

Exploring the Universe with Gravitational Waves

- Gravitational waves
- Global network of GW detectors
- Source localization
- Advanced LIGO
- Astrophysical sources
- Opening the GW sky No discovery to report here!

Alan Weinstein, Caltech for the LIGO Scientific Collaboration LIGO-G1300642 Lepton-Photon, SF, 24-29 June 2013

"Merging Neutron Stars" (Price & Rosswog)

Fig. 1.1 - LIGO detector with 4 km arms at Livingston, Louisiana

Fig. 1.2 - Virgo Detector, with 3 km arms, at Cascina, near Pisa

Gravitational Waves

Static gravitational fields are described in General Relativity as a curvature or warpage of space-time, changing the distance between space-time events.

Shortest straight-line path of a nearby test-mass is a ~Keplerian orbit.

If the source is moving
(at speeds close to c),
eg, because it's orbiting a companion,
the "news" of the changing
gravitational field propagates outward
as gravitational radiation –
a wave of spacetime curvature

A NEW WINDOW ON THE UNIVERSE

The history of Astronomy:
new bands of the EM spectrum
opened → major discoveries!
GWs aren't just a new band, they're
a new spectrum, with very different
and complementary properties to EM
waves.

- Vibrations of space-time, not in space-time
- Emitted by coherent motion of huge masses moving at near light-speed;
 not vibrations of electrons in atoms
- Can't be absorbed, scattered, or shielded.

GW astronomy is a totally new, unique window on the universe

LIGO

Frequency range of GW Astronomy

Interferometric detection of GWs

GW acts on freely falling masses:

For fixed ability to measure ΔL , make L as big as possible!

Antenna pattern: (not very directional!)

The Advanced GW Detector Network

LIGO

LIGO: Laser Interferometer

Observatory

Hanford, WA

4 km (H1)

+ 2 km (H2), c.2010

Plan for ~2015:

aLIGO 4km H2 to India

4 km L1

Livingston, LA

LIGO Scientific Collaboration

LIGO

The University of Western Australia

Science & Technology Facilities Council
Rutherford Appleton Laboratory

Event Localization With An Array of GW Interferometers

- Gravitational-wave astronomy is greatly enhanced by having a multiplicity of interferometers distributed over the globe.
 - » GW interferometry, 'Aperture synthesis'
- Advantages include:
 - » Source localization in near real time
 - » Enhanced network sky coverage
 - » Maximum time coverage a fraction of the detectors are always listening
 - » Detection confidence coincidence
 - » Source parameter estimation
 - » Polarization resolution

Source localization with LIGO-India

Determination of source sky position: NS-NS binary inspirals @ 160 Mpc Without LIGO-India With LIGO-India

LIGO Low-latency identification of transients for rapid (< ~100s) followup

EM counterparts to GW sources (if any) are short-lived and faint

Call for partnerships with EM, v observers: http://www.ligo.org/science/GWEMalerts.php

EM and GW Multi-messenger Astronomy

Light Curve & Spectrum:

- » Precise sky location
- » Host galaxy
- » Gas environment
- » Progenitor star
- » EM energetics
- » Red shift

Gravitational Waves:

- » Bulk motion dynamics
- » Binary parameters
- » Direct probe of central engine
- » Progenitor mass
- » GW energetics
- » Luminosity distance

more complete picture of progenitor physics

Combining these observations will also

- increase detection confidence,
- allow a measurement of the local Hubble constant.

Initial, Enhanced, and Advanced LIGO schedule

Strain sensitivity achieved by Initial LIGO, Enhanced LIGO S5 (LLO 2007.08.30) Initial LIGO goal S6 (LHO 2010.05.15) Advanced LIGO goal 10⁻²⁰ 10⁻²¹ Strain (1/√Hz) 10⁻¹⁹ m/rtH2 Initial LIGO reach ~20 Mpc 10⁻²³

LIGO GW sources for ground-based detectors: The most energetic processes in the universe

Coalescing
Compact Binary
Systems:
Neutron Star-NS,
Black Hole-NS,
BH-BH

- Strong emitters, well-modeled,
- (effectively) transient

Asymmetric Core Collapse Supernovae

- Weak emitters,
 not well-modeled
 ('bursts'), transient
- Cosmic strings, soft gamma repeaters, pulsar glitches also in 'burst' class

Spinning neutron stars

- (effectively)
 monotonic waveform
- Long duration

Cosmic Gravitationalwave Background

- Residue of the Big Bang, long duration
- Long duration, stochastic background

LIGO GWs from coalescing compact binaries (NS/NS, BH/BH, NS/BH)

Tidal disruption of neutron star

A unique and powerful laboratory to study strong-field, highly dynamical gravity and the structure of nuclear matter in the most extreme conditions

Waveform carries lots of information about binary masses, orbit, merger

Expected ranges of binary merger rates

- Estimates of astrophysical event rate (mergers / Mpc³ / yr) from known NS-NS close binaries in our galaxy, and population synthesis models.
 - LVC, Class. Quant. Grav. 27 (2010) 173001
- Detection range in Mpc (SNR = 8 in one detector, averaged over source sky location and orientation) based on aLIGO Mode 1b noise model (P=125 W, T_{SRM}=20%, F_{SRM}=0°)

System	Masses (M _{sun})	Range (Mpc)	Low rate est. (yr ⁻¹)	Realistic rate (yr ⁻¹)	High rate est. (yr ⁻¹)
NS-NS	1.4/1.4	200	0.4	40	400
NS-BH	1.4/10	410	10	300	
BH-BH	10/10	970	20	1000	

Unmodeled, short-duration (<~ 1 s) GW Bursts

Magnetar flares / storms

Core collapse supernova

High-mass binary merger and ringdown

Gravitational waves from Big Bang

 $\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$

GRAVITATIONAL WAVES

Earth Now

MEUTRINOS

$$\rho_{GW} = \frac{c^2}{32\pi G} < \dot{h}_{ab} \ \dot{h}^{ab} >$$

380,000 YEARS 13.7 billion YEARS

Planck Time 10⁻⁴³ SECONDS Singularity creates Space & Time of our universe

 $h(f) = 6.3 \times 10^{-22} \sqrt{\Omega_{GW}(f)} \left(\frac{100 \text{ Hz}}{f}\right)^{3/2} \text{Hz}^{-1/2}$

cosmic microwave background --WMAP 2003₂₂

Pulsars and continuous wave sources

Pulsars in our galaxy

- »non axisymmetric: $10-4 < \varepsilon < 10-6$
- »science: EOS; precession; interiors
- »"R-mode" instabilities
- »narrow band searches best

- Merger rates as function of mass, mass ratio, spin
 - » Establish existence of black hole binaries
 - » Neutron star mass distribution
 - » Black hole number, mass, spin and location distribution
 - » Search for intermediate-mass black holes
- Inform / constrain astrophysical source distribution mode
 - » Extract population synthesis model parameters.
 - » Binary formation and evolution history
 - » Explore hierarchical merger scenarios

ciera.northwestern.edu/rasio

Study matter effects in waveform: tidal disruption, NS EOS.

• Neutron star – neutron star (Centrella et al.)

Effects of tidal disruption of neutron stars near merger

Testing General Relativity in the strong-field, dynamical regime

Test post-Newtonian expansion of inspiral phase.

$$\Psi(f) \equiv 2\pi f t_0 + \varphi_0 + \frac{3}{128\eta v^5} \left(1 + \sum_{k=2}^7 v^k \psi_k \right).$$

- Test Numerical Relativity waveform prediction for merger phase.
- Test association of inspiral and ringdown phases:
 BH perturbation theory, no-hair theorem.

Testing beyond-GR

- Constrain beyond-GR parameters (Will, 2006)
- Directly measure speed of gravitational waves, constrain (or measure) the mass of the graviton.
- Constrain (or measure) longitudinal or other polarizations.
- Constrain (or measure) parity-violating effects in wave generation/propagation (Yunes et al, 2010).
- Constrain "parameterized post-Einsteinian framework" (Yunes & Pretorius, 2009)
- Test specifically for scalar-tensor and other alternative-gravity theories

Summary

- An int'l network of ground-based GW detectors is taking shape.
- iLIGO's science run (S5) at design sensitivity completed in 2007
- eLIGO's science run (S6) at enhanced sensitivity completed in 2010
 - » No detections to report
 - » LIGO searches producing some interesting upper limits
- Advanced LIGO construction is in progress, on time and budget;
 commissioning and first observations in ~2014-15
 - » Sensitivity/range will be increased by a factor of 10-15
 - » We expect to found the field of GW astrophysics with advanced detectors
- VIRGO, KAGRA, GEO-HF, will be online around ~2015-2016
- Detections, and the exploration of the universe with GWs, will begin over the next decade!

... Fin ...

We look forward to the coming advanced detector era:

- the discovery and exploration of the GW sky;
- unique tests of General Relativity in the strong-field, highly non-linear and dynamical regime;
- joint observations and discoveries with EM and neutrino telescopes;
- and a rich new branch of astrophysics.

But most of all, we look forward to ...