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3rd generation LIGO detectors will be limited by thermal noise at a low frequency band where 

gravitational wave signals are expected to exist. A large contribution to thermal noise is caused by 

internal friction of the mirror and suspension elements. In order to meet the quantum mechanical 

sensitivity limits of the detector, it will be necessary to further push down the contribution of thermal 

noise. Future detectors will require new materials with extremely high mechanical quality. Silicon at 

cryogenic temperatures shows the promise to provide the required mechanical quality due to its 

vanishing expansion coefficient at 120 K. The fluctuation dissipation theorem links thermal noise to 

mechanical dissipation which, in turn, motivates us to study the quality factor of silicon cantilevers. An 

experiment is designed to measure the mechanical quality of silicon flexures at cryogenic temperatures. 

Utilizing a ring-down method in vacuum, we determine the quality factor of a silicon cantilever at room 

temperatures. Q-factors up to          were measured.  Further experiments should be performed at 

cryogenic temperatures with etched samples to determine how the quality factor is impacted. 

 

1. Introduction 

The idea of gravitational waves comes from the work of Albert Einstein in the early 
20th century. During this time, Einstein revamped Newtonian gravitational theory by 
showing that local mass-energy is equivalent to local space-time curvature. This was 
quantified in the Einstein field equations which are a set of non-linear partial differential 
equations. In addition to implying a number of phenomena, wave solutions exist for these 
field equations. These solutions resolve the problem with instantaneous action-at-a-
distance of Newtonian gravitation theory. More importantly, they imply that the 
gravitational field moves with the speed of light in turn bringing news of space-time 
curvature at a finite speed [4]. 
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Experiments aiming to detect gravitational waves produced by large astronomical 
events have been underway for the past 40 years but only now have sensitivities reached a 
level where detection is a real possibility within the next few years. LIGO, a large scale 
physics experiment consisting of the most sensitive gravitational wave detectors in the 
world, is expected to detect a gravitational wave that may originate from coalescing 
neutron stars and black holes, spinning neutron stars, and supernovas [1]. Each detector is 
essentially a Michelson interferometer which consists of mirror test masses suspended as 
pendula whose displacements are detected by measuring subsequent phases of lasers 
reflected off of the masses. These displacements occur when a gravitational wave passes 
and distorts space-time through the detector. The strain that would be detected by the 
interferometer is limited by a number of noise sources including seismic noise, shot noise, 
radiation pressure, and thermal noise. Figure 1 displays the projected noise of all sources 
for advanced LIGO. Research has already begun on how to reduce noise for 3rd generation 
LIGO interferometers. For instance, radiation pressure will be addressed using squeezed 
light and filter cavities [3]. Once this radiation pressure is reduced, thermal suspension 
noise will be a significant source of noise at low frequencies. The thermal noise associated 
with the mirror masses' suspensions is one of the most significant noise sources in a 
frequency band centered on 100 Hz [6]. This prompts us to investigate the effects of 
thermal noise on the suspension. 
 

 
 

Figure 1: The projected effect of various noise sources for the Advanced LIGO detector 
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1.1 Thermal Noise 
 
The first insight into thermal noise began in 1828 when Robert Brown observed a 

ceaseless jiggling of pollen molecules suspended in water [6]. Later Einstein showed that 
the fluctuations of the pollen particles arose from the impacts of water molecules on the 
grain. Specifically, he theorized that the mean-square displacement of a particle is 
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Where   is the duration of observation,   is the radius of a spherical grain, and   is the 
viscosity of the fluid [6].  In itself, the equation represents a link between the random 
fluctuations of the particle to the mechanism for dissipation i.e. the viscosity of the water. 
The example of Brownian noise is a special case of the fluctuation-dissipation theorem 
which relates the dissipation of a dynamical system with its equilibrium thermal 
fluctuations [2]. Specifically, the theorem connects the linear relaxation of a system in a 
non-equilibrium state to its statistical fluctuations in equilibrium [8]. The theorem was 
further quantified in 1928 when Johnson and Nyquist showed that the mean-square 
voltage of a resistor depends on the resistance: 
 

                                                                     〈  〉                                                                          (2) 
 
 Where    is the bandwidth over which the voltage is measured,     (the voltage squared) 
is a sort of a generalized fluctuating force and   (the resistance) represents dissipation. 
This means that any sort of dissipation guarantees fluctuating forces when the system is at 
rest which, in the case of LIGO's mirrors and mirror suspensions, masks the signal that one 
attempts to observe.  However, it also implies that one does not need to make a detailed 
microscopic model of any dissipation phenomenon in order to predict the fluctuation 
associated with it [6].  

The theorem shows us that the way to reduce the level of thermal noise is to reduce 
the amount of dissipation. However, this would be against our intuition since the 

equipartition theorem guarantees 
 

 
    of energy for the mean value of each quadratic 

degree of freedom in a system. Thus, one would think that the only way to reduce 
fluctuation is through a reduction of temperature. But, the equipartition theorem speaks of 
the mean value of quadratic terms thus implying an integral over all values of the particular 
degree of freedom. This means that the integral of the thermal noise power spectrum over 
all frequencies is independent of dissipation. For the case of a damped forced oscillator, the 
fluctuation-dissipation theorem gives the relationship between loss and displacement 
noise at a certain frequency. At the resonant frequency, displacement noise is inversely 
proportional to mechanical loss and off resonance, it is directly proportional. This means 
that we can rearrange fluctuation energy if we decrease the mechanical loss and thus 
funnel that noise into the resonant frequencies.  This, in turn, prompts us to examine low 
loss materials and investigate other parameters that will minimize thermal noise in the 
suspension system of the 3rd generation LIGO project. Currently, advanced LIGO operates 
on fused silica as the mirror substrate and suspension fiber but a demand for an increase in 
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sensitivity of the detector opens new candidates that may be used in 3rd generation 
detectors. Silicon is a promising candidate for test masses and suspension elements due to 
its vanishing coefficient of thermal expansion and excellent mechanical and optical 
properties [5]. Our aim is to investigate the mechanical dissipation of silicon flexures by 
calculating its quality factor at various temperatures and for a number of frequencies.  

 

1.2 Sources of Thermal Noise 
 
The main sources of thermal noise for crystalline silicon are external, thermoelastic, 
phonon-phonon, and surface loss. External noise comes from friction at the point of 
suspension or collisions with residual gas particles. External sources of dissipation, 
however, are relatively miniscule sources of noise and can be neglected for our purposes. 
Phonon-phonon noise arises from a modulation of lattice vibrations when an external 
oscillation is applied with a wavelength much longer than the wavelength of thermal 
phonons. This redistribution of all phonons generates entropy and is thus a loss 
mechanism, however, it is only a significant contributor to noise at low temperatures. 
Thermoelastic loss arises from the fact that when a sample is bent, one side of it is heated 
and the other is cooled. The local temperature difference causes a heat flux which increases 
entropy and thus dissipates energy. Surface loss originates from cracks and contaminations 
in a small surface layer of the silicon, however, it is not fully understood. The expected 
contribution to mechanical loss of a silicon flexure from thermoelastic and phonon-phonon 
loss is displayed in figure 2.  
 

 
Figure 2: Summary of possible mechanical loss sources of a silicon flexure at 70 Hz 
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2. Experimental Design 
 
 The initial apparatus consisted of a HeNe laser, cryostat (figure 3), stainless steel 
clamp, aluminum corner reflector, electrostatic driving plate, PEEK insulator, and a thin 
silicon flexure. The components within the cryostat are displayed in figure 4. In order to 
measure a mechanical quality factor, the silicon flexure must be excited into oscillatory 
motion. The electrostatic driving plate (ESD) produces a non-uniform electrodynamic field 
which, when placed near the silicon flexure, forces the cantilever to oscillate. A signal 
generator and high-voltage source provided the ESD’s power and allowed a manual input 
of the signal’s frequency and amplitude. To minimize vibrational losses, the silicon 
cantilever was clamped down with stainless steel blocks. To achieve a reasonable amount 
of heat transfer between the cantilever and cryostat, a thin layer of PEEK was inserted 
beneath the clamp. The clamp attached to the cantilever via screws which were made of 
silver in order to prevent cold welding. The signal readout of the oscillation consisted of 
directing the laser through the side of the cantilever and reflecting it back out onto a split 
photodiode which could then translate a projected oscillatory shadow into a voltage 
difference. This signal was amplified, sent to an oscilloscope, and then displayed onto a 
spectrum analyzer.  
 

 
Figure 3: The initial cryostat with no vacuum or electronic attachments 
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Figure 4: A SolidWorks drawing of the internal components to the cryostat 

 
 

Due to time constraints, the focus was switched to measuring the q factor at room 
temperature. A new vacuum chamber (figure 5) was utilized allowing us to simply transfer 
the clamp, cantilever and ESD. The chamber had two port windows which allowed us to 
direct the laser through the vessel and onto the photodiode without the need to reflect back 
out. The split photodiode itself was constructed by gluing two photodiodes adjacent to each 
other (figure 6). A ring-down method was employed which consisted of exciting the 
cantilever to a resonant frequency (a frequency which stimulates a maximum amount of 
oscillation), turning off the excitation, and observing the expected exponential decay of an 
under-damped oscillator: 
 
                                                           ( )         ⁄     (    )                                                        (3) 
 
 The free-decaying amplitude follows an exponential law of the form [7]: 

 

                                                             ( )      
 
 

                                                               (4) 
 

The characteristic ring-down time   is used to determine the quality factor [7]: 
 
                                                                                                                                                              (5) 

 
Where    is the temperature dependent resonant frequency. The quality factor is related to 
the mechanical loss by: 
 

                                                                             ( )  
 

 ( )
                                                                      (6) 
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In turn, the mechanical loss angle at 6 resonant modes was measured. 
 

 

Figure 5: A new vacuum chamber with dual port windows 

 

Figure 6: The split photodiode with the laser directed onto it 
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3. Results 

 6 eigen-modes of the silicon cantilever were determined using Comsol, a finite 

element analysis program.  

 

Figure 7: A sketch of the geometry of the silicon cantilever (left). A Comsol model of a bending 

mode of oscillation (right). The relative displacement is indicated by the color in the legend.  

 

A time series of a decaying oscillation was extracted with a data acquisition system and 

inputted into Matlab. At consecutive instances of the time series, the sinusoidal data was 

inputted into the pwelch function in Matlab which produced a power spectral density for 

the resonant mode of interest. The power value of the resonant peak was extracted at each 

instant and plotted separately. The resonant peaks decayed exponentially with time (since 

the power is proportional to the amplitude squared of the oscillation), thus, the extracted 

values were subsequently fitted with equation 2 (Figure 8).  , the characteristic ring-down 

time, was inputted into equation 4 to determine the quality factor and mechanical loss. The 

main contribution to the loss was expected to originate from the thermoelastic loss. For the 

special case of pure bending modes in crystalline silicon, the equation for the thermoelastic 

loss is given by: 

                                                                     
    

   

  

      
                                                                   (7) 

Where   is the thermal expansion coefficient,   is Young’s modulus, and   is a relaxation 

time. Note that the internal loss is related to the sample dimension through the relaxation 

time: 
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                                                                         (8) 

Where   is the thickness of the sample.  

 

Figure 8: PSD of the first bending mode displaying a peaked intensity at the resonant frequency 

and peaks at various harmonics (left). Decaying power of the first resonant frequency oscillation 

fitted to an exponential curve (right).  

Figure 9 represents the measured and expected mechanical loss at resonant modes of 70.5 

Hz, 536 Hz, 960.4 Hz, 1484.8 Hz, 2910.13 Hz, and 4804 Hz.  

 

Figure 9: Expected and measured thermoelastic loss plotted for various resonant frequencies 
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 The second mode appears to show excessive loss which may have been due to a 

misalignment of the laser. The third mode is a torsional mode which is inaccurately 

modeled by the thermoelastic equation for loss, thus, its expected loss is a rough 

approximation. This is due to the fact that the heat flux established in a torsional mode is 

across the width of the cantilever. Nevertheless, the relaxation time is larger and the 

approximation for the torsional thermoelastic loss is smaller.  The first mode shows the 

lowest mechanical loss with a value of            while the highest loss is seen in the 

highest resonant frequency with a value of          . Overall, a systematic error is 

apparent since all of the measured loss values overestimate the expected loss. This may be 

associated with energy losses to the clamp and the mount upon which it was attached to.  

Most likely it originates from surface losses which must be investigated in the future along 

with how etching techniques may alleviate it.  

4. Summary 

 The mechanical quality factor of a silicon cantilever was measured at room 

temperature for various resonant frequencies. The measurements confirm that silicon is a 

high-Q material and is well suited to be used as an optical substrate for future gravitational 

detectors. Q-factors up to          were measured at 300 K. Further work must be done 

to measure the Q factor at cryogenic temperatures. In addition, it will be necessary to 

investigate the effect of cantilever dimensions, crystal direction, and etching techniques on 

the measured Q-factor.  
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