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We propose a graphical representation of detector sensitivity curves for stochastic gravitational-
wave backgrounds that takes into account the increase in sensitivity that comes from integrating

over frequency in addition to integrating over time. This method is valid for backgrounds that
have a power-law spectrum in the analysis band. We call these graphs “power-law integrated
curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic Gaussian
stochastic backgrounds using two or more detectors. We apply our method to construct power-law
integrated sensitivity curves for correlation measurements involving second-generation ground-based
detectors such as Advanced LIGO, space-based detectors such as the Big Bang Observer (BBO),
and timing residuals from a pulsar timing array. The code used to produce these plots is available at
https://dcc.ligo.org/LIGO-P1300115 for researchers interested in constructing similar sensitivity
curves for their analyses.

I. INTRODUCTION

When discussing the feasibility of detecting gravita-
tional waves using current or planned detectors, one of-
ten plots characteristic strain hc(f) curves of predicted
signals, and compares them to sensitivity curves for
different detectors. The sensitivity curves are usually
constructed by taking the ratio of the detector’s noise
power spectral density Pn(f) to its sky- and polarization-
averaged response to a gravitational wave R(f), defining
Sn(f) ≡ Pn(f)/R(f) and an effective strain noise ampli-

tude hn(f) ≡
√
fSn(f), which can then be compared to

hc(f). If the curve corresponding to a predicted signal
lies above the detector sensitivity curve in some frequency
band, then the signal has signal-to-noise ratio>1. An ex-
ample of such a plot is shown in Fig. 1, which is taken
from [1].

For stochastic gravitational waves, which are typically
searched for by cross-correlating data from two or more
detectors, one often adjusts the height of a sensitivity
curve to take into account the total observation time
(e.g., T = 1 yr or 5 yr). For uncorrelated detector noise,
the expected squared signal-to-noise ratio of a cross-
correlation search for a gravitational-wave background
for frequencies between f and f + δf scales like

√
Tδf .

So the effective strain noise amplitude hn(f) should be
multiplied by a factor of 1/(Tδf)1/4. Also, instead of
characteristic strain, one often plots the predicted frac-
tional energy density in gravitational waves Ωgw(f) as a
function of frequency, which is proportional to f2h2

c(f)
(see Eq. 6). An example of such a plot is shown in Fig. 2,
which is taken from [2].

But for stochastic gravitational waves, plots such as
Figs. 1 and 2 do not always tell the full story. Searches
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FIG. 1: Sensitivity curves for gravitational-wave observa-
tions and the predicted spectra of various gravitational-wave
sources, taken from [1].

for gravitational-wave backgrounds also benefit from the
broadband nature of the signal. The broadband squared
signal-to-noise ratio ρ ≡ SNR2 (see Eq. 21) also scales

like
√
Nbins =

√
∆f/δf , whereNbins is the number of fre-

quency bins δf in the total bandwidth ∆f . As we shall
see below, the actual value of the proportionality con-
stant depends on the spectral shape of the background
and on the detector geometry (e.g., the separation and
relative orientation of the detectors), in addition to the
individual detector noise power spectral densities. Since
this improvement to the sensitivity is signal dependent, it
is not always folded into the detector sensitivity curves 1,
even though the improvement in sensitivity can be sig-

1 To be clear, integration over frequency is always carried out
in searches for stochastic gravitational-wave backgrounds, even
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FIG. 2: Plot showing strengths of predicted gravitational-
wave backgrounds in terms of Ωgw(f) and the corresponding
sensitivity curves for different detectors, taken from [2]. Up-
per limits from various measurements, e.g., S5 LIGO Hanford-
LIGO Livingston and pulsar timing, are shown as horizontal
lines in the analysis band of each detector. The upper limits
take into account integration over frequency, but only for a
single spectral index.

nificant. And when it is folded in, as in Fig 2, a single
spectral index is assumed, making it difficult to compare
published limits with arbitrary models. In other cases,
limits are given as a function of spectral index, but the
constrained quantity depends on an arbitrary reference
frequency; see Eq. 7.

To illustrate the improvement in sensitivity that comes
from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, ρ increases by
precisely

√
Nbins compared to the single bin analysis. For

ground-based detectors like LIGO, typical values of ∆f
and δf are ∆f ≈ 100 Hz and δf ≈ 0.25 Hz, leading to
Nbins ≈ 400, and a corresponding improvement in ρ of
about 20. For colored spectra and non-trivial detector
geometry the improvement will be less, but a factor of
∼5-10 increase in ρ is not unrealistic.

In this paper, we propose a relatively simple way to
graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law

frequency dependence in the sensitivity band of the de-
tectors. An example of such a “power-law integrated
sensitivity curve” is given in Fig. 3 for a correlation mea-
surement between the Advanced LIGO detectors in Han-
ford, WA and Livingston, LA. Details of the construction
and interpretation of these curves will be given in Sec III,
Fig. 7. We show this figure now for readers who might
be anxious to get to the punchline.

though this is not always depicted in sensitivity curves.
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FIG. 3: Ωgw(f) sensitivity curves from different stages in a po-
tential future Advanced LIGO Hanford-LIGO Livingston cor-
relation search for power-law gravitational-wave backgrounds.
The top black curve is the single-detector sensitivity curve, as-
sumed to be the same for both H1 or L1. The red curve shows
the sensitivity of the H1L1 detector pair to a gravitational-
wave background, where the spikes are due to zeros in the
Hanford-Livingston overlap reduction function (see left panel,
Fig. 5). The green curve shows the improvement in sensitivity
that comes from integration over an observation time of 1 year
for a frequency bin size of 0.25 Hz. The set of black lines are
obtained by integrating over frequency for different power law
indices, assuming a squared signal-to-noise ratio ρ = 1. Fi-
nally, the blue power-law integrated sensitivity curve is the
envelope of the black lines. See Sec. III, Fig. 7 for more de-
tails.

In Sec. II, we briefly review the fundamentals of cross-
correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
Seff(f) for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic Gaussian stochastic backgrounds using two or
more detectors. In Sec. III we present a graphical method
for constructing sensitivity curves for power-law back-
grounds based on the expected squared signal-to-noise ra-
tio for the search, and we apply our method to construct
new power-law integrated sensitivity curves for correla-
tion measurements involving second-generation ground-
based detectors such as Advanced LIGO, space-based de-
tectors such as the Big Bang Observer (BBO), and a pul-
sar timing array. We conclude with a brief discussion in
Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental prop-
erties of a stochastic gravitational-wave background and
the correlated response of a network of detectors to such a
background. In order to keep track of the many different
variables necessary for this discussion, we have included
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Table I, which summarizes key variables.

A. Statistical properties

In transverse-traceless coordinates, the metric pertur-
bations hab(t, ~x) corresponding to a gravitational-wave
background can be written as a linear superposition of
sinusoidal plane gravitational waves with frequency f ,

propagation direction k̂, and polarization A:

hab(t, ~x) =
∫

∞

−∞

df

∫

S2

d2Ωk̂

∑

A

hA(f, k̂)eA
ab(k̂) e

i2πf(t−k̂·~x/c) ,
(1)

where eA
ab(k̂) are the gravitational-wave polarization ten-

sors and A = +,× (see e.g., [3]). The Fourier compo-

nents hA(f, k̂) are random fields whose expectation val-
ues define the statistical properties of the background.

Without loss of generality we can assume 〈hA(f, k̂)〉 = 0.
For unpolarized, isotropic, and Gaussian stochastic back-
grounds, the quadratic expectation values have the form

〈hA(f, k̂)h∗A′(f ′, k̂′)〉 =

1

16π
δ(f − f ′)δAA′δ2(k̂, k̂′)Sh(f), (2)

where

Sh(f) =
3H2

0

2π2

Ωgw(f)

f3
(3)

is the gravitational-wave power spectral density, and

Ωgw(f) =
1

ρc

dρgw

d ln f
(4)

is the fractional contribution of the energy density in
gravitational waves to the total energy density needed
to close the universe [3]. (Throughout this paper we uti-
lize single-sided power spectra.) The variable ρc denotes
the critical energy density of the universe while dρgw de-
notes the energy density between f and f + df . In terms
of the characteristic strain

hc(f) ≡
√
fSh(f) , (5)

it follows that

Ωgw(f) =
2π2

3H2
0

f2h2
c(f) . (6)

B. Power-law backgrounds

In this paper, we will restrict our attention to
gravitational-wave backgrounds that can be described by
power-law spectra:

Ωgw(f) = Ωβ

(
f

fref

)β

, (7)

where β is the spectral index and fref is a reference fre-
quency, typically set to 1 yr−1 for pulsar-timing observa-
tions and 100 Hz for ground-based detectors. The choice
of fref, however, is arbitrary and does not affect the de-
tectability of the signal.

It follows trivially that the characteristic strain also
has a power-law form:

hc(f) = Aα

(
f

fref

)α

, (8)

where the amplitude Aα and spectral index α are related
to Ωβ and β via:

Ωβ =
2π2

3H2
0

f2
ref A

2
α , β = 2α+ 2 . (9)

For inflationary backgrounds relevant for cosmology, it
is often assumed that

Ωgw(f) = const , (10)

for which β = 0 and α = −1. For a background arising
from binary coalescence,

Ωgw(f) ∝ f2/3 , (11)

for which β = 2/3 and α = −2/3. This power-law de-
pendence is applicable to super-massive black-hole coa-
lescences targeted by pulsar timing observations as well
as compact binary coalescences relevant for ground-based
and space-based detectors.

C. Detector response

The response h(t) of a detector to a passing gravita-
tional wave is the convolution of the metric perturbations
hab(t, ~x) with the impulse response Rab(t, ~x):

h(t) ≡
∫

∞

−∞

dτ

∫
d3y Rab(τ, ~y)hab(t− τ, ~x− ~y)

=

∫
∞

−∞

df

∫
d2Ωk̂

∑

A

RA(f, k̂)hA(f, k̂)ei2πf(t−k̂·~x/c) ,

(12)

where ~x is the location of the measurement at time t. The
function RA(f, k̂) is the detector response to a sinusoidal

plane-wave with frequency f , propagation direction k̂,
and polarization A. In the frequency domain, we have

h̃(f) =

∫
d2Ωk̂

∑

A

RA(f, k̂)hA(f, k̂)e−i2πfk̂·~x/c . (13)

D. Overlap reduction function

Given two detectors, labeled by I and J , the expec-
tation value of the cross-correlation of the detector re-
sponses h̃I(f) and h̃J(f) is

〈h̃I(f)h̃∗J (f ′)〉 =
1

2
δ(f − f ′)ΓIJ(f)Sh(f) , (14)
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variable definition

hab(t, ~x) metric perturbation, Eq. 1

hA(f, k̂) Fourier coefficients of metric perturbation, Eq. 1

Sh(f) strain power spectral density of a gravitational-wave background, Eq. 3

Ωgw(f) fractional energy density spectrum of a gravitational-wave background, Eq. 4

hc(f) characteristic strain for gravitational waves, Eq. 5

h(t) detector response to gravitational waves, Eq. 12

RA
I (f, k̂) detector response to a sinusoidal plane gravitational wave, Eq. 12

h̃(f) Fourier transform of h(t), Eq. 13

ΓIJ (f) overlap reduction function for the correlated response to a gravitational-wave background, Eq. 15

RI(f) detector response to a gravitational wave averaged over polarizations and directions on the sky, Eq. 17

PhI(f) detector power spectral density due to gravitational waves, Eq. 18

PnI(f) detector power spectral density due to noise, Eq. 21

Seff(f) effective strain noise power spectral density for a detector network, Eq. 23

heff(f) effective strain noise amplitude for a detector network, Eq. 24

Sn(f) strain noise power spectral density for a single detector, Eq. 27

hn(f) strain noise amplitude for a single detector, hn(f) ≡
p

fSn(f)

TABLE I: Summary of select variables with references to key equations.

where

ΓIJ(f) ≡
1

8π

∫
d2Ωk̂

∑

A

RA
I (f, k̂)RA

J
∗(f, k̂)e−i2πfk̂·(~xI−~xJ)/c

(15)

is the overlap reduction function (see e.g., [4, 5] in the
context of ground-based interferometers). Note that
ΓIJ(f) is the transfer function between gravitational-
wave strain power Sh(f) and detector response cross-
power CIJ (f) = ΓIJ(f)Sh(f). It is often convenient
to define a normalized overlap reduction function γIJ(f)
such that for two identical, co-located and co-aligned de-
tectors, γIJ(0) = 1. For identical interferometers with
opening angle δ,

γIJ (f) = (5/ sin2 δ) ΓIJ(f) . (16)

For a single detector (i.e., I = J), we define

RI(f) ≡ ΓII(f), (17)

which is the transfer function between gravitational-wave
strain power Sh(f) and detector response auto power

PhI(f) = RI(f)Sh(f) . (18)

Note that RI(f) is the antenna pattern of detector I
averaged over polarizations and directions on the sky.
A plot of RI(f) normalized to unity for the strain re-
sponse of an equal-arm Michelson interferometer is shown
in Fig. 4.

Detailed derivations and discussions of the overlap re-
duction functions for ground-based laser interferometers,
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FIG. 4: A plot of the transfer function RI(f) = γII(f)
normalized to unity for the strain response of an equal-arm
Michelson interferometer. The dips in the transfer function
occur around integer multiples of c/(2L), where L is the arm
length of the interferometer.

space-based laser interferometers, and pulsar timing ar-
rays can be found in [3–5], [6, 7], and [8, 9], respec-
tively. In Fig. 5 we plot the overlap reduction functions
for the strain response of the LIGO Hanford-LIGO Liv-
ingston detector pair in the long-wavelength limit (valid
for frequencies below a few kHz), and the strain re-
sponse of a pair of mini LISA-like Michelson interfer-
ometers in the hexagram configuration of the Big-Bang
Observer (BBO), which is a proposed space-based mis-
sion, whose goal is the direct detection of the cosmo-
logical gravitational-wave background [10–12]. The two
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Michelson interferometers for the BBO overlap reduction
function are located at opposite vertices of a hexagram
(‘Star of David’) and have arm lengths L = 5 × 107 m
and opening angles δ = 60◦.

In Fig. 6, we plot both the overlap reduction func-
tion and the Hellings and Downs curve [8] for the timing
response of a pair of pulsars in a pulsar timing array. As-
suming the pulsars are separated by an angle ψIJ on the
sky, then to a very good approximation [9]:

ΓIJ(f) =
1

(2πf)2
1

3
ζIJ (19)

where

ζIJ ≡3

2

(
1 − cosψIJ

2

)
log

(
1 − cosψIJ

2

)

− 1

4

(
1 − cosψIJ

2

)
+

1

2
+

1

2
δIJ

(20)

is the Hellings and Downs factor [8]. (The normalization
is chosen so that for a single pulsar ζII = 1.)

E. Signal-to-noise ratio

The expected squared signal-to-noise ratio (ρ ≡ SNR2)
for a cross-correlation search for an unpolarized and
isotropic stochastic background is given by [3]:

ρ =
√

2T

[∫
∞

0

df
Γ2

IJ(f)S2
h(f)

PnI(f)PnJ(f)

]1/2

, (21)

where T is the total (coincident) observation time and
PnI(f), PnJ (f) are the auto power spectral densities for
the noise in detectors I, J . This the total broadband

signal-to-noise ratio, integrated over both time and fre-
quency. It can be derived as the expected signal-to-noise
ratio of a filtered cross-correlation of the output of two
detectors, where the filter function is chosen so as to max-
imize the signal-to-noise ratio of the cross-correlation.
For a network of detectors, this generalizes to

ρ =
√

2T

[∫
∞

0

df

M∑

I=1

M∑

J>I

Γ2
IJ(f)S2

h(f)

PnI(f)PnJ (f)

]1/2

, (22)

whereM the number of individual detectors, and we have
assumed the same coincident observation time T for each
detector.

The above expression for ρ suggests the following def-
inition of an effective strain noise power spectral density
for the detector network

Seff(f) ≡
[

M∑

I=1

M∑

J>I

Γ2
IJ(f)

PnI(f)PnJ (f)

]−1/2

, (23)

with corresponding strain noise amplitude

heff(f) ≡
√
fSeff(f) . (24)

In terms of Seff(f), we have

ρ =
√

2Tδf
√
Nbins

〈
S2

h

S2
eff

〉1/2

, (25)

where 〈 〉 denotes an average 2 over the total bandwidth
of the detectors, ∆f = Nbins δf . For the case of M iden-
tical, co-located and co-aligned detectors, things simplify
further. First,

Seff(f) =

√
2

M(M − 1)
Sn(f) , (26)

where

Sn(f) ≡ Pn(f)/R(f) (27)

is the strain noise power spectral density in a single de-
tector. Second,

ρ =
√
Tδf

√
Nbins

√
M(M − 1)

〈
S2

h

S2
n

〉1/2

. (28)

Thus, we see that the expected squared signal-to-noise
ratio scales linearly with the number of detectors for
M ≫ 1, the square-root of the total observation time,
and the square-root of the number of frequency bins.
Note that

√
Tδf

√
Nbins =

√
T∆f , which is the total

time-frequency volume of the measurement.

III. POWER-LAW INTEGRATED CURVES

A. Construction

The sensitivity curves that we propose are based
on Eq. 22 for the expected squared signal-to-noise ra-
tio ρ, applied to gravitational-wave backgrounds with
power-law spectra. These “power-law integrated sensi-
tivity curves” include the improvement in sensitivity that
comes from the broadband nature of the signal, via the
integration over frequency. The following construction is
cast in terms of Ωgw(f), but we note that power-law inte-
grated curves can also easily be constructed for hc(f) or
Sh(f) using Eqs. 3 and 5 to convert between the different
quantities.

1. Begin with the detector noise power spectral den-
sities PnI(f), PnJ (f), and the overlap reduction
functions ΓIJ(f) for two or more detectors. Us-
ing Eq. 23, first calculate the effective strain power
spectral density Seff(f), and then convert it to en-
ergy density units Ωeff(f) using Eq. 3.

2 Explicitly, 〈X〉 ≡ 1
∆f

R fmax

fmin
X(f) df
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FIG. 5: Left panel: Normalized overlap reduction function for the LIGO detectors located in Hanford, WA and Livingston,
LA. Right panel: Normalized overlap reduction function for two mini LISA-like Michelson interferometers located at opposite
vertices of the BBO hexagram configuration.
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Downs function ζ(ψIJ). Note that the overlap reduction function is a function of frequency for a fixed pair of pulsars, while
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2. Assume an observation time T , typically between
1 and 10 yr.

3. For a set of power-law indices e.g., β =
{−8,−7, · · ·7, 8} and some choice of reference fre-
quency fref , calculate the value of the amplitude
Ωβ such that the integrated squared signal-to-noise
ratio has some fixed value, e.g., ρ = 1. Explicitly,

Ωβ =
ρ√
2T

[∫ fmax

fmin

df
(f/fref)

2β

Ω2
eff(f)

]
−1/2

, (29)

where [fmin, fmax] define the bandwidth ∆f of the
detectors. Note that the choice of fref is arbitrary
and will not affect the sensitivity curve.

4. For each pair of values for β and Ωβ, plot Ωgw(f) =

Ωβ(f/fref)
β versus f .

5. The envelope of the Ωgw(f) power-law curves is the
power-law integrated sensitivity curve for a corre-
lation measurement using two or more detectors.

Interpretation: Any line (on a log-log plot) that is tan-
gent to the power-law integrated sensitivity curve cor-
responds to a gravitational-wave background power-law
spectrum with an integrated squared signal-to-noise ratio
ρ = 1. This means that if the curve for a predicted back-
ground lies everywhere below the sensitivity curve, then
ρ < 1 for such a background. On the other hand, if the
curve for a predicted power-law background with spectral
index β lies somewhere above the sensitivity curve, then
it will be observed in a correlation measurement with an
expected value of ρ = Ωpred

β /Ωβ > 1. Graphically, Ωpred
β
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is the value of the predicted power-law spectrum evalu-
ated at fref , while Ωβ is the value of the same power-law
spectrum that is tangent to the sensitivity curve, also
evaluated at fref .

B. Plots

The calculation of a power-law integrated sensitivity
curve is demonstrated in the left-hand panel of Fig. 7 for
the Hanford-Livingston (H1L1) pair of Advanced LIGO
detectors. Following steps 1–5 above, we begin with the
design detector noise power spectral density Pn(f) for
an Advanced LIGO detector [14] (which we assume to be
the same for both H1 and L1), and divide by the H1L1
overlap reduction function to obtain the effective strain
spectral density Seff(f) = Pn(f)/ΓH1L1(f) of the detec-
tor pair to a gravitational-wave background (see Eq. 23).
We then convert Seff(f) to an energy density Ωeff(f) via
Eq. 3 to obtain the solid red curve. After integrating 1 yr
of coincident data, and assuming a frequency bin width
of 0.25 Hz, we obtain the solid green curve, which is lower
by a factor of 1/

√
2Tδf . Then assuming different spec-

tral indices β, we integrate over frequency (see Eq. 29),
setting ρ = 1 to determine the amplitude Ωβ of a power-
law background. This gives us the set of black lines for
each power law index β. The blue power-law integrated
curve is the envelope of these black lines.

The right-hand panel of Fig. 7 illustrates how to inter-
pret a power-law integrated sensitivity curve. We replot
the green and blue curves from the left-hand panel, which
respectively represent the time-integrated and power-law
integrated sensitivity of an Advanced LIGO H1L1 corre-
lation measurement to a gravitational-wave background.
Additionally, we plot two theoretical spectra of the form
Ωgw(f) ∝ f2/3, which is expected for a background due
to compact binary coalescences. The dark brown line
corresponds to a somewhat pessimistic scenario in which
Advanced LIGO, running at design sensitivity, would de-
tect ≈ 10 individual binary neutron star coalescences per
year of science data [13]. The light brown line repre-
sents a somewhat optimistic model in which Advanced
LIGO, running at design sensitivity, would detect ≈ 100
individual binary neutron star coalescences per year of
science data [13]. (A binary-neutron-star detection rate
of 40 yr−1 is considered a realistic rate for Advanced
LIGO [15].) The light-brown curve intersects the blue
power-law integrated curve, indicating that the some-
what optimistic model will induce a signal-to-noise ra-
tio ρ > 1. The dark brown curve falls below the blue
power-law integrated curve, indicating that the some-
what pessimistic model will induce a signal-to-noise ratio
ρ < 1. Note that neither curve intersects the green time-
integrated sensitivity curve.

In Fig. 9–11 we plot power-law integrated sensitivity
curves for several upcoming or proposed experiments:
networks of Advanced LIGO detectors, BBO, and a pul-
sar timing array.

(a) For the Advanced LIGO networks, we use the de-
sign detector noise power spectral density Pn(f) taken
from [14] assumed to be the same for every detector in the
network. We consider three networks: H1L1 (just the US
aLIGO detectors), H1H2 (a hypothetical co-located pair
of aLIGO detectors), and H1L1V1K1 (the US aLIGO
detectors plus detector pairs created with Virgo V1 and
KAGRA K1)3. In reality, Virgo and KAGRA are ex-
pected to have different noise curves than aLIGO, but
we assume the same aLIGO noise for each detector in or-
der to show how the sensitivity curve changes by adding
additional identical detectors to the network. Given this
assumption, the effective strain power spectral density
can be written as

Seff(f) = Pn(f)/Reff(f) , (30)

where

Reff(f) =

[
M∑

I=1

M∑

J>I

Γ2
IJ(f)

]1/2

(31)

is the sky- and polarization-averaged response of the net-
work to a gravitational-wave background. A plot of the
various overlap reduction functions γIJ (f) and Reff(f)
for the H1L1V1K1 network are given in Fig. 8. The re-
sulting power-law integrated sensitivity curves are shown
in Fig. 9.

(b) For the BBO sensitivity curve, the noise power
spectral density for the two Michelson interferometers is
taken to be

Pn(f) =
4

L2

[
(δ̃x)2 +

(δ̃a)2

(2πf)4

]
, (32)

where

(δ̃x)2 = 2 × 10−34 m2

Hz
, (33)

(δ̃a)2 = 9 × 10−34 m2

s4 · Hz
(34)

are the position and acceleration noise (see Table II from
[11]) and L = 5 × 107 m is the arm length. Following
[12], we have included an extra factor of 4 multiplying the
first term in Eq. 32, which corresponds to high-frequency
noise 4 times larger than shot noise alone. The overlap
reduction function for the Michelson interferometers lo-
cated at opposite vertices of the BBO hexagram is shown
in the right panel of Fig. 5. The power-law integrated
curve for BBO is given in Fig. 10a.

3 We have taken the location and orientation of the KAGRA de-
tector to be that of the TAMA 300-m interferometer in Tokyo,
Japan. We have not included the planned LIGO India detec-
tor [16] in this network, as the precise LIGO-India site has not
yet been decided upon.
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FIG. 7: Left panel: Ωgw(f) sensitivity curves from different stages in a potential future Advanced LIGO H1L1 correlation search
for power-law gravitational-wave backgrounds. The red line shows the effective strain spectral density Seff(f) = Pn(f)/ΓH1L1(f)
of the H1L1 detector pair to a gravitational-wave background signal converted to energy density Ωeff (f) via Eq. 3. (The Pn(f)
used in this calculation is the design detector noise power spectral density for an Advanced LIGO detector, assumed to be the
same for both H1 and L1.) The spikes in the red curve are due to zeroes in the overlap reduction function ΓH1L1(f), which is
shown in the left panel of Fig. 5. The green curve, Seff(f)/

√
2Tδf , is obtained through the optimal combination of one year’s

worth of data, assuming a frequency bin width of 0.25 Hz as is typical [2]. The vertical dashed orange line marks a typical
Advanced LIGO reference frequency, fref = 100 Hz. The set of black lines are obtained by performing the integration in Eq. 29
for different power law indices β, requiring that ρ = 1 to determine Ωβ . Finally, the blue power-law integrated sensitivity curve
is the envelope of the black lines. Right panel: a demonstration of how to interpret a power-law integrated curve. The thin
green line and thick blue line are the same as in the left panel. The two dashed brown lines represent two different plausible
signal models for gravitational-wave backgrounds arising from binary neutron star coalescence; see, e.g., [13]. In each case,

Ωgw(f) ∝ f2/3; however, the two curves differ by an order of magnitude in the overall normalization of Ωgw(f). The louder
signal will induce a signal-to-noise-ratio ρ > 1 with an Advanced LIGO H1L1 correlation measurement as it intersects the
blue power-law integrated curve—even though it falls below the time-integrated green curve. The weaker signal will induce a
signal-to-noise-ratio ρ < 1 with Advanced LIGO H1L1 as it is everywhere below the power-law integrated curve.
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FIG. 8: Left panel: Individual normalized overlap reduction functions for the six different detector pairs comprising the
H1L1K1V1 network. Right panel: Sky- and polarization-averaged reponse of the H1L1V1K1 network to a gravitational-wave
background.

(c) For the pulsar timing array sensitivity curve, we
consider a network of 20 pulsars taken from the Inter-
nation Pulsar Timing Network (IPTA) [17], which we
assume have identical white timing noise power spectral

densities,

Pn(f) = 2∆t σ2 , (35)

where 1/∆t is the cadence of the measurements, taken to
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FIG. 9: Different networks of advanced detectors assuming
T = 1yr of observation. We also include 95% CL limits from
initial LIGO for comparison [2].

be 20 yr−1, and σ is the root-mean-square timing noise,
taken to be 100 ns. We note that the pulsar timing net-
work we envision may be somewhat optimistic as 100 ns
root-mean-square timing noise is ambitious. Also, we do
not include the loss of sensitivity arising from the fitting
of each pulsar’s period P and spin-down rate Ṗ .

Since the timing noise power spectral densitites are
identical, it follows that

Seff(f) = Sn(f)

[
M∑

I=1

M∑

J>I

ζ2
IJ

]−1/2

, (36)

where

Sn(f) = Pn(f)/R(f) = 12π2f2 Pn(f) (37)

and ζIJ are the Hellings and Downs factors for each pair
of pulsars in the array. For our choice of 20 pulsars,

M∑

I=1

M∑

J>I

ζ2
IJ = 4.7379 , (38)

which can thought of as the effective number of pulsar
pairs for the network. Finally, we assume a total obser-
vation time T = 5 yr, which sets the lower frequency
limit of Seff(f). Given these parameters, we expect the
pulsar timing array to be operating in the “intermedi-
ate signal limit” [18]. We therefore utilize the scaling
laws from Fig. 2 in Ref. [18] to adjust the power-law in-
tegrated curves, since Eqs. 21, 22 for ρ are valid in the
weak-signal limit and overestimate the expected squared
signal-to-noise ratio by a factor of ≈ 5 for an observation
of T = 5 yr. The power-law integrated curve for IPTA is
given in Fig. 10b.

It is interesting to note that the power-law integrated
curves for Advanced LIGO and BBO are relatively round

in shape, whereas the pulsar timing curve is pointy. This
reflects the fact that the sensitivity of pular timing mea-
surements is mostly determined by a small band of the
lowest frequencies in the observing band regardless of the
spectral shape of the signal.

(d) Finally, Fig. 11 shows the power-law integrated sen-
sitivity curves for the different detectors on a single plot
spanning a wide range of frequencies.

IV. DISCUSSION

We have presented a graphical representation of de-
tector sensitivity curves for power-law gravitational-wave
backgrounds that takes into account the enhancement in
sensitivity that comes from integrating over frequency
in addition to integrating over time. We applied this
method to construct new power-law integrated sensitivity
curves for cross-correlation searches involving advanced
ground-based detectors, BBO, and a network of pulsars
from a pulsar timing array. The new curves paint a more
accurate picture of the expected sensitivity of upcom-
ing observations. The code that we used to produce
the new curves is available at https://dcc.ligo.org/
LIGO-P1300115 for public download. Hopefully, this will
allow other researchers to easily construct similar sensi-
tivity curves for their analyses. Required inputs are the
noise power spectral density PnI(f) for each detector in
the network and the overlap reduction function ΓIJ(f)
for each detector pair. Common default files are avail-
able for download with the plotting code.

Although the above discussion has focused on com-
paring predicted strengths of gravitational-wave back-
grounds to sensitivity curves for current or planned de-
tectors, one can also present measured upper limits for
power-law backgrounds in a similar way. That is, instead
of plotting the upper limits for Ωβ (for fixed fref) as a
function of the spectral index β as in [2, 19, 20], one can
plot the envelope of upper-limit power-law curves as a
function of frequency. This would better illustrate the
frequency dependence of the upper limits in the observ-
ing band of the detectors.
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