RECOVERING HARDWARE INJECTIONS IN LIGO S5 DATA

Ashley Disbrow
Carnegie Mellon University

Roy Williams, Michele Vallisneri, Jonah Kanner
LIGO SURF 2013
Outline

• LOSC Open Science Data Release
• Hardware Injections of compact binary coalescence signals
 • What are these?
 • What do we expect to find in the data?
• How to generate a
• Template matching and signal recovery
• Recovery of Hanford 2 hardware injections
 • Was the match successful?
 • Do we see what we expect?
• Summary of Final Results for All Detectors
LIGO Open Data Release

• LIGO archival data will be released to public as open source data
 • S5 science run 2005-2007
 • H1 and H2 at LHO, L1 at LLO
LIGO Open Data Release

- LIGO archival data will be released to public as open source data
 - S5 science run 2005-2007
 - H1 and H2 at LHO, L1 at LLO
- LOSC – LIGO Open Science Center
 - Provides access to data
LIGO Open Data Release

• LIGO archival data will be released to public as open source data
 • S5 science run 2005-2007
 • H1 and H2 at LHO, L1 at LLO
• LOSC – LIGO Open Science Center
 • Provides access to data
• In preparation for the release:
 • Software, cookbooks, wikis, tutorials, and teaching materials
 • Bring 8 year old book-keeping up to date
 • Recover and document hardware injection signals
Hardware Injections

- Inject Compact Binary Coalescence signal into data
 - Move ETMs (mirrors) using magnetic actuators
 - Important for instrument calibration and evaluating the efficiency of searches for signals
Hardware Injections

• Inject Compact Binary Coalescence signal into data
 • Move ETMs (mirrors) using magnetic actuators
 • Important for instrument calibration and evaluating the efficiency of searches for signals

• Injections classified as:
 1. Successful
 2. Not in Science Mode
 3. Injection Process Off
 4. GRB Alert
 5. Operator Override
 6. Injection Compromised
Hardware Injections

- Inject Compact Binary Coalescence signal into data
 - Move ETMs (mirrors) using magnetic actuators
 - Important for instrument calibration and evaluating the efficiency of searches for signals

- Injections classified as:
 1. Successful
 2. Not in Science Mode
 3. Injection Process Off
 4. GRB Alert
 5. Operator Override
 6. Injection Compromised

\[\text{Unsuccessful} \]
10 – 10 Solar Mass Hardware Injection

H1:LSC-STRAIN at 832948455.000 with Q of 11.3

Notice the chirp!
1.4 – 1.4 Solar Mass Hardware Injection

Notice the chirp!

H1:LSC-STRAIN at 817645695.000 with Q of 45.3
Generate Template

- Create Compact Binary Coalescence templates
 - 1.4 – 1.4 Solar mass binary
 - 3 – 3 Solar mass binary
 - 10 – 10 Solar mass binary
 - 1.4 – 10 Solar mass binary

\[\tilde{h}(f) = \left(\frac{1 \text{ Mpc}}{D_{\text{eff}}} \right) A_{1\text{ Mpc}}(M, \mu) f^{-7/6} e^{-i \Psi(f; M, \mu)} \]

- \(\tilde{h}(f) \) – Strain/Hz
- \(A \) – Mass dependent amplitude
- \(f \) – frequency
- \(\Psi(f; M, \mu) \) – Phase of source
Determining the Amplitude of the Template

\[A_{1\text{ Mpc}}(M, \mu) = -\left(\frac{5\pi}{24} \right)^{1/2} \left(\frac{GM}{c^3} \right) \left(\frac{GM}{c^2D_{\text{eff}}} \right) \left(\frac{GM}{c^3} \pi f \right)^{-7/6} \]

\[= -\left(\frac{5}{24\pi} \right)^{1/2} \left(\frac{GM_{\odot}/c^2}{1\text{ Mpc}} \right) \left(\frac{\pi GM_{\odot}}{c^3} \right)^{-1/6} \left(\frac{M}{M_{\odot}} \right)^{-5/6} \]

\[M \] – Chirp mass, units of solar mass
Determining the Amplitude of the Template

\[A_{1\text{ Mpc}}(M, \mu) = -\left(\frac{5\pi}{24} \right)^{1/2} \left(\frac{GM}{c^3} \right) \left(\frac{GM}{c^2 D_{\text{eff}}} \right) \left(\frac{GM}{c^3 \pi f} \right)^{-7/6} \]

\[= -\left(\frac{5}{24\pi} \right)^{1/2} \left(\frac{GM_\odot/c^2}{1 \text{ Mpc}} \right) \left(\frac{\pi GM_\odot}{c^3} \right)^{-1/6} \left(\frac{\mathcal{M}}{M_\odot} \right)^{-5/6} \]

\[\mathcal{M} \quad \text{– Chirp mass, units of solar mass} \]

\[A_{1\text{ Mpc}}(M, \mu) = -\left(\frac{5}{24\pi} \right)^{1/2} \left(\frac{GM_\odot/c^2}{1 \text{ Mpc}} \right) \left(\frac{\pi GM_\odot}{c^3} \right)^{-1/6} \left(\frac{\mathcal{M}}{M_\odot} \right)^{5/6} \]
Finding an Injection

- Cross-correlate template against the data
 - Perform correlation with template starting at different times
- Look for the time shift when the cross-correlation between the template and data is high
H2 Successful Injections

- 1.4 – 1.4 solar mass binary
- 3 – 3 solar mass binary
- 10 – 10 solar mass binary
- 1.4 – 10 solar mass binary
H2 Successful Injections

1.4 – 1.4 solar mass binary
3 – 3 solar mass binary
10 – 10 solar mass binary
1.4 – 10 solar mass binary
H2 Successful Injections

- 1.4 – 1.4 solar mass binary
- 3 – 3 solar mass binary
- 10 – 10 solar mass binary
- 1.4 – 10 solar mass binary
H2 Unsuccessful Injections

- 1.4 – 1.4 solar mass binary
- 3 – 3 solar mass binary
- 10 – 10 solar mass binary
- 1.4 – 10 solar mass binary

Graph showing the relationship between recovered SNR and predicted SNR for H2 unsuccessful hardware injections.
H2 Unsuccessful Injections

1.4 – 1.4 solar mass binary
3 – 3 solar mass binary
10 – 10 solar mass binary
1.4 – 10 solar mass binary
H2 Unsuccessful Injections

- 1.4 – 1.4 solar mass binary
- 3 – 3 solar mass binary
- 10 – 10 solar mass binary
- 1.4 – 10 solar mass binary
H2 Unsuccessful Injections

This looks like a detection!
Where Did This Match Come From?

- 10 – 10 solar mass binary located 10 Mpc from Earth
- Marked Injection Compromised
Where Did This Match Come From?

- 10 – 10 solar mass binary located 10 Mpc from Earth
- Marked Injection Compromised
Spectrogram of The Injection

H2:LSC-STRAIN at 824214406.000 with Q of 22.6
Summary Table of Final Results

<table>
<thead>
<tr>
<th>Detector</th>
<th>H1</th>
<th>H2</th>
<th>L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # Injections</td>
<td>1200</td>
<td>1282</td>
<td>1271</td>
</tr>
<tr>
<td>Successful Injections</td>
<td>870</td>
<td>929</td>
<td>770</td>
</tr>
<tr>
<td>Successful Injections, Predicted SNR > 8</td>
<td>614</td>
<td>333</td>
<td>545</td>
</tr>
<tr>
<td>For Injections with Predicted SNR > 8, Injections with Recovered SNR > 6</td>
<td>608</td>
<td>322</td>
<td>538</td>
</tr>
<tr>
<td>Successful Injections, Data Unavailable</td>
<td>21</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Unsuccessful Injections</td>
<td>46</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>Unsuccessful Injections with Recovered SNR > 6</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Unsuccessful Injections, Data Unavailable</td>
<td>263</td>
<td>289</td>
<td>436</td>
</tr>
</tbody>
</table>
Conclusions

- LOSC will release S5 data to the public
- We search the data for hardware injections
- Our search is successfully identifies whether an injection is successful or unsuccessful
- We find some injections where we do not expect to, referencing past documentation
 - i.e. the detection we discussed
- We will continue to explain these unexpected points and summarize them in the final paper
Acknowledgements

• Mentors: Jonah Kanner, Roy Williams, and Michele Vallisneri
• Collaborators: Alan Weinstein and LOSC
• LIGO and National Science Foundation
• Caltech
H1 Successful Injections
L1 Successful Injections

![Graph showing correlation between recovered and predicted SNR for successful hardware injections](image)
Template Matching: Signal-to-Noise

\[\rho_m(t) = \frac{|z_m(t)|}{\sigma_m} \]

- \(\rho_m(t) \) – Amplitude signal to noise ratio of matched filter output
- \(z(t) \) – Matched filter output
- \(\sigma_m \) – A measure of the sensitivity of the instrument

\[\rho_{\text{Predicted}} = \frac{\sigma_m}{D_{\text{eff}}} \]

- \(\rho_{\text{Predicted}} \) – Predicted signal-to-noise ratio
- \(D_{\text{eff}} \) – Effective distance from source to Earth
Template Matching: Matched Filter Math

\[z(t) = 4 \int_{0}^{\infty} \frac{\tilde{s}(f) \tilde{h}_{\text{template}}^{*}(f)}{S_n(f)} e^{2\pi i ft} df. \]

- \(z(t) \) – Matched filter output
- \(\tilde{s}(f) \) - Data in frequency domain
- \(\tilde{h}_{\text{template}}^{*}(f) \) - Complex conjugate of template
- \(S_n(f) \) - Power Spectral Density of noise