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Baking
- Baking for epoxy curing and de-outgassing: After the 
  breadboard bonding, the OMC on the transport fixture
  was vacuum-baked for 48hours. The bake temp. of
  80degC was determined not to exceed the glass 
  transition temperature of the epoxies.

Fabrication
PZT sub-assembly
- 1/2" curved mirror: 
  Glued on a mounting 
  prism together with a PZT
- Bonding: 
  Epoxy (Master Bond EP30-2) with 
  borosilicate glass spheres (MO-SCI GL0179B5, 75-90um dia.) 

- Wedging of the prisms, PZTs, and curved mirrors:
  Characterized by mechanical or optical techniques
  Arranged to minimize pitch misalignment with regard 
  to the OMC bread board

D1102069 Noliac PZT

1/2" mirror
HR

surface

epoxy bonds

Breadboard gluing
- Bonding: Low viscous UV-cure epoxy (EMI OPTOCAST 3553-LV-    

   UTF-HM) was used for all of glass-glass joints, otherwise
  EP30 was used. UVA light was provided from a fiber
  coupled UV light source (LESCO Super Spot MK III).
- Fixtures: The breadboard was held with a transport 
  fixture. The objects to be glued were aligned along 
  with gluing templates.
- Cavity mirrors: Glued while the cavity parameters were
  monitored with the optical test setup. The position and
  alignment of the two curved 
  mirrors can be adjusted by 
  micrometers on the template.

▲ PZT sub-assy gluing fixture ▲ Glued sub-assy

▲ Top-side gluing▲ UV illumination

▲ OMC breadboard in the transport fixture

Peripheral optics and electronics
- DCPDs: 
Two InGaAs photodiodes 
(Excelitas C30665GH dia. 3mm) at the cavity 
transmission. They are where we 
obtain the GW signals! 
The housing is mounted on an invar 
block glued on the breadboard via a 
height shim. The housing is coated 
with Alumina for higher emissivity. 

- QPD / QPD path: 
0.75% of the incident beam is sacrificed for coarse 
beam alignment with QPDs. Two QPDs (OSI FCI-InGaAs-Q3000) 
are mounted on the breadboard, same as the PDs.  

- Beam dumps: 
Black-glass beam dumps blocks the reflection from the PDs 
and a stray beam on the QPD path.

Suspension / Electronics Interface
- Located on the top side of the breadboard
- Wire hooks: Four suspension wires with conical clamps
  are hooked into glass brackets 
- Weight balance: Adjusted by adding weights.
  Total weight of the breadboard is 7.0 kg.
- Cable stay / cable harness

Functions of the OMC
● Remove carrier higher-order modes (HOMs) and RF
   sidebands from the interferometer output beam

=> higher cavity finesse preferred
● Transmit carrier TEM00 mode as much as possible

=> lower cavity finesse preferred
● Fast shutter action at lock losses of the interferometer.

aLIGO OMC optical design [1]
- Semi-monolithic structure: "glass prisms glued on a plate"

enables fine adjustment of the optical parameters

- Cavity design
4-mirror bowtie ring cavity: 
even mirror cavity for simpler HOM structure

Finesse: ~400 for ~98% transmission
Length: 1.312m (round-trip) from the breadboard size
Curved mirror radius: 2.575m
=> Transeverse Mode Spacing (TMS): 0.219 x FSR

avoids 4th, 5th, as well as 9th HOMs

Expected filtering performance & tolerance 
of the cavity length and the mirror RoC
- Based on the eLIGO performance of the IFO optics/TCS

Modeled by power laws (details in [2])
- Expected amount of junk light on the OMC DC PD

=> turned out to be ~1mW for 100W input
Well with in the PD capability. Even could be better 
due to mode healing and better optics in aLIGO

- Cavity length tolerance: L=1.132  +/− 0.005 [m]
  Mirror RoC tolerance: R=2.575 +/− 0.015 [m]
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Comparison between eLIGO -> aLIGO
● Breadboard material: ULE -> Fused Silica
=> Easier to manufacture, temperature drift not significant 
(of the order of 0.1K = dL~60nm)

● Optics: Glued on the backside of fused silica prisms
-> Directly coated on the fused silica prisms 

(curved mirrors: glued on the front side of the prisms)
=> Reflecting surfaces easier to clean and observe

● Transverse mode spacing: 0.235 (Unit: FSR) -> 0.219
=> More precisely adjusted during the gluing

● Actuators: A heater on an Al tube and a PZT -> two PZTs
=> eLIGO experience indicated large actuation range not 
necessary. One PZT moves more than 5 fringes. Two PZTs 
increases redundancy.

● Suspension: Double stage OMC suspension -> same
=> eLIGO suspension is reused with minor modifications

Design of the aLIGO output mode cleaner

Advanced LIGO employs a DC Readout scheme for sensing of GW signals in order to mitigate laser technical noises. 
Filtering of undesired optical modes by the output mode cleaner (OMC) is indispensable in order to exploit the benefit 
of DC readout. The aLIGO OMC was designed based on the success and experience of the eLIGO OMC. The first OMC 
was built at Caltech and installed in the HAM6 chamber at LLO. The design, fabrication, and installation, as well as the 
results of the table top performance test, are described in this poster.

Abstract

QPDs (2x)

DC PDs
(2x)

Cavity curved 
mirror + PZT 

(2x)

Cavity input/
output coupler 

(2x)

50/50 splitter 
(2x)

Beam dump (5x)

High reflector, 
T=0.75% (4x)

Input beam

bow tie cavity

Top side of 
fused silica breadboard

suspension wire

mount bracket
D1102209

Beryllium copper
ferrule

RoC=2.575 m
+/- 0.015 m

L=1.132 m
+/- 0.005 m

▲ Curvature tolerance for the curved mirrors

▲ Cavity length tolerance

Estimated contribution of the HOMs and modulation
sidebands to the OMC transmission

CRn - carrirt n-th mode, SB(1,2)(U,L)n - sideband n-th mode, 
SB1 - 9MHzSB, SB2 - 45MHz SB, U - upper SB, L - lower SB

Integration with the OMC suspension
- OMC Suspension: Prepared at LLO with a metal dummy breadboard
- Breadboard swapping: Unhook and rebook the wires on the wire brackets. (That's it!)
- Cabling: Between the breadboard and the suspension structure
- Weight balance: Adjust the balancing weights
- Suspension tests in LVEA: transfer function measurements, active damping of the six degree of freedome 

OMCS placement on HAM6
- OMCS loading on the ISI: a compact lift truck was employed to hold the OMCS
- Suspension tests in HAM6
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Transverse mode spacing dependence on the PZT voltage 
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L1 OMC: PZT Response (2013/6/1)
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L1 OMC: PZT DC response test
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 L1OMC − HOM measurement (2013/05/30)
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L1OMC − FSR/Finesse measurement with AM injection
(2013/06/02)

 

 

FSR: 264.96972 +/− 0.00006 MHz
Cavity pole: 328.10 +/− 0.13 kHz
Cavity finesse: 403.79 +/− 0.07

2013/06/02: measured
2013/06/02: fitted
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L1OMC FSR measurement
offset locking method (2013/05/30)

 

  --- measurement
  --- fitting: FSR
      264.9656 +/- 0.0009 MHz

- aLIGO OMC: Designed based on the eLIGO experience and lessons
- The first OMC was built: The building procedure was established
- Optical testing: Observed the cavity transmission of ~98%

Confirmed that coincidence of the low order HOMs are successfully avoided. 
Found that the TMS is dependent on the PZT voltages.

- This OMC was installed: Now in commission at the LLO site!

Optical Testing at Caltech
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Installation at LLO (Jun 2013)

Summary

▲ OMC loaded on the suspension ▲ OMC installation on the HAM6 ISI table

Optical characterization of the OMC cavity
● A table-top optical setup was built for locking the cavity 

=> Used not only for the characterization after the baking,
but also for the fine parameter adjustment during the gluing

● The power budget and the PZT responses were measured
● A broadband EOM and a fast RF photodiode at the transmission

to measure the free spectral range, finesse, and HOM structure

Cavity round-trip length
Determined from two measurements:
1) FM-AM conversion associated with the locking offset [3]

An offset in PDH locking induces the FM-AM conversion 
at around the cavity FSR, but not at the exact FSR. 
Detect the beat note between the carrier and the AM
sidebands at the transmission RF PD.

2) AM sideband injection
AM sidebands are intentionally introduced by rotating
the input polarization at the BBEOM. Detect the beat 
note between the carrier and the AM sidebands at the
transmission RF PD. The cavity finesse is also extracted
from the measurement result.

▲ Method1: FSR measurement 
with FM-AM conversion

▲ Method2: FSR measurement 
with AM injection

Method1 results:
Cavity FSR: 264.9658   +/− 0.0009 MHz
Cavity length: 1.131438   +/− 4×10-6 m
Method2 results:
Cavity FSR: 264.96972 +/− 0.00006 MHz
Cavity length: 1.131421   +/− 3×10-6 m
Cavity finesse: 403.79       +/− 0.07

Transverse Mode Spacing (TMS)
Utilizing the simultaneous resonance of the carrier TEM00 
and the HOMs of the sidebands [3]
Phase modulation sidebands are imposed on the input
beam by the broadband EOM. The input beam is
intentionally misaligned. When the modulation freq 
coincides with the TMS, only one of the sidebands gets 
transmitted from the cavity. The beat note between the 
carrier TEM00 and the transmitted sidebands is observed
by the transmission RF PD via beam clipping on the PD.
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▲ Optical setup for the table top test of the OMC

PZT response
The DC response: checked with free running fringes
The AC response: measured with the cavity locked
PZT1 response@DC: 13.24 +/− 0.02 nm/V (avg)
PZT2 response@DC: 12.9   +/− 0.1   nm/V (avg)
First resonant freq.: 10 kHz

Power Budget
Estimated from the input power, transmitted power, 
visibility, and cavity finesse Spec.
Mode matching:  99.2 %    N/A
Cavity transmission for TEM00: 97.8 %    98.4 %
Cavity reflectivity for TEM00:   124 ppm    59.9 ppm
Flat mirror trans. (avg.): 7664 ppm 8300 ppm
Curved mirror trans. (avg.):     42 ppm     50 ppm
Loss per bounce:  22.3 ppm     10 ppm
Loss per roundtrip:   173 ppm   140 ppm

Spec.
264.8 MHz
1.132 m
390

Spec.
 15 nm/V
15.7 kHz

▲ PZT DC scan ▲ PZT AC response

Result:
Pitch TMS/FSR: 0.218822 +/− 1×10-6

Yaw TMS/FSR: 0.219218 +/− 1×10-6

Spec.
0.2188
0.2194

Dependence of the TMS on the PZT voltage
The TMS was measured with PZT voltages varied. 
Result:
Pitch TMS/FSR: 0.2189 −  9.7×10-6 VPZT1−  9.6×10-6 VPZT2

Yaw TMS/FSR: 0.2192 −10.8×10-6 VPZT1−10.6×10-6 VPZT2

This suggests that the PZT deforms the curved mirror 
and the HOMs can coincide with the main resonance. 
The HOMs of the carrier and sidebands comes into the 
resonance at PZT voltage of ~150V. We limit the PZT 
voltage to 100V for another reason, this actually does 
not happen.
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Electrical wiring
- PZT, DCPD, QPD cables: 
All of the cables are routed from the cavity side to a 
cable harness via cable stays.

GORE's high flex cables (GSC-02-26942-00 & GSC-02-26962-00) are 
employed except for the UHV compatible wires on the 
PZTs.

▲ Cable stay (top side) ▲ Cable harness (top side)


