
Exploring the Universe with 
Gravitational Waves

 Gravitational waves
 Global network of GW 

detectors
 Source localization
 Advanced LIGO
 Astrophysical sources
 Opening the GW sky

“Merging Neutron Stars“ (Price & Rosswog)
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No discovery 
to report here!

Alan Weinstein, Caltech
for the LIGO Scientific Collaboration

LIGO-G1300642
Lepton-Photon, SF, 24-29 June 2013



Gravitational Waves
Static gravitational fields are 
described in General Relativity 
as a curvature or warpage of 
space-time, changing the 
distance between space-time 
events.

If the source is moving 
(at speeds close to c), 
eg, because it’s orbiting a companion, 
the “news” of the changing 
gravitational field propagates outward 
as gravitational radiation –
a wave of spacetime curvature

Shortest straight-line path of a nearby 
test-mass is a ~Keplerian orbit.

G= 8
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A NEW WINDOW
ON THE UNIVERSE

The history of Astronomy:
new bands of the EM spectrum  
opened  major discoveries!
GWs aren’t just a new band, they’re 
a new spectrum, with very different 
and complementary properties to EM 
waves.
• Vibrations of space-time, not in space-time
• Emitted by coherent motion of huge masses 

moving at near light-speed; 
not vibrations of electrons in atoms

• Can’t be absorbed, scattered, or shielded.

GW astronomy is a totally new, 
unique window on the universe
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Frequency range of GW Astronomy

Audio band

Space
www.elisa-ngo.org/ Terrestrial
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Pulsar timing
http://www.ipta4gw.org/

nHzCMB B-pol



Interferometric detection of GWs

GW acts on freely 
falling masses:

Antenna pattern:     
(not very directional!)

laser

Beam 
splitter

mirrors

Dark port 
photodiode

For fixed ability to 
measure L, make L
as big as possible!

)2(sin 2 LkPP inout 
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The Advanced GW Detector Network
GEO600 (HF)

Advanced LIGO 
Hanford 

Advanced LIGO 
Livingston Advanced 

Virgo LIGO-India

KAGRA 



LIGO: Laser Interferometer 
Gravitational-wave 

Observatory

LLO

LHO

4 km (H1) 
+ 2 km (H2), c.2010

4 km
L1

Hanford, WA

Livingston, LA

Caltech

MIT
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Plan for ~2015:
aLIGO 4km H2 to India



LIGO Scientific Collaboration
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Event Localization With An
Array of GW Interferometers

LIGO
Livingston

LIGO
Hanford

TAMA GEO

VIRGO



1 2

cos = t / (c D12)
 ~ 0.5 deg

D
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 Gravitational-wave astronomy is 
greatly enhanced by having a 
multiplicity of interferometers 
distributed over the globe. 
» GW interferometry,  ‘Aperture synthesis’  

 Advantages include:
» Source localization in near real time
» Enhanced network sky coverage
» Maximum time coverage – a fraction of 

the detectors are‘always listening’
» Detection confidence - coincidence
» Source parameter estimation
» Polarization resolution



Source localization with 
LIGO-India 

Determination of source sky position: NS-NS binary inspirals @ 160 Mpc
Without LIGO-India                                   With LIGO-India

S. Fairhurst (2012); LSC - arXiv:1304.0670v1(2013) 10



Low-latency identification of 
transients for rapid (< ~100s) followup

11

EM counterparts to GW sources (if any) are short-lived and faint

Call for partnerships with EM,  observers: http://www.ligo.org/science/GWEMalerts.php



EM and GW
Multi-messenger Astronomy

Gravitational Waves:
» Bulk motion dynamics
» Binary parameters
» Direct probe of central engine
» Progenitor mass
» GW energetics
» Luminosity distance

Light Curve & Spectrum:
» Precise sky location
» Host galaxy
» Gas environment
» Progenitor star
» EM energetics
» Red shift

Combining these observations will also 
• increase detection confidence, 
• allow a measurement of the local Hubble constant.  
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more complete picture of progenitor physics



Initial, Enhanced, and 
Advanced LIGO schedule

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

S5 data run e-LIGO installation
and commissioning S6 data run Dark period

S6 data analysis & preparations 
for Advanced LIGO commissioning and open data

Advanced LIGO Project

Commissioning & initial data 
With Advanced LIGOAdv LIGO

Installation
begins

now

Improve amplitude sensitivity by a factor of 10x, and…

 Number of sources goes up 1000x! 13



Advanced LIGO goal

Initial LIGO reach ~20 Mpc
Advanced LIGO reach ~200 Mpc

Strain sensitivity achieved by Initial LIGO, Enhanced LIGO

10-19 m/rtHz

10-20 m/rtHz



Better 
seismic 
isolation Higher

power
laserBetter 

test masses
and 

suspension



Better 
seismic 
isolation Higher

power
laserBetter 

test masses
and 

suspension



17

Beyond Advanced LIGO

KAGRAKAGRA



GW sources for ground-based detectors:
The most energetic processes 

in the universe

Casey Reed, Penn State 

Credit: AEI, CCT, LSU

Coalescing 
Compact Binary 
Systems: 
Neutron Star-NS, 
Black Hole-NS, 
BH-BH

- Strong emitters, 
well-modeled, 

- (effectively) 
transient

Credit: Chandra X-ray 
Observatory 

Asymmetric Core 
Collapse 
Supernovae

- Weak emitters, 
not well-modeled 
(‘bursts’), transient 

- Cosmic strings, 
soft gamma 
repeaters, pulsar 
glitches also in 
‘burst’ class 

NASA/WMAP Science Team 

Cosmic Gravitational-
wave Background
- Residue of the Big 
Bang, long duration
- Long duration,  
stochastic background

Spinning neutron 
stars
- (effectively) 
monotonic waveform
- Long duration
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GWs from coalescing compact 
binaries (NS/NS, BH/BH, NS/BH)

Tidal disruption of neutron star

Gravitational waveform: inspiral              merger  BH-ringdown

A unique and powerful laboratory to study
strong-field, highly dynamical gravity
and the structure of nuclear matter
in the most extreme conditions

19Waveform carries lots of information about binary masses, orbit, merger 



Expected ranges of 
binary merger rates
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• Estimates of astrophysical event rate 
(mergers / Mpc3 / yr) from known NS-NS 
close binaries in our galaxy, and population 
synthesis models.

• LVC, Class. Quant. Grav. 27 (2010) 173001

• Detection range in Mpc (SNR = 8 in one detector, 
averaged over source sky location and 
orientation) based on aLIGO Mode 1b noise 
model  (P=125 W, TSRM=20%, FSRM=0 )
System Masses 

(Msun)
Range 
(Mpc)

Low rate 
est. 
(yr-1)

Realistic 
rate
(yr-1)

High rate 
est. (yr-1)

NS-NS 1.4/1.4 200 0.4 40 400

NS-BH 1.4/10 410 10 300

BH-BH 10/10 970 20 1000

Limits from Initial LIGO

Expected range

NS-NS  NS-BH   BH-BH10
-7
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Unmodeled, short-duration 
(<~ 1 s) GW Bursts

Gravitational waves

Core collapse supernova 

Credit: Chandra 
X-ray Observatory 

Magnetar flares / storms

High-mass 
binary merger 
and ringdown

21Credit: C. Ott



Gravitational waves from Big Bang

cosmic microwave 
background --
WMAP 2003

380,000
YEARS

13.7 billion
YEARS

Waves now in the LIGO band were 
produced 10-22 sec after the big bang

GUT
GWs

s
NOW

s

DM,DE 22



Pulsars and continuous wave sources

 Pulsars in our galaxy
»non axisymmetric:     10-4 <  < 10-6
»science: EOS; precession; interiors
»“R-mode” instabilities
»narrow band searches best

R-modes

NASA 

NASA 

(NASA/CXC/SAO) 
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4

4 GWIfGh
c d
 

2GW ROTf f
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Astrophysical science 
with binary mergers

 Merger rates as function of mass, mass ratio, spin
» Establish existence of black hole binaries
» Neutron star mass distribution
» Black hole number, mass, spin and location distribution
» Search for intermediate-mass black holes

 Inform / constrain astrophysical source distribution models
» Extract population synthesis model parameters.
» Binary formation and evolution history
» Explore hierarchical merger scenarios

 Study matter effects in waveform: tidal disruption, NS EOS.
ciera.northwestern.edu/rasio
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Effects of tidal disruption of 
neutron stars near merger
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Credit: Daniel Price and Stephan RosswogiLIGO

aLIGO

ET



Testing General Relativity
in the strong-field, dynamical regime

 Test post-Newtonian expansion of inspiral phase. 

 Test Numerical Relativity waveform prediction 
for merger phase. 

 Test association of inspiral and ringdown phases: 
BH perturbation theory, no-hair theorem. 

EOB-NR

nonlocal.com/hbar/blackholes.html
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www.black-holes.org



Testing beyond-GR

 Constrain beyond-GR parameters (Will, 2006)
 Directly measure speed of gravitational waves, 

constrain (or measure) the mass of the graviton. 
 Constrain (or measure) longitudinal or other polarizations.
 Constrain (or measure) parity-violating effects in wave 

generation/propagation (Yunes et al, 2010).
 Constrain “parameterized post-Einsteinian framework”

(Yunes & Pretorius, 2009)
 Test specifically for scalar-tensor and other alternative-gravity 

theories 

Beyond Einstein
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Summary
 An int’l network of ground-based GW detectors is taking shape.
 iLIGO’s science run (S5) at design sensitivity completed in 2007
 eLIGO’s science run (S6) at enhanced sensitivity completed in 2010

» No detections to report 
» LIGO searches producing some interesting upper limits

 Advanced LIGO construction is in progress, on time and budget;
commissioning and first observations in ~2014-15
» Sensitivity/range will be increased by a factor of 10-15 
» We expect to found the field of GW astrophysics

with advanced detectors
 VIRGO, KAGRA, GEO-HF, will be online around ~2015-2016
 Detections, and the exploration of the universe with GWs, will begin 

over the next decade!
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… Fin …
We look forward to the coming advanced detector era:
 the discovery and exploration of the GW sky; 
 unique tests of General Relativity in the strong-field, 

highly non-linear and dynamical regime;
 joint observations and discoveries with EM and neutrino 

telescopes;
 and a rich new branch of astrophysics.

But most of all, we look forward to …
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