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Neutron Star Binaries

Neutron star binaries (with other neutron stars, white dwarfs,
or black holes) are a source of readily detectable gravitational
waves.
By doing time-evolution simulations of NS binaries, we can get
precision models of the GW emissions.
Such simulations require high precision initial models, as time
evolution code tends to introduce additional numerical error.

Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Neutron Star Binaries

Neutron star binaries (with other neutron stars, white dwarfs,
or black holes) are a source of readily detectable gravitational
waves.
By doing time-evolution simulations of NS binaries, we can get
precision models of the GW emissions.
Such simulations require high precision initial models, as time
evolution code tends to introduce additional numerical error.

Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Neutron Star Binaries

Neutron star binaries (with other neutron stars, white dwarfs,
or black holes) are a source of readily detectable gravitational
waves.
By doing time-evolution simulations of NS binaries, we can get
precision models of the GW emissions.
Such simulations require high precision initial models, as time
evolution code tends to introduce additional numerical error.

Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Outline

1 Motivation
Neutron Stars as Gravitational Wave Sources
Goals

2 Background
Numerical Methods
Initial Data Solvers

3 Results
Quantitative Methods of Comparison

Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Improvement Over Current Models

Our current initial data solver, CST1

(Cook-Shapiro-Teukolsky), is of limited accuracy. This limits
the accuracy we can achieve with the time-evolution code.
We require more accuracy as the current accuracy of our code
limits the ability to which we can test and improve the
time-evolution code.
As we desire more accurate models than generated by CST, we
must use a different initial data solver.
We have focused on two initial data solvers in particular, AKM
and LORENE.

1G. B. Cook et al., 1992, 1994
Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Improvement Over Current Models

Our current initial data solver, CST1

(Cook-Shapiro-Teukolsky), is of limited accuracy. This limits
the accuracy we can achieve with the time-evolution code.
We require more accuracy as the current accuracy of our code
limits the ability to which we can test and improve the
time-evolution code.
As we desire more accurate models than generated by CST, we
must use a different initial data solver.
We have focused on two initial data solvers in particular, AKM
and LORENE.

1G. B. Cook et al., 1992, 1994
Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Improvement Over Current Models

Our current initial data solver, CST1

(Cook-Shapiro-Teukolsky), is of limited accuracy. This limits
the accuracy we can achieve with the time-evolution code.
We require more accuracy as the current accuracy of our code
limits the ability to which we can test and improve the
time-evolution code.
As we desire more accurate models than generated by CST, we
must use a different initial data solver.
We have focused on two initial data solvers in particular, AKM
and LORENE.

1G. B. Cook et al., 1992, 1994
Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Neutron Stars as Gravitational Wave Sources
Goals

Improvement Over Current Models

Our current initial data solver, CST1

(Cook-Shapiro-Teukolsky), is of limited accuracy. This limits
the accuracy we can achieve with the time-evolution code.
We require more accuracy as the current accuracy of our code
limits the ability to which we can test and improve the
time-evolution code.
As we desire more accurate models than generated by CST, we
must use a different initial data solver.
We have focused on two initial data solvers in particular, AKM
and LORENE.

1G. B. Cook et al., 1992, 1994
Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Numerical Methods
Initial Data Solvers

Outline

1 Motivation
Neutron Stars as Gravitational Wave Sources
Goals

2 Background
Numerical Methods
Initial Data Solvers

3 Results
Quantitative Methods of Comparison

Matthias Raives High Fidelity Initial Models for Neutron Star Simulations



Motivation
Background

Results
Summary

Numerical Methods
Initial Data Solvers

Spectral Methods

Spectral methods are a method of solving differential
equations by approximating functions with high order
polynomials on a small number of domains.
The approximation is done by choosing an interpolating
polynomial I (x) which is equal to the original function f (x) on
some set of grid points, usually taken to be the extrema or
roots of Chebyshev polynomials.
Generally, the approximation is done in a domain x̃ ∈ [−1,1] or
x̃ ∈ [0,1] which maps to some subset of R.
The problem thus reduces to calculating the coefficients of the
interpolating polynomial. This often must be done numerically,
from which a small amount of error is introduced.
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Convergence of Spectral Methods
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Compactification

We cannot use Cartesian
coordinates in a numerical
method if we wish to
model the infinite domain
x ∈ [0,∞).
A change of coordinates
such as x = 1−s

s maps the
finite domain [0,1) to the
infinite domain [0,∞).
Compactification allows us
to use the more natural
boundary conditions at
infinity.

x

y

Lines of constant s, t
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Numerical Relativity

We consider the case of an axisymmetric star, where the
metric ds2 = gαβdxαdxβ can be written in terms of four
metric potentials which are functions of (in spherical
coordinates) r and θ only (in cylindrical coordinates, ρ and ζ ).
The star is generally considered to be a perfect fluid, with
stress-energy tensor given by Tαβ = (ε +p)uαuβ +pgαβ . Here
p is the pressure, uα is the matter 4-velocity, and ε is the total
energy density.
The various numerical schemes solve the GR and
hydrodynamic equations for the metric potentials, density, and
fluid velocity at every grid point inside the star, and for the
metric potentials at every grid point outside the star, as well
as the shape of the stellar surface.
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AKM

AKM is an initial data solver written by Markus Ansorg,
Andreas Kleinwächter, and Reinhard Meinel2.
Physically, AKM models a rotating star as a rigidly rotating,
axisymmetric, perfect fluid.
AKM uses a 2-domain pseudo-spectral method, with the inner
sub-domain corresponding to the stellar interior and a
compactified external sub-domain.

2M. Ansorg et al., 2003
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LORENE

LORENE is the Langage Objet pour la RElativité NumériquE3,
a C/C++ library of classes useful for numerical relativity and
solving partial differential equations using multi-domain
spectral methods.
LORENE contains code that solves common astrophysical
scenarios such as rotating stars, black holes, and binary
systems.

3www.lorene.obspm.fr
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GRV2

Definition
In axisymmetric, asymptotically flat spacetime, with a metric of the
form

gαβdx
α dxβ =−e2νdt2+ e2µ

(
dρ

2+dζ
2)+W 2e−2ν (dϕ−ωdt)2

the following virial identity holds:∣∣∣∣∣∣1−8π

∫
∞

0
∫

∞

0

(
p+(ε +p) v2

1−v2

)
e2µ dρ dζ∫

∞

0
∫

∞

0

(
(∇ν)2− 3

4W 2e−4ν (∇ω)2
)
dρ dζ

∣∣∣∣∣∣= 0

where (ν ,ω,µ,W ) are the metric potentials, p is the pressure, ε is
the total energy density, v is the proper velocity, and (t,ρ,ζ ,ϕ) are
the (cylindrical) coordinates.
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GRV2 (Continued)

In the Newtonian limit, GRV2 becomes∫
π

0
∫

∞

0

[
p+ρv2− 1

8πG (∇ν)2
]
r dr dθ = 0, where 1

8πG (∇ν)2 is
the gravitational potential energy density. This roughly
corresponds to

∫
p dV +mv2−Ug = 0

In an numerical method, GRV2 will not vanish entirely; it will
converge to zero as the resolution increases.
We can compare different numerical methods by examining
how accurately they compute GRV2.
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Computing GRV2

The codes for rotating stars in LORENE already compute
GRV2.
Calculations of GRV2 in LORENE converge to order 10−7

(with 33 spectral coefficients in each of the internal domains).
AKM does not compute GRV2; much of the work I have done
is implementing this feature.
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AKM Spectral Domain

Definition
In the outer domain,

ρ
2(s, t) = t

[
r2
e − r2

p +

(
rp + re

1− s
s

)2
]

ζ
2(s, t) = (1− t)

[(
rp + re

1− s
s

)2

− r2
p

]
+G (t)− r2

e t

In the inner domain,

ρ
2(s, t) = r2

e t ζ
2(s, t) = s

[
G (t)− r2

e t
]

where re is the equatorial radius, rp is the polar radius, (s, t) ∈ [0,1]2 are
the spectral coordinates, and G (t) : [0,1]→ R describes the stellar
surface.
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AKM Spectral Domain

·

Ζ

Lines of constant s, t
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Summary

Accurate, high precision simulations of neutron star binaries
are useful in studying their GW emissions; such models require
precise initial models.
Our initial models are generated by initial data solvers which
solve the GR and hydrodynamic equations via multi-domain
spectral methods
We compare different numerical methods by comparing the
accuracy with which they compute GRV2

Outlook
The code to compute GRV2 in AKM is almost, but not yet
complete. Once this is done we can compare AKM to LORENE
to determine which initial data solver is more accurate.
Eventually we will begin time-evolution of neutron star binaries
modeled with AKM/LORENE.
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