100 Hz, m/rtHz

reference tilt angle, rad

$$\theta_t := 0$$

$$DN_{acboxyedgep}(\theta_{t}, r) \coloneqq TF_{itmhr} \cdot \left(\frac{P_{acboxyedgepsifo}(\theta_{t}, r)}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot \frac{2}{\sqrt{2}} \cdot k$$

$$DN_{acboxyedgep}(\theta_t, 0.004) = 9.017 \times 10^{-25}$$

Scatter function from baffle louver bend

reference tilt angle, rad

 $\theta_t := 0$

$$S_{boxy}(\theta_{t}) \coloneqq \int_{0}^{\theta_{xymaxb}} \left[\int_{2 \cdot \theta_{i}(\theta_{t}, \theta_{xy}) + \frac{w_{ifo}}{L_{arm}}} \right] BRDF_{ACBoxy3}(\theta_{s} + 2 \cdot \theta_{i}(\theta_{t}, \theta_{xy})) \cdot \sqrt{w_{ifo}^{2} - \left[L_{arm} \cdot \left(\theta_{s} - \frac{w_{ifo}}{L_{arm}}\right) + \frac{w_{ifo}}{L_{arm}}} \right]$$

$$S_{boxy}(\theta_t) = 1.034 \times 10^{-12}$$

power scattered by the ACB louver edge bend into IFO mode, W

$$P_{acboxyedgebsifo}(\theta_{t}, r) \coloneqq 4 \cdot I_{i} \cdot r \cdot H_{b} \cdot BRDF_{1}(30 \cdot 10^{-6}) \cdot \Delta \Omega_{ifo} \cdot (S_{boxy}(\theta_{t}))$$

$$P_{acboxyedgebsifo}(\theta_{t}, 0.004) = 7.19 \times 10^{-19}$$

$$\theta_{acboxyedgebsifo}(\theta_{t}) \coloneqq \theta_{t} \cdot \frac{180}{\pi}$$

displacement noise @ 100 Hz, m/rtHz

reference tilt angle, rad

$$\theta_t \coloneqq 0$$

louver edge bend scatter displacement noise @ 100 Hz, m/rtHz

$$DN_{acboxyedgeb}(\theta_{t}, r) := TF_{itmhr} \cdot \left(\frac{P_{acboxyedgebsifo}(\theta_{t}, r)}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot \frac{2}{\sqrt{2}} \cdot k$$
$$DN_{acboxyedgeb}(\theta_{t}, 0.004) = 6.967 \times 10^{-25}$$

 $\theta_{\text{max}} = 0,0.001..0.5$

Louver Portion of ACB

area of ACB hole, m²
area of manifold/cryo baffle ledge, m²
$$A_{L} := \int_{H_{1}}^{R_{cp}} 2 \cdot \sqrt{R_{cp}^{2} - H^{2}} dH$$
$$A_{L} = 0.043$$

area of exposed ACB, m^2 $A_{ACB} \coloneqq \pi \cdot R_{cp}^2 - 2.A_h - A_L = 0.236$

power incident on ACB louver portion, W

 $P_{acboxy} := I_i \cdot A_{ACB}$

$$P_{acboxy} = 6.272$$

Power Scattered from the louver portion of baffle

$$P_{\text{acboxysifo}} \coloneqq P_{\text{acboxy}} \cdot \text{BRDF}_{\text{ACBoxy57}} \left(2 \cdot 57 \cdot \frac{\pi}{180} \right) \cdot \frac{{w_{\text{ifo}}}^2}{{L_{\text{arm}}}^2} \cdot \text{BRDF}_1 \left(30 \cdot 10^{-6} \right) \cdot \Delta \Omega_{\text{ifo}}$$

$$P_{acboxysifo} = 6.12 \times 10^{-18}$$

Total scattered power from edge plate, louver bend, and louvers

vertical tilt angle, rad $\theta_t := 3 \cdot \frac{\pi}{180}$ $\theta_t = 0.052$ bend radius, m r := 0.001

$$P_{acboxyedgepsifo}(\theta_t, r) = 1.488 \times 10^{-15}$$

 $P_{acboxyedgebsifo}(\theta_t, r) = 7.237 \times 10^{-20}$

$$P_{acboxysifo} = 6.12 \times 10^{-18}$$

$$\begin{split} P_{acboxytsifo}(\theta_{t}, r) &\coloneqq P_{acboxyedgepsifo}(\theta_{t}, r) + P_{acboxyedgebsifo}(\theta_{t}, r) + P_{acboxysifo}(\theta_{t}, r) + P_{ac$$

fractional increase due to edge plate and bend

$$f_{p,b} := \frac{P_{acboxytsifo}(\theta_t, r)}{P_{acboxysifo}}$$
$$f_{p,b} = 1.036$$

effective incident power on ACB, W

$$P_{acboxy.eff} := P_{acboxy} \cdot f_{p.b}$$

$$P_{acboxytsifo.eff} := P_{acboxy.eff} \cdot BRDF_{ACBoxy57} \left(2 \cdot 57 \cdot \frac{\pi}{180}\right) \cdot \frac{w_{ifo}^{2}}{L_{arm}^{2}} \cdot BRDF_{1} \left(30 \cdot 10^{-6}\right) \cdot \Delta\Omega_{ifo}$$

$$P_{acboxytsifo.eff} = 6.341 \times 10^{-18}$$

scatter efficiency

$$\eta_{acb.eff} := \frac{P_{acboxy.eff}}{P_a}$$

$$\eta_{acb.eff} = 7.999 \times 10^{-6}$$

total displacement noise @ 100 Hz, m/rtHz

$$DN_{acboxyt}(\theta_{t}, r) \coloneqq TF_{itmhr} \cdot \left(\frac{P_{acboxytsifo}(\theta_{t}, r)}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot \frac{2}{\sqrt{2}} \cdot k$$

 $DN_{acboxyt}(\theta_t, 0.004) = 2.175 \times 10^{-24}$

Virginio's parameters

arm power, W

PSL power, W

DARM transfer fcn

 $TF_{itmhr} = 1.1 \times 10^{-9}$

 $P_a = 8.125 \times 10^5$

 $P_{psl} = 125$

motion of ACB, m/rtHz $x_{ACB} = 1 \times 10^{-12}$

wave number, m^-1 $k = 5.905 \times 10^6$

scatter efficiency
$$\eta_{acb.eff} = 7.999 \times 10^{-6}$$
BRDF of ACB, sr^-1BRDF_{ACBoxy57} \left(2.57 \cdot \frac{\pi}{180}\right) = 0.032IFO beam waist, m $w_{ifo} = 0.012$ arm cavity length, m $L_{arm} = 4 \times 10^3$ BRDF of ETM, sr^-1BRDF_1 $\left(30.10^{-6}\right) = 1.364 \times 10^3$ solid angle of IFO mode, sr $\Delta\Omega_{ifo} = 2.502 \times 10^{-9}$

COMPARE FLANAGAN-THORNE WITH SMITH

Incident power on baffle louvers, W

Flanagan-Thorne reciprocity scattering cross-section

Flanagan-Thorne scattering cross-section

$$\sigma := \lambda^2 \cdot \text{BRDF}_1 \left(30 \cdot 10^{-6} \right)$$

 $P_{iacb} := I_i \cdot A_{ACB}$

irradiance of TM by power scattered from adjacent surface, W/m^2

$$E_{s} = P_{iacb} \cdot BRDF_{ACBoxy57} \left(2 \cdot 57 \cdot \frac{\pi}{180} \right) \cdot \frac{1}{L_{arm}^{2}}$$

power scattered by TM into IFO mode

$$P_{sTMifo} = E_s \cdot \sigma$$

$$P_{\text{sTMifo}} = P_{\text{iacb}} \cdot BRDF_{\text{ACBoxy57}} \left(2 \cdot 57 \cdot \frac{\pi}{180} \right) \cdot \frac{\lambda^2}{L_{\text{arm}}^2} \cdot BRDF_1 \left(30 \cdot 10^{-6} \right)$$

from the definition of $\Delta \Omega_{ifo}$

$$\Delta \Omega_{\rm ifo} = \frac{\lambda^2}{\left(\pi \cdot w_{\rm ifo}^2\right)}$$

the Thorne expression reduces to the Smith expression below

$$P_{\text{sTMifo}} = P_{\text{iacb}} \cdot BRDF_{\text{ACBoxy57}} \left(2 \cdot 57 \cdot \frac{\pi}{180} \right) \cdot \frac{\pi \cdot w_{\text{ifo}}^2}{L_{\text{arm}}^2} \cdot BRDF_1 \left(30 \cdot 10^{-6} \right) \cdot \Delta\Omega_{\text{ifo}}$$

Smith scattering formalism

power scattered by ACB louver into IFO, W

$$P_{\text{acbporcsifo}} = P_{\text{iacb}} \cdot BRDF_{\text{ACBoxy57}} \left(2 \cdot 57 \cdot \frac{\pi}{180} \right) \cdot \frac{\pi \cdot w_{\text{ifo}}^2}{L_{\text{arm}}^2} \cdot BRDF_1 \left(30 \cdot 10^{-6} \right) \cdot \Delta\Omega_{\text{ifo}}$$

Note: the identical results for coupled power into the IFO indicates that wifo is the correct beam radius for coupling into the IFO mode.

SCATTER FROM ROUGH CUT SS HOLE EDGE

Radius of baffle hole, m

 $R_{bh} := 0.170$

 $t := 0.047 \cdot .0254$

thickness of baffle plate, m

maximum width of exposed edge, m

$$w_e := \frac{t}{\cos\left(33 \cdot \frac{\pi}{180}\right)}$$
$$w_e = 1.423 \times 10^{-3}$$

exposed area of baffle hole edge, m^2

$$A_{bpe} := \int_{-R_{bh}}^{0} 2 \cdot \sqrt{R_{bh}^{2} - x^{2}} \, dx - \int_{-R_{bh}+w_{e}}^{0} 2 \cdot \sqrt{R_{bh}^{2} - (x - w_{e})^{2}} \, dx$$

$$A_{bpe} = 4.84 \times 10^{-4}$$

 $P_{ie} := I_i \cdot A_{bpe} = 0.013$

incident power from opposite arm, W

 $BRDF_{edge} := 0.1$

power scattered into IFO mode, W

$$P_{acbedgesifo} \coloneqq 4 \cdot I_i \cdot A_{bpe} \cdot \left(BRDF_{edge} \cdot \pi \cdot \frac{w_{ifo}^2}{L_{arm}^2} \right) \cdot BRDF_1 \left(30 \cdot 10^{-6} \right) \cdot \Delta \Omega_{ifo}$$

$$P_{acbedgesifo} = 4.975 \times 10^{-19}$$

displacement noise from cut edge @ 100 Hz, m/rtHz

$$DN_{acbedge} := TF_{itmhr} \cdot \left(\frac{P_{acbedgesifo}}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot \frac{2}{\sqrt{2}} \cdot k$$

$$DN_{acbedge} = 5.795 \times 10^{-25}$$

Power Scattered from the louver portion of baffle

$$P_{acboxysifo} = 6.12 \times 10^{-18}$$

displacement noise from louvers @ 100 Hz, m/rtHz

$$DN_{acboxys} \coloneqq TF_{itmhr} \cdot \left(\frac{P_{acboxysifo}}{P_{psl}}\right)^{0.5} \cdot x_{ACB} \cdot \frac{2}{\sqrt{2}} \cdot k$$

$$DN_{acboxys} = 2.033 \times 10^{-24}$$

Ratio of cut edge to louver displacement noise

 $Ratio_edge_louver_noise := \frac{DN_{acbedge}}{DN_{acboxys}}$

 $Ratio_edge_louver_noise = 0.285$

REFLECTED ACB SCATTER

reflectivity of porcelain @ 3 deg

net reflectivity of porcelain after 4 bounces

$$R_{\text{pnet4}} \coloneqq R_{\text{porc57}} \cdot R_{\text{porc3}}^{3}$$
$$R_{\text{pnet4}} = 8 \times 10^{-9}$$

 $R_{porc57} := 0.001$

 $R_{porc3} := 0.02$

 $R_{ss57} := 0.04$

 $R_{ss3} := 0.02$

reflectivity of stainless steel @ 57 deg

reflectivity of stainless steel @ 3 deg

net reflectivity of ss after 4 bounces $R_{snet4} := R_{ss57} \cdot R_{ss3}^{3}$

 $R_{snet4} = 3.2 \times 10^{-7}$

power through the cryopump baffle aperture (hits the arm cavity baffle), W

Area of cryopump baf aperture, m²

$$A_{cp} = 0.464$$

 $P_{acb} = 12.363$

incident intensity, W/m²
$$I_{i} = \frac{P_{acb}}{A_{cp}} = 26.619$$

area of exposed ACB, m^2

power hitting ACB, W

 $A_{ACB} = 0.236$

 $P_{ACB} \coloneqq I_i \cdot A_{ACB}$

 $P_{ACB} = 6.272$

BRDF of chamber wall

 $BRDF_{wall} := 0.1$

$$\Delta_{\rm ifo} \coloneqq 2.72 \times 10^{-9}$$

L:= 4000

Power reflected from porc baffle, W

 $P_{acbporcrefl} := R_{pnet4} \cdot P_{ACB}$

 $P_{acbporcrefl} = 5.018 \times 10^{-8}$

Power reflected from ACBporc scattered into IFO mode , W

 $P_{acbporcrefls} := \sqrt{4} \cdot P_{acbporcrefl} \cdot R_{pnet4} \cdot BRDF_{wall} \cdot \frac{\pi \cdot w_{ifo}^{2}}{L^{2}} \cdot BRDF_{1} (30 \cdot 10^{-6}) \cdot \Delta_{ifo}$

$$P_{acbporcrefls} = 8.424 \times 10^{-33}$$

Motion of BSC chamber @ 100 Hz, m/rt Hz

 $x_{bscchamber} := 2 \times 10^{-11}$

displacement noise @ 100 Hz, m/rtHz

$$DN_{acbporcrefl} \coloneqq TF_{itmhr} \cdot \left(\frac{P_{acbporcrefls}}{P_{psl}}\right)^{0.5} \cdot x_{bscchamber} \cdot 2 \cdot k$$

$$DN_{acbporcrefl} = 2.133 \times 10^{-3}$$

Power reflected from ss baffle, W

 $P_{acbsscrefl} := R_{snet4} \cdot P_{ACB}$

$$P_{acbsscrefl} = 2.007 \times 10^{-6}$$

Power reflected from ACBss scattered into IFO mode , W

$$P_{acbssrefls} := \sqrt{4} \cdot P_{acbsscrefl} \cdot R_{snet4} \cdot BRDF_{wall} \cdot \frac{\pi \cdot w_{ifo}^2}{L^2} \cdot BRDF_1 (30 \cdot 10^{-6}) \cdot \Delta_{ifo}$$

$$P_{acbssrefls} = 1.348 \times 10^{-29}$$

 $x_{bscchamber} := 2 \times 10^{-11}$

displacement noise @ 100 Hz, m/rtHz

$$DN_{acbssrefl} \coloneqq TF_{itmhr} \cdot \left(\frac{P_{acbssrefls}}{P_{psl}}\right)^{0.5} \cdot x_{bscchamber} \cdot \frac{2}{\sqrt{2}} \cdot k$$
$$DN_{acbssrefl} = 6.033 \times 10^{-29}$$

Ratio of reflected scatter from oxidized stainless and porcelainized steel

$$Ratio_acbssrefl_acbporcrefl := \frac{DN_{acbssrefl}}{DN_{acbporcrefl}}$$

Ratio_acbssrefl_acbporcrefl = 28.284

$$\frac{1}{2 \cdot \theta_{i}(\theta_{t}, \theta_{xy}))]^{2}} \cdot \frac{L_{arm}}{L_{arm}^{2}} \, d\theta_{s} \Bigg] \cdot \cos(\theta_{xy}) \, d\theta_{xy}$$

$$\frac{1}{2 \cdot \theta_{i}(\theta_{t}, \theta_{xy}))]^{2}} \cdot \frac{L_{arm}}{L_{arm}^{2}} d\theta_{s} \left[\cdot \cos(\theta_{xy}) d\theta_{xy} \right]$$

)

)