
Smooth Polynomial Ramp for SEI Turnon
Brian Lantz

T1300510-v2, June, 12 2013

1 Summary

This document describes and derives the fifth order polynomial used to turn on the Carte-
sian basis biases for the displacement sensors on the ISI platforms. These biases are not
filter modules, so the standard smooth biases changes are not available. I’ve derived a
simple, smooth ramp to change the biases, and implemented the ramp in a C-code func-
tion on the front end. This ramp is called the P5 ramp, since it is based on at fifth order
polynomial. It is a good, smooth ramp. The general shape of the ramp is shown below in
figure 1. It is likely that more optimal ramps can be derived for particular conditions, but
this ramp is well suited for the bias changes because:

1. It is smooth

2. The smoothness leads to minimal high frequency content.

3. It is easy to compute.

4. It is easy to predict various important features such as maximum velocity and peak
frequency content.

−T/2 0 T/2

x_initial

x_final

Calculation time

Lo
ca

tio
n

(e
.g

. c
ou

nt
s)

Ramp Profile of the Smooth Ramp
cr

ea
te

d
by

 b
ia

s_
ra

m
p

on
 0

5−
Ju

n−
20

13

Figure 1: Profile of the P5 smooth ramp.

There is a great deal of discussion in the literature about minimizing the ‘jerk’ term,
or the time derivative of acceleration, for a ramp. However, it seems more useful to try
and reduce the spectral overlap of the acceleration (or force) with the response of payload
items. We strongly suggest that the ramp time, T , be at least 3 times the longest period
of sensitive payloads affected by the ramp. For example, if we are moving the optical table
with a ramp, and the table is supporting an optic with a lowest frequency of 0.67 Hz, or
a period of 1.5 seconds, the ramp time used be longer than 4.5 seconds. HAM-ISI tables
typically use 5 second ramp times.

2 Derivation

The derivation is straightforward. Make a ramp which goes from value xi to value xf in
time T . To make the ramp ‘smooth’ we impose the constraints that:

1. The initial velocity, vi and final velocity, vf , are zero.

2. The initial acceleration, v̇i, and final acceleration, v̇f , are also zero.

2.1 Velocity Profile Derivation

There are an infinite number of solutions which satisfy the constraints above. Because it
is simple, we use a polynomial to define the velocity. We choose for the polynomial to run
from time −T/2 to +T/2 and to be symmetric about T = 0. The lowest order polynomial
which meets all these conditions will be a fourth order polynomial (which has 3 inflection
points) with only even-order terms, so the velocity, v, as a function of calculation time, tc,
will be:

v(tc) = v4 tc
4 + v2 tc

2 + v0 (1)

The velocity will reach its greatest magnitude at tc = 0 because of the polynomial’s
order and symmetry. We define this maximum velocity to be vmax. Since v(0) = vmax, it
must be true that v0 = vmax. We solve for v2 and v4 by setting the final velocities and
accelerations to be 0.

v̇(tc) = 4 v4 tc
3 + 2 v2 tc, at time T/2 the acceleration is 0, so (2)

0 = 4 v4 (T/2)3 + 2 v2 T/2, so (3)

0 = v4 T 2 + 2 v2, or (4)

v2 = −v4 T 2

2
(5)

Now we look at equation 1 and evaluate it at the end of the ramping time so we can
solve for v2 and v4.

2

−T/2 0 T/2

0

V_max

Calculation time

V
el

oc
ity

 (
e.

g.
 c

ou
nt

s/
se

c)

Velocity Profile Chosen for the Smooth Ramp

cr
ea

te
d

by
 b

ia
s_

ra
m

p
on

 0
5−

Ju
n−

20
13

Figure 2: Chosen velocity profile for the smooth ramp.

v4 tf
4 + v2 tf

2 + vmax = 0 (6)

We substitute in our expressions for v2 and tf to get

v4
T 4

16
− v4 T 2

2
· T

2

4
+ vmax = 0 (7)

which simplifies to

v4
T 4

16
= vmax (8)

so
v4 = vmax

16
T 4

, so (9)

v4 =
16
T 4

vmax, and, from equation 5 (10)

v2 = − 8
T 2

vmax. (11)

3

2.2 Velocity Profile Summary

The velocity is profile is

v(tc) = v4 tc
4 + v2 tc

2 + v0, where

v4 =
16
T 4

vmax, v2 = − 8
T 2

vmax, and v0 = vmax

for − T/2 < tc < T/2.

(12)

2.3 Displacement Profile

Once we have a general description for the velocity, we integrate the velocity to get the
displacement profile. Integration of equation 12 yields a displacement of:

x(tc) =
v4

5
tc

5 +
v2

3
tc

3 + v0 tc + x0

for − T/2 < tc < T/2.
(13)

We define ∆x ≡ xf − xi and we can evaluate equation 13 as the definite integral

∆x = x(tf)− x(ti)

=
v4

5

(T 5

32
− −T 5

32

)
+

v2

3

(T 3

8
− −T 3

8

)
+ v0

(T

2
− −T

2

)
=

v4

5
T 5

16
+

v2

3
T 3

4
+ v0 T

(14)

substituting in the values of v4, v2, and v0 from equation 12, this becomes

∆x =
1
5

vmax T − 2
3

vmax T + vmax T, or (15)

vmax =
15
8

∆x

T
(16)

To calculate x0, we recall that half way through the ramp time, i.e. tc = 0, we are at
the midpoint between the initial and final locations, so

x0 =
xf + xi

2
(17)

4

2.4 Displacement Profile Summary

We can now express the displace curve, or the ramp, as

x(tc) = x5 tc
5 + x3 tc

3 + x1 tc + x0, where

x5 =
16

5 T 4
vmax, x3 = − 8

3 T 2
vmax, x1 = vmax, and x0 =

xf + xi

2

for − T/2 < tc < T/2, and vmax =
15
8

∆x

T
.

(18)

−T/2 0 T/2

x_initial

x_final

Calculation time

Lo
ca

tio
n

(e
.g

. c
ou

nt
s)

Ramp Profile of the Smooth Ramp

cr
ea

te
d

by
 b

ia
s_

ra
m

p
on

 0
5−

Ju
n−

20
13

Figure 3: Profile of the P5 smooth ramp.

2.5 Acceleration Profile

It is also useful to consider the acceleration implied by the ramp. The derivative of the
velocity given in equation 12 is

v̇(tc) = 4 v4 tc
3 + 2 v2 tc (19)

and for times −T/2 < tc < T/2 the ‘jerk’ is

v̈(tc) = 12 v4 tc
2 + 2 v2. (20)

5

There is a discontinuity in the jerk at the beginning and end of the ramp, but this does
not seem to matter.

The maximum acceleration occurs at the time tmax

v̈(tmax) = 12 v4 tmax
2 + 2 v2 = 0

tmax
2 = − v2

6 v4

(21)

Solving this with the values of t2 and t4 from equation 12 yields

tmax = ± T√
12

(22)

If we put this time back into the equation 19, we see that the peak acceleration, amax, is

v̇(tmax) = 4 v4

(±T√
12

)3 + 2 v2

(±T√
12

)
amax = 4

16
T 4

(±T√
12

)3

vmax − 2
8
T 2

(±T√
12

)
vmax

amax = ± 16
3
√

3
1
T

vmax, or

amax = ± 10√
3

∆x

T 2

(23)

6

−T/2 0 T/2

−a_max

a_max

Calculation time

A
cc

el
er

at
io

n
(e

.g
. c

ou
nt

s/
se

c2)

Acceleration Profile of the Smooth Ramp

cr
ea

te
d

by
 b

ia
s_

ra
m

p
on

 0
5−

Ju
n−

20
13

Figure 4: Acceleration Profile of the P5 smooth ramp.

7

3 C-code

The c-code is located in the {userapps} directory at:
{userapps}/release/isi/common/src/RAMP BIAS.c
The function which the FE code calls is named RAMP P5
The code listing is below:

1 /∗ RAMP BIAS. c Function : RAMP P5. c
2 ∗
3 ∗ This func t i on app l i e s a smooth ramp f o r b i a s changes
4 ∗ I t i s a 5 th order polynomial .
5 ∗
6 ∗ Inputs :
7 ∗
8 ∗ (1) double d e s i r e d v a l : va lue we want to ramp to , or hold
9 ∗ (2) double T ramp : ramp time in seconds

10 ∗
11 ∗ Outputs :
12 ∗
13 ∗ (1) double output va l : the cur rent output value
14 ∗ (2) double s t a t e : 0 = ramping , 1= hold ing
15 ∗
16 ∗ Authors : BTL
17 ∗ Apr i l 30 − May 2013
18 ∗ s e e T1300510 f o r a d e r i v a t i on o f the ramp − BTL June 12 , 2013
19 ∗/
20

21 #define MODEL RATE FE RATE
22

23 typedef enum {RAMPING, HOLDING} RampStates ;
24

25

26 void RAMP P5(double ∗ argin , int nargin , double ∗argout , int nargout) {
27 stat ic int RampTimer = 0 ; // How f a r along the ramp are we , in c y c l e s
28 stat ic int TotalRampCycles = 0 ; // Number o f c y c l e s in the ramp
29 stat ic RampStates CurrentState = HOLDING;
30 stat ic int Fi r s tCyc l e = 1 ; // 1 w i l l r e i n i t i a l i z e th ing s
31 stat ic double PreviousInput ;
32 stat ic double PreviousOutput ;
33 stat ic double FinalOutput ; // end value f o r the ramp
34 double ThisOutput ;
35 double Tramp ; // ramptime (sec) read only on new ramp s t a r t ;
36 stat ic double RpC [6] ; // these are the polynomial Ramp Coefs .
37 double Xdi f f ; // Total change f o r the ramp
38 double Vmax; // max ve l o c i t y , computed from dX and dT
39 double t t ; // time from ramp sta r t , but s c a l ed as −T/2 −> T/2 .
40

41 // Star t by read ing the inputs , we only read the ramp time on input changes .
42 double ThisInput = arg in [0] ;
43

44 // on the f i r s t cyc l e , s e t the output = the input , and end
45 i f (F i r s tCyc l e == 1) {
46 ThisOutput = ThisInput ;
47 FinalOutput = ThisInput ;
48 // PreviousInput = ThisInput ;
49 // PreviousOutput = ThisOutput ;

8

50 Fi r s tCyc l e = 0 ;
51 CurrentState = HOLDING;
52 } else {
53 i f (ThisInput != PreviousInput) {
54 // s t a r t a new ramp
55 Tramp = (double) a rg in [1] ;
56 i f (Tramp < 0) {Tramp = 0 . 0 ; }
57 i f (Tramp > 100) {Tramp = 100 . 0 ;}
58 RampTimer = 0 ;
59 TotalRampCycles = (int) (MODEL RATE ∗ Tramp) ;
60 FinalOutput = ThisInput ;
61 PreviousInput = ThisInput ;
62 CurrentState = RAMPING;
63 Xdi f f = (double) FinalOutput − PreviousOutput ;
64 Vmax = (1 . 8 75) ∗ Xdi f f /Tramp ;
65 // RC are the Ramp Co e f f i c i e n t s
66 RpC[0] = PreviousOutput + (0 . 5 ∗ Xdi f f) ;
67 RpC[1] = Vmax;
68 RpC[2] = 0 . 0 ;
69 RpC[3] = (−2.6666666667/(Tramp∗ Tramp)) ∗ Vmax;
70 RpC[4] = 0 . 0 ;
71 RpC[5] = (3 . 2 0/ (Tramp∗Tramp∗Tramp∗Tramp)) ∗ Vmax;
72 }
73 switch (CurrentState) {
74 case RAMPING:
75 RampTimer++;
76 // make t h i s back in to a time which goes from −T/2 to +T/2 ;
77 t t = (double) 2∗RampTimer − TotalRampCycles ;
78 t t = (0 . 5 ∗ t t) / (1 . 0 ∗ MODEL RATE) ; // ca s t to double

be f o r e the d iv id e
79 // RC[5] ∗ t t ˆ5 + RC[4] ∗ t t ˆ4 + . . . RC[0]
80 ThisOutput = ((((RpC[5] ∗ t t + RpC[4]) ∗ t t + RpC[3]) ∗ t t + RpC

[2]) ∗ t t + RpC[1]) ∗ t t + RpC [0] ;
81 i f (RampTimer >= TotalRampCycles) {
82 ThisOutput = FinalOutput ;
83 CurrentState = HOLDING;
84 } else {
85 CurrentState = RAMPING;
86 }
87 break ;
88 case HOLDING:
89 ThisOutput = FinalOutput ;
90 break ;
91 }
92 }
93 // setup f o r the next cy c l e ;
94 PreviousInput = ThisInput ;
95 PreviousOutput = ThisOutput ;
96

97 // Set the outputs : Ramp value and cur rent s t a t e
98 argout [0] = ThisOutput ;
99 // Output the i n t va lue o f the cur rent s t a t e

100 argout [1] = CurrentState ;
101

102 // Test ing ouputs
103 // argout [2] = RpC [0] ;
104 // argout [3] = RpC [1] ;
105 // argout [4] = RpC [2] ;

9

106 // argout [5] = RpC [3] ;
107 // argout [6] = RpC [4] ;
108 // argout [7] = RpC [5] ;
109 // argout [8] = t t ;
110 }

10

	Summary
	Derivation
	Velocity Profile Derivation
	Velocity Profile Summary
	Displacement Profile
	Displacement Profile Summary
	Acceleration Profile

	C-code

