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1 Introduction

The purpose of this technical note is to expand upon Madeleine Waller’s work with Norna
Robertson during the summer of 2012 on the LIGO III quadruple pendulum conceptual
design [1]. This document establishes some relatively simple but practical equations, based
on some approximations and assumptions. These equations are used to optimize the lon-
gitudinal and vertical seismic isolation properties of the pendulum. This optimization is
constrained by the payload limit of the BSC-ISI, the total length of the pendulum, and the
desired test mass weight. The goal is to meet or beat the aLIGO quad performance. The
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constraints and performance goals are detailed in Section 2.1.

These equations employed here are presented early, in the next section (Section 2.2), so they
are readily available. The derivations of these equations are presented in detail in Appendices
A and B. Discussions of optimizing these equations is presented in Section 2.3. Since no
optimal solution exists that meets the performance goals within the constraints, Section 3
considers three modifications to the constraints and pendulum structure that do meet the
performance goals. Table 3 summarizes the pendulum parameters for these solutions.

For most of this document we assume the LIGO III pendulum is similar to the aLIGO quad
in construction. The only differences are the masses and the wires, and the use of silicon
rather than silica. At the end of Section 3 we will break this assumption by considering
springs at the penultimate mass.

This document follows the blue team design from the LIGO III strawman report [3], but the
analysis is not restricted to this approach.

2 Parameter Optimization

This section presents a design process for the choosing parameters of the LIGO III quad con-
ceptual design for longitudinal and seismic isolation performance. Some of these parameters
also influence thermal noise performance. The parameters considered here, and sketched in
Figure 1 include mass, wire length, and spring stiffness. Section 2.1 discusses the constraints
on these parameters, and the assumptions behind those constraints. Section 2.2 introduces
a minimal set of equations used to determine the optimal distribution of these parameters.
Section 2.3 considers that some of these equations have competing optimal solutions, and
outlines the problem of these competing goals.

2.1 Pendulum Design Constraints

The pendulum design is constrained to fit within certain weight and length limits. The rele-
vant constraints for the equations in this section are the total main chain payload mass, total
length, and test mass weight. Table 1 summarizes these constraints. To these constraints we
add that the longitudinal seismic isolation, vertical seismic isolation, and the vertical bounce
mode between the lowest two stages must perform as at least as well as the Advanced LIGO
quad pendulum. These requirements are summarized in Table 2.

Table 1: LIGO III Quadruple pendulum parameter constraints. The total length in row 1 is
defined from the suspension point to the center of the test mass. These values are based on
the assumptions discussed in this section.

Parameter Constraint Value Reference
L1 + L2 + L3 + L4 ≤ 2.14 m [1]

P = m1 +m2 +m3 +m4 ≤ 270 kg [2]
m4 = 143 kg [3]
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Figure 1: xg and zg represent longitudinal and vertical seismic motion respectively; x1 to x4
and z1 to z4 represent the motion of stages 1 to 4; m1 to m4 the mass of these stages; L1 to
L4 the lengths of wire suspending these stages; and k1 to k4 the stiffnesses of these stages.

Table 2: Requirements based on current aLIGO quadruple pendulum performance. This
document assumes that a LIGO III quad should meet or exceed the Advanced LIGO longi-
tudinal and vertical seismic isolation.

Parameter Requirement Value Reference
10 Hz longitudinal isolation ≤ 1.0875× 10−7 m/m [5]

10 Hz vertical isolation ≤ 1.3884× 10−4 m/m [5]
Vertical bounce mode ≤ 9.27 Hz [5]
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Table 1 states the total mass of the main chain must be no more than 270 kg [2]. This
constraints assumes the BSC-ISI can handle 800 kg of total payload. Then (using educated
guesses) it is assumed this 800 kg encompasses 300 kg in reserve for balancing, 60 kg for a
reaction chain (scaled down from aLIGO by a factor 2), 20 kg for cryogenic equipment, 100
kg for a quadruple suspension cage (some of which may double as additional cryo equipment),
and 50 kg for a Transmission Monitor suspension and cage. Some of these assumptions may
be revisited in the future to fine tune the allowed main chain suspended mass.

The mass of the test mass is assumed fixed at 143 kg [3]. This high value was chosen by
the Blue team in the LIGO III strawman report to minimize radiation pressure and thermal
noise influences.

Table 2 adds to Table 1 by stating that a LIGO III quadruple pendulum performance should
be at least as good as the Advanced LIGO pendulum. Here performance is defined in the
first two rows as seismic isolation from BSC ISI stage 2 to the test mass in the longitudinal
and vertical directions. The third row sets the performance of the highest frequency vertical
mode. This mode represents bounce motion between the test mass and the penultimate
mass, which tends to be at a high frequency due to the lack of springs between these stages.
Keeping this mode low is good for both seismic isolation and thermal noise.

2.2 List of useful Equations

Eqs. (1) to (5) listed here are used to determine the optimal distribution of mass, wire
length, and spring stiffness from the point of view of the quadruple pendulum longitudinal
and vertical seismic isolation.

Longitudinal seismic isolation equations :

x4
xg
≈ g4

(2πf)8
1

L1L2L3L4

(m1 +m2 +m3 +m4)(m2 +m3 +m4)(m3 +m4)m4

m1m2m3m4

(1)

m∗
2 = −(m3 +m4) +

√
P (m3 +m4), P = m1 +m2 +m3 +m4 (2)

m∗
3 = −A+ A

√
A+ P −m2 −m4, A =

m4(m2 +m4)

P +m4

(3)

Vertical seismic isolation equations :

z4
zg
≈ 1

(2πf)8
1

m1m2m3m4

k1k2k3k4 (4)

fbounce ≈
1

2π

√
E4g

L4σ4

(
1 +

m4

m3

)
(5)
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The subscript indices represent the stages in order of top to bottom, m represents mass in
kg, L is wire length in m, g is gravity in m/s2, f is frequency in Hz, k is stiffness in N/m,
fbounce is in units of Hz, σ4 is the stress in the fibers between the PUM and test mass in Pa,
and E4 is the modulus of elasticity of those fibers in Pa.

Eq. (1), derived in Appendix A, is the high frequency asymptote of the longitudinal seismic
transmission between BSC-ISI stage 2 displacement and test mass displacement. Used as an
approximation, it is valid for all frequencies greater than the resonances, where the approx-
imation error approaches zero as f approaches infinity. Figure 2 plots this approximation
against the aLIGO model transfer function to provide an idea of where it is valid. Above the
resonances, the approximation is an underestimate, as the seismic transmission approaches
the asymptote from above.

Eqs. (2) and (3), derived in Appendix A, provide the optimal values of m2 and m3, m
∗
2 and

m∗
3 respectively. These values yield the minimum longitudinal seismic transmission from

Equation (1) given the mass constraints in Table 1.

Eq. (4), derived in Appendix A, is the high frequency asymptote of the vertical seismic trans-
mission between BSC-ISI stage 2 displacement and test mass displacement. Like, Equation
(1), used as an approximation it is valid for all frequencies greater than the resonances, where
the approximation error approaches zero as f approaches infinity. Figure 2 plots this approx-
imation against the aLIGO model transfer function to provide an idea of where it is valid.
Above the resonances, the approximation is an underestimate, as the seismic transmission
approaches the asymptote from above.

Eq. (5), derived in Appendix B, is an approximation of the highest frequency vertical mode
representing bounce motion between the bottom two stages. The error in Eq. (5) approaches
zero when the distance between fbounce and the second highest mode approaches infinity. As
an idea of the accuracy of the equation, the aLIGO quad model has a bounce mode at 9.27 Hz
with a second highest vertical mode at 3.56 Hz. The estimate of the bounce mode from Eq.
(5) is 8.92 Hz. This is an error of 3.82%.

2.3 Optimization Discussion

Now that simple relations for seismic isolation have been obtained in Section 2.2 with their
constraints in Section 2.1, we can proceed with searching them for the optimal values of
mass, wire, length, and spring stiffness.

To begin the optimization, we first define what our goals are based on the requirements in
Table 2. These are stated in the equations below,

from Eq. (1):

C1 =
g4P

(2πf)8
min

[
1

L1L2L3L4

(m2 +m3 +m4)(m3 +m4)

m1m2m3

]
(6)

from Eq. (4):

C2 =
k4

m4(2πf)8
min

[
1

m1m2m3

k1k2k3

]
(7)
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Figure 2: Comparison of Eq. (1) and Eq. (4) to the aLIGO quadruple pendulum model.
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from Eq. (5):

C3 =
1

2π

√
E4g

σ4
min

[√
1

L4

(
1 +

m4

m3

)]
(8)

where, C represents a cost term to be minimized. The index of each C corresponds to the
respective row in Table 2.

The challenge is that each C must be considered simultaneously because the best solution for
one is not necessarily the best solution for the others. We will first consider the solution for
each C independently since this provides valuable insight into the behavior of the conceptual
design. Then, we will try to search for parameters that simply meet all the design constraints
and performance requirements simultaneously.

2.3.1 Solving C1

Note that to find the solution of C1 in Eq. 6 we can separate the wire length terms from the
mass terms. Then, the optimal solution for the wire lengths is simply to make them all the
same (to maximize L1L2L3L4), 2.14/4 = 0.535 m .

The optimal solution of the mass values are determined from Eqs. (2) and (3) from Section
2.2. These equations provide the optimal solutions for m2 or m3 given all the other masses.
To solve for both simultaneously, one must iterate between the two equations a few times.

Figures 3 and 4 plot an example of this iteration, with Figure 3 showing the convergence of
the mass values, and Figure 4 showing the convergence of seismic isolation. One starts by
guessing a value for m3 (or m2), solving for m∗

2 (m∗
3), then solving a new m∗

3 (m2) with this
m∗

2 (m3), and repeating. After just a few iterations, the values of m∗
2 and m∗

3 will converge
to the values yielding best seismic isolation. Then, m∗

1 = P − m4 − m∗
3 − m∗

2. The initial
guess for this example is m3 = 80 kg. This iteration is possible because Eq. (1) is convex
in the parameter space of m2 and m3 (Appendix A.3.3). Given the constraint of a 143 kg
test mass, this results in m3 = 33.74 kg, m2 = 41.71, m1 = 51.55 kg, as shown in Figure 3.
Appendix A confirms this result by using a numerical search to find the same values.

Note the trend of increasing mass going up the chain. This trend will always be the case for
optimal longitudinal seismic isolation. The reason is because the longitudinal stiffness of a
given wire is determined by weight hanging from it, as given by Eq. 31 in Appendix A.3.1.
Thus, a lower stage’s mass contributes to the stiffness of many stages while a higher stage
contributes to few.

Plugging these values for the wire lengths and masses into Eq. 1, we get a seismic transmis-
sion at 10 Hz of 6.7×10−8 m/m (also shown in Figure 4). To check, plugging these into the
model [5], we get 7.9×10−8 m/m. This performance is better than the aLIGO quad, which
is 1.0875×10−7 m/m.

2.3.2 Solving C2

The solution of C2 is obtained by simple inspection. First, the mass values and stiffness
values are separable. The goal is then to maximize the mass term while minimizing the
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stiffness term. One optimizes the mass values by making them all the same, to maximize
m1m2m3. The stiffness values are optimized by making each one as small as possible through
the geometry of the springs. In practice geometrical constraints limit the minimum stiffness.

Since these geometrical constraints are unknown to us, we will assume it is possible to design
springs soft enough to meet the vertical seismic isolation requirement regardless of the mass
and wire values. Thus, from this point on we will ignore C2 and its corresponding vertical
isolation requirement in the remainder of this document.

2.3.3 Solving C3

The solution of C3, the minimum bounce mode frequency, is also obtained by simple in-
spection. First, the wire length and mass terms are separable. The wire length terms are
optimized by setting L4, the test mass wires (or fibers) as long as possible. The mass term is
optimized by making the penultimate mass value, m3, as high as possible. Unlike C1, there
is no unique solution other than to make L4 the entire suspension length, and m3 the entire
remaining suspension payload. Both extremes are clearly impractical. We’ll consider the
bounce mode together with the longitudinal isolation in the following section.

2.3.4 Considering C1 and C3 Simultaneously

Here we will first observe the resulting bounce mode from the parameters given by the
solution of C1 in Section 2.3.1. Then, we will turn it around, and solve for the m3 that gives
us a satisfactory bounce mode and observe the resulting best case longitudinal isolation. We
will see how each case compares against the performance requirements. As stated in Section
2.3.2, we are ignoring C2 and the corresponding vertical seismic isolation requirement by
assuming that it is possible to design springs soft enough to meet this requirement regardless
of the values selected for the mass and wire length parameters.

For the first case, we plug in the solution from C1 in Section 2.3.1 into Eq. 5 and compare
the result against the requirements in Table 2. Doing so, we get a bounce mode at 17.0 Hz
(the exact model value would depend on the unknown spring stiffnesses). This value is well
above the aLIGO value of 9.27 Hz, violating this requirement.

Note, the 17.0 Hz frequency was calculated by assuming a silicon modulus of elasticity at
120 K of 167.4 GPa [6], and a fiber stress of 1.4 GPa. There is still considerable uncertainty
in what fiber stress is appropriate. Nonetheless, the fibers would have to be stressed nearly
4 times more to do better than the aLIGO quad given these masses and lengths.

For the second case, we’ll try a longer wire length L4 of 1 m, and observe what m3 is required
for the bounce mode to meet the aLIGO value. 1 m is chosen here since it is a value that
has been considered before in [1]. Solving Eq. 5 for m3 gives us Eq. 9. Then plugging in
L4 = 1 m, m4 = 143 kg, and fbounce = 9.27 Hz,

m3 = m4

[
(2πfbounce)

2L4σ4
E4g

− 1

]−1

(9)

we get, m3 = 75.3 kg. From this m3, the optimal m2 for longitudinal isolation is given by
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Eq. 2 as 24.5 kg. 27.2 kg then remains for m1.

The best 10 Hz longitudinal isolation we can get with these parameters, setting L1 = L2 =
L3 = 1.14/3 = 0.38 m, is 1.98×10−7 from Eq. 1 and 2.67×10−7 from the model, violating the
longitudinal isolation goal by a factor of 2. Figure 5 tries this calculation for many different
values of L4. The curves demonstrate that it is not actually possible to meet both the
longitudinal and bounce mode requirements simultaneously within these constraints. The
best we can do is a model performance of 2.34×10−7 at L4 = 1.117 m.
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Figure 5: Optimal longitudinal isolation vs L4. The bounce mode is fixed to meet the aLIGO
performance. L1 = L2 = L3 = (2.14− L4)/3.

3 Three Possible Solutions to Meet aLIGO Performance

As discussed in the previous section, it is not possible to design a LIGO III quadruple
pendulum that performs as well as the aLIGO quad in terms of longitudinal isolation and
bounce mode, given the constraints of a 270 kg payload, a 143 kg test mass, and a total
wire length of 2.14 m. This section considers 3 possible modifications to these constraints,
or to the structure of the pendulum itself, to make a pendulum that performs as well, if not
better than, the aLIGO quad.

We assume the total wire length is truly fixed, as making a longer suspension would require
unrealistic changes in the infrastructure at the observatories. However, we can consider
increasing the total payload weight, decreasing the test mass weight, or adding springs to
the penultimate mass. The parameters for these solutions are summarized in Table 3, and
described in more detail in the following paragraphs.

First, let’s consider allowing a greater payload P . This would permit more mass at the higher
stages while keeping the same test mass weight, which would improve seismic isolation for

page 10



LIGO-T1300786-v6

Table 3: Summary of model parameters for the three proposed modifications.
Parameters Increased P Decreased m4 Penultimate Springs

P , Payload (kg) 301.9 270.0 270.0
m1 (kg) 46.79 41.93 51.55
m2 (kg) 39.54 35.42 41.71
m3 (kg) 72.57 64.86 33.74
m4 (kg) 143.0 127.8 143.0
L1 (m) 0.372 0.372 0.535
L2 (m) 0.372 0.372 0.535
L3 (m) 0.372 0.372 0.535
L4 (m) 1.025 1.025 0.535

long. isolation (m/m) 1.1×10−7 1.1×10−7 7.9×10−8

fbounce (Hz) 9.27 9.27 low, depends on springs
σ4, fiber stress (Mpa) 1400 1400 1400

E4, fiber modulus (Gpa) [6] 167.4 167.4 167.4
noise budget impact none slightly worse better

relative cost high low high

a given bounce mode. Figure 6 demonstrates the evolution of best longitudinal isolation
against varying payload for L4 = 1 m, m4 = 143 kg, and fbounce = 9.27 Hz. In this case,
we need to increase the payload P by 32.3 kg to 302.3 kg in order to meet the aLIGO
performance. The problem with a larger payload, is that the BSC-ISI would have to be
reconfigured to hold the extra weight. Thus this solution, while possible, would require
significant effort and cost, but it would not negatively impact the noise budget.

Second, the simplest solution is perhaps to employ a smaller test mass. Like the payload
solution, a smaller test mass would improve seismic isolation for a given bounce mode. Figure
7 demonstrates the evolution of best longitudinal isolation against varying test mass weight
for L4 = 1 m, P = 270 kg, and fbounce = 9.27 Hz. In this case, we need to decrease the
test mass by 15.4 kg to 127.6 kg. Unlike the payload solution, this has the added benefits
of a cheaper suspension without reworking the BSC-ISI. The cost we would pay would be
in the noise budget. A smaller test mass would be more sensitive to radiation pressure and
thermal noise. It might also be more difficult to maintain at cryogenic temperatures due to
the reduced surface area.

In the first two solutions, we used a wire length of L4 = 1 m to demonstrate how seismic
isolation depends on the payload or test mass constraints while constraining the bounce
mode. This wire length is not necessarily the best choice. Figure 8 shows the results of
a search for the minimum possible payload, or the maximum possible test mass that meet
the aLIGO quad performances for all wire lengths between 0.6 m and 1.5 m. The figure
is generated by producing the curves of Figures 6 and 7 for many wire lengths. For each
length, the mass values that provide the aLIGO seismic isolation are plotted in Figure 8.
Thus, two things are learned from this plot. First, we see again that it is not possible to
meet all the desired constraints and aLIGO performances simultaneously; and second, the
closest we get is with L4 = 1.025 m, resulting in a necessity to either increase the payload
to 302 kg or decrease the test mass to 128 kg. Interestingly, this wire length is optimal for
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Figure 6: Optimal longitudinal isolation vs P . The bounce mode is fixed to meet the aLIGO
performance by setting m3 = 75.34 kg. L1 = L2 = L3 = 0.38 m.

both the test mass weight and the total payload (not to mention being very close to the 1
m chosen in [1]). The suspension parameters that provide the optimal results for the two
curves in Figure 8 are listed in Table 3.

For the third solution, instead of modifying weight constraints, let us now consider a mod-
ification to the pendulum structure. Up until now, we have assumed an aLIGO pendulum
structure, but with modified masses, wire lengths, and silicon rather than silica. An ad-
ditional change we can make, which is already being considered (by Glasgow?) is to add
silicon springs at the penultimate mass. This change greatly simplifies the conceptual design
because we are free to set the bounce mode with the springs. Thus, the bounce mode and
longitudinal isolation problems decouple. We would chose whatever test mass size we like,
set the other mass values according to Eqs. (2) and (3), choose the bounce mode with the
silicon spring design, and be done. The optimal parameter values are listed in Table 3. In
practice however, designing and implementing these springs is difficult and expensive, so all
options need to be considered carefully.

An additional requirement for the suspensions is that all modes (except the two vertical and
roll bounce modes) can be damped by the top mass damping loops. Figure 9 shows that for
all three solutions all four longitudinal modes appear in the top mass to top mass transfer
function. Thus, these modes can be damped by the top mass damping loops, satisfying the
requirement for the longitudinal degree of freedom. The coupling of the vertical modes will
depend on the spring stiffnesses chosen. It should be pointed out that an additional advantage
of adding blade springs to the penultimate mass is that the two otherwise undampable bounce
modes can be made to couple to the top mass, permitting their damping as well.

page 12



LIGO-T1300786-v6

50 60 70 80 90 100 110 120 130 140
10

−9

10
−8

10
−7

10
−6

 

 

c
re

a
te

d
 b

y
 w

o
rk

s
p

a
c
e

 o
n

 1
5

−
S

e
p

−
2

0
1

3

X: 127.6
Y: 1.084e−07

Test Mass m
4
 (kg)

Is
o
la

ti
o
n
 (

m
/m

)

10 Hz Longitudinal Isolation vs m
4
 for f

bounce
 = 9.27 Hz, P = 270 kg, and L

4
 = 1 m

Eq. (1)
Model
aLIGO Performance

Figure 7: Optimal longitudinal isolation vs P . The bounce mode is fixed to meet the aLIGO
performance. L1 = L2 = L3 = 0.38 m.
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Figure 9: Top mass to top mass longitudinal transfer functions showing that all 4 longitduinal
modes are visible at the top mass in all three solutions. Since all longitudinal modes are
visible, the damping loops have access to them. Note, the purple curve is partially obstructed
by the red curve.

4 Conclusion

This technical note develops mathematical tools for optimizing the performance of a LIGO
III quadruple pendulum in terms of longitudinal and vertical seismic isolation and bounce
mode frequency. From these tools, the optimal longitudinal isolation is given by unique set
of wire lengths and mass values. The vertical isolation can be set arbitrarily by design of the
spring stiffness values. The bounce mode is moved down in frequency either by increasing
the lowest wire length or by minimizing the ratio of test mass to penultimate mass weight.

Assuming an aLIGO structure to the pendulum, it is not possible to reconcile the longitudinal
isolation and bounce mode frequency such that they perform at least as well as the aLIGO
quad given our current constraints of payload, wire length, and test mass weight. To improve
the performance, the document suggests 3 possible solution: 1) allow for greater payloads,
2) reduce the test mass weight, or 3) install springs at the test mass. All of these solutions
have pros or cons. 1) and 3) have better noise performance (the latter is best), but come
at significant cost. 2) has slightly worse noise performance, but is the cheapest. All the
trade-offs need careful consideration when deciding which approach is best.

Note, an important parameter that contains significant uncertainty, and that influences these
results is the maximum stress we can apply to the silicon fibers. The higher the allowable
stress, the easier the other requirements are to meet. Consequently, it is critical we put tight
bounds on this stress moving forward.
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A Seismic Isolation Derivations

This appendix derives the longitudinal and vertical seismic isolation Eqs. (1) to (4) in Section
2.2. Section A.1 introduces a generalized single axis 4 stage system, which will be analyzed in
Section A.2 to derive the asymptotes of the longitudinal and vertical seismic isolation transfer
functions. Section A.3 finds the set of masses that optimizes the longitudinal isolation derived
in Section A.2.

The notation in this appendix and the next follows these conventions:

• Bold upper case letters, e.g. M, denote matrices.

• Bold lower case letters, e.g. x, denote vectors. All vectors are column vectors.

• Non-bold lower or upper case letters, e.g. ω, denote scalar values.

• Subscripts on scalars, e.g. m1, refer to the pendulum stage, 1 through 4 top down

• Subscripts on matrices, e.g. C14, refer to the row and column of a matrix element.

A.1 Generalized System

This section presents the general 4 stage single-axis mass spring system shown in Figure 10.
This system’s equations of motion, described here, are important for the seismic isolation
derivations in A.2.

Simplifying a four stage quadruple pendulum to movement along a single axis (longitudinal,
vertical, etc) is a powerful tool in understanding its behavior and performance. The equations
of motion become much more tractable, yet have sufficient detail to accurately reproduce
seismic isolation properties (some of the highly coupled DOFs like transverse and roll cannot
accurately be simplified to single axis systems).

m
1

m
2

m
3

m
4

k
1

k
2

k
3

k
4

x
g

x
1

x
2

x
3

x
4

Figure 10: This single-axis mass spring system is used to simplify and generalize the dynamics
of the quadruple pendulum. xg represents ground motion, x1 to x4 represents the motion of
stages 1 to 4, m1 to m4 the mass of these stages, and k1 to k4 the stiffnesses of these stages.

The system in Figure 10 consists of 4 masses, m1 to m4 constrained to move along a single
axis, the x axis. In this general system, x could be thought of as any DOF, e.g. longitudinal,
vertical, etc. The ground is also constrained to move along this axis. The masses are
connected to the ground and to each other by springs k1 to k4.

The dynamics of this system are governed by the following equations of motion
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Mẍ + Kx =

[
k1

03×1

]
xg (10)

M =

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

 (11)

K =


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4
0 0 −k4 k4

 (12)

x =


x1
x2
x3
x4

 (13)

where, M is the diagonal mass matrix, K is the symmetric positive definite stiffness matrix,
and x is the vector of displacement coordinates for the four masses.

Note, the derivation of K can be obtained by inspection of Figure 10 using Hooke’s Law,
f = Kx. The procedure is the following: move x1 by a unit displacement while holding the
other masses fixed. The forces on each mass required to hold this configuration yield the
first column of K; then repeat this procedure moving each stage by unit displacements one
at a time until the full matrix is constructed.

A.2 Derivation of General Single-Axis Seismic Isolation

For the system described in A.1, this section will derive the transmission of xg to x4 as

x4
xg
≈ 1

(2πf)8
k1k2k3k4

m1m2m3m4

(14)

where f is the frequency in Hz, for frequencies greater than the resonance frequencies.

First, we take the generalized equation of motion in Eq. 10 and multiply both sides by the
inverse of M.

ẍ + M−1Kx =

[
k1/m1

03×1

]
xg (15)

Then we take the Laplace Transform of both sides where s is the Laplacian variable.

xs2 + M−1Kx =

[
k1/m1

03×1

]
xg (16)
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Solving for x,

x =
[
M−1K + s2I4×4

]−1
[
k1/m1

03×1

]
xg (17)

To find the magnitude and phase relation between xg and x4 we set s to,

s = iω (18)

where i is the imaginary number, and w is the frequency in radians/second. As an aside,
setting s = iω converts the Laplace Transform to the Fourier Transform.

x =
[
M−1K− ω2I4×4

]−1
[
k1/m1

03×1

]
xg (19)

Set an intermediate variable V as the matrix that gets inverted,

V =
[
M−1K− ω2I4×4

]
(20)

V =



k1 + k2
m1

− ω2 −k2
m1

0 0

−k2
m2

k2 + k3
m2

− ω2 −k3
m2

0

0
−k3
m3

k3 + k4
m3

− ω2 −k4
m3

0 0
−k4
m4

k4
m4

− ω2


(21)

x = V−1

[
k1/m1

03×1

]
xg (22)

This matrix is difficult to invert analytically, but for the ground to test mass isolation, all
we need is the lower left element (index 4,1) of V−1. Thus we don’t need to invert the whole
matrix. This element is equal to

(V−1)41 =
1

|V|
C14 (23)

Where C is the matrix of cofactors. The C14 element is equal to the negative determinant
of the 3× 3 lower left corner of V [4].
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C14 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

−k2
m2

k2 + k3
m2

− ω2 −k3
m2

0
−k3
m3

k3 + k4
m3

− ω2

0 0
−k4
m4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

k2k3k4
m2m3m4

(24)

Note, C14 is a triangular matrix, so its determinant is simply the product of the diagonal.

Up to this point we have made no approximations. To find the determinant of V for Eq. 23
we assume high frequencies, where ω > resonance frequencies. In this regime, V approaches
the diagonal matrix

V ≈


−ω2 0 0 0

0 −ω2 0 0

0 0 −ω2 0

0 0 0 0− ω2

 (25)

Thus, the determinant of V at these high frequencies is

|V| ≈ ω8 (26)

Putting this together with Eq. 22 gives us,

x4
xg

=
1

ω8

k1k2k3k4
m1m2m3m4

(27)

Finally, plugging in ω = 2πf yields Eq. 14, the transmission of seismic noise through the
system. This equation can be used directly for the quadruple pendulum vertical isolation,
where the k values become the net blade spring stiffness at each stage.

A.3 Derivation of Optimal Longitudinal Isolation

This section derives the set of mass values for a quadruple pendulum that provide the best
longitudinal isolation for a given payload. For this calculation we use Eq. 14.

A.3.1 Longitudinal Stiffness Derivation

To use Eq. 14 for longitudinal isolation we must first derive the k values. Figure 11 illustrates
an arbitrary mass of mass m suspended from a wire of length L, and supporting a vertical
load fload. The mass is displaced in the longitudinal direction a distance x. This displacement
causes the wire to pivot an angle θ. To find the stiffness, we need the restoring force, frestore,
as a function of displacement x. This restoring force is
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m

x
L θ

frestore = 
(mg+ fload)tan(θ)

g

fload

mg+ fload

Figure 11: Sketch of the forces on a suspended stage of mass m hanging from a wire of length
L at an angle θ.

frestore = (mg + fload) tan θ (28)

But, for small angles,

frestore ≈ (mg + fload)
x

L
(29)

Therefore,

k ≈ frestore
x

=
(mg + fload)

L
(30)

Thus, the stiffness for a suspended mass can be stated simply as the tension in the wire
divided by the wire length. In general, for an N stage pendulum,

ki = g

∑N
i mi

Li

(31)

where i is the index of the stage in order of top down. Plugging this into Eq. 14 we get,

x4
xg

=
g4

(2πf)8
1

L1L2L3L4

(m1 +m2 +m3 +m4)(m2 +m3 +m4)(m3 +m4)m4

m1m2m3m4

(32)

We can minimize this function to optimize the isolation. Note that the minimization over
the wire lengths is separable from that of the masses. The optimal wire lengths are obtained
when they are all equal segments of the total suspension length. The optimal solution for
the masses is somewhat more complicated and derived in detail in Section A.3.2.

A.3.2 Optimal Masses

The goal is to minimize Eq. 32 with respect to the four mass parameters. First, note that
by invoking our two mass constraints we can reduce this four parameter minimization to two
parameters.
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m4 = 143 (33)

m1 = P −m2 −m3 −m4 (34)

where P = m1 +m2 +m3 +m4 = 270 kg. Then,

x4
xg

=
g4

(2πf)8
P

L1L2L3L4

[
(m2 +m3 +m4)(m3 +m4)

(P −m2 −m3 −m4)m2m3

]
(35)

where the term in the square brackets is to be minimized with respect to m2 and m3. Thus,
we can restate the minimization problem as

min

[
N

D

]
(36)

where N is the numerator and D is the denominator,

N = m2m3 +m2m4 + 2m3m4 +m2
3 +m2

4 (37)

D = Pm2m3 −m2
2m3 −m2m

2
3 −m2m3m4 (38)

Then, minimizing by setting the derivative with respect to mi to 0,

∂

∂mi

[
N

D

]
=

(
∂

∂mi

N

)
D−1 +N

(
∂

∂mi

D−1

)
= 0 (39)

(
∂

∂mi

N

)
D−1 −ND−2

(
∂

∂mi

D

)
= 0 (40)

multiply both sides by D (
∂

∂mi

N

)
−ND−1

(
∂

∂mi

D

)
= 0 (41)

put derivatives on the left and everything else on the right,

∂N/∂mi

∂D/∂mi

=
N

D
(42)

Then to solve for the optimal m2 and m3 values, we solve ∂N/∂mi and ∂D/∂mi for i = 2
and i = 3 respectively.

∂N

∂m2

= m3 +m4,
∂D

∂m2

= Pm3 − 2m2m3 −m2
3 −m3m4 (43)

∂N

∂m3

= m2 + 2m3 + 2m4,
∂D

∂m3

= Pm2 −m2
2 − 2m2m3 −m2m4 (44)
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We choose to solve for the optimal m2 first. For m2, Eq. 42 is

m3 +m4

Pm3 − 2m2m3 −m2
3 −m3m4

=
(m2 +m3 +m4)(m3 +m4)

(P −m2 −m3 −m4)m2m3

(45)

Both sides contain m3+m4

m3
, so we cancel those terms out,

1

P − 2m2 −m3 −m4

=
m2 +m3 +m4

(P −m2 −m3 −m4)m2

(46)

Then, cross multiply the fractions to get the equation on a single line,

(P −m2 −m3 −m4)m2 = (P − 2m2 −m3 −m4)(m2 +m3 +m4) (47)

Restate the equation in a quadratic form with respect to m2

m2
2 + 2(m3 +m4)m2 − (m3 +m4)(P −m3 −m4) = 0 (48)

Then the solutions for m2 are

m2 = −(m3 +m4)± 0.5
√

4(m3 +m4)2 + 4(m3 +m4)(P −m3 −m4) (49)

Simplifying, and noting that the negative square root solution is invalid because it yields
negative mass, the final result for the optimal m2, m

∗
2, is

m∗
2 = −(m3 +m4) +

√
P (m3 +m4) (50)

Now to solve for the optimal m3, Eq. 42 is

m2 + 2m3 + 2m4

Pm2 −m2
2 − 2m2m3 −m2m4

=
(m2 +m3 +m4)(m3 +m4)

(P −m2 −m3 −m4)m2m3

(51)

Both sides contain 1
m2

, so canceling that out,

m2 + 2m3 + 2m4

P −m2 − 2m3 −m4

=
(m2 +m3 +m4)(m3 +m4)

(P −m2 −m3 −m4)m3

(52)

Then, cross multiply the fractions to get the equation on a single line,

(m2+2m3+2m4)(P−m2−m3−m4)m3 = (P−m2−2m3−m4)(m2+m3+m4)(m3+m4) (53)

Restate the equation in a quadratic form with respect to m3 (the m3
3 terms cancel out)

m2
3 +

2m4(m2 +m4)

P +m4

m3 −
m4(m2 +m4)(P −m2 −m3)

P +m4

= 0 (54)
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Then, the only valid solution for the optimal m3, m
∗
3, is,

m∗
3 = −A+

√
A2 + A(P −m2 −m4) (55)

where,

A =
m4(m2 +m4)

P +m4

(56)

As described in Section 2.3.1, m∗
2 and m∗

3 can be solved simultaneously by iterating the two
equations. For P = 270 kg and m4 = 143 kg, this results in m∗

2 = 41.71 kg, m∗
3 = 33.74 kg,

leaving 51.55 kg for m1. To check that this solution is correct, we can do a brute force scan
of the m2 and m3 parameter space in the MATLAB model and observe if the same values
are obtained for the best longitudinal seismic isolation. Figure 12 performs such a scan
using the full quad model. First, we can see that the isolation is convex (bowl shaped, see
Section A.3.3) in this parameter space, which is a sufficient condition to permit the previous
solution by iteration. Second, the optimal values obtained are m1 = 51.67 kg, m2 = 42.65
kg, m3 = 33.68 kg. These equal the calculated values within the 0.2345 kg plot resolution.

Figure 12: Scanning the LIGO III quad model with the m2 and m3 values. The color axis is
the log of the 10 Hz longitudinal seismic transmission normalized by the aLIGO transmission,
e.g. 0 is equal to aLIGO, 1 is 10 times worse. m1 = 270−m2−m3−m4, where m4 = 143. The
wire lengths are all 0.535 m. The minimum transmission occurs at m1 = 51.67, m2 = 42.65,
m3 = 33.68. The plot has a mass resolution of 0.2345 kg.
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A.3.3 Convexity Check for m2 and m3 Parameter Space

In Sections 2.3.1 and A.3.2, it was mentioned that the optimal m2 and m3 values for longi-
tudinal isolation can be solved simultaneously by iterating between Eqs. (2) and (3). The
validity of this iteration is proved by showing that the problem of minimizing m2 and m3 is
convex, i.e. the longitudinal isolation curve is a bowl shaped function of these parameters.
In other words, there is only 1 local minimum and nowhere does the slope with respect to
these parameters go to zero except at this minimum.

The minimization problem is shown to be convex by showing that the Hessian matrix (matrix
of second derivatives) of the longitudinal isolation is positive definite over the entire feasible
parameter space. This is analogous to the one dimensional problem of proving that the
extremum (flat part) of a function is a unique minimum by showing that its second derivative
is positive everywhere (parabola for example). A number of ways exist to show that a matrix
is positive definite. In this case we will use the property that all eigenvalues are positive [4].

To start the derivation of second derivatives we can pick up from the derivation of the
gradients in Eq. (40). Denoting the Hessian matrix as H,

Hij =
∂

∂mj

[(
∂

∂mi

N

)
D−1 −ND−2

(
∂

∂mi

D

)]
(57)

where Hij refers to the ith−1 row and jth−1 column of H, and i and j are indices representing
the pendulum stage numbers from 2 to 3. Carrying through the partial derivate of mj,

Hij =
∂2N

∂mi∂mj

D−1− ∂N
∂mi

∂D

∂mj

D−2− ∂2D

∂mi∂mj

ND−2− ∂D

∂mi

∂N

∂mj

D−2+2
∂D

∂mi

∂N

∂mj

ND−3 (58)

Since pulling out constant positive terms will not effect the positive definiteness of H, we
can make the simplification that H̄ = HD3 and study the positive definiteness of H̄ instead.

H̄ij =
∂2N

∂mi∂mj

D2 − ∂N

∂mi

∂D

∂mj

D − ∂2D

∂mi∂mj

ND − ∂D

∂mi

∂N

∂mj

D + 2
∂D

∂mi

∂N

∂mj

N (59)

Solving for the second derivatives of N and D, picking up from the first derivatives in Eqs.
(43) and (44),

∂2N

∂m2
2

= 0,
∂2D

∂m2
2

= −2m3 (60)

∂2N

∂m2∂m3

= 1,
∂2D

∂m2∂m3

= P − 2m2 − 2m3 −m4 (61)

∂2N

∂m3∂m2

= 1,
∂2D

∂m3∂m2

= P − 2m2 − 2m3 −m4 (62)
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∂2N

∂m2
3

= 2,
∂2D

∂m2
3

= −2m2 (63)

We then need to show that all eigenvalues of H̄ are positive in the entire parameter space.
While there may very well be an analytical proof, finding one proved challenging. Thus, using
MATLAB, we calculate H̄ for many values of m2 and m3 and plot the smallest eigenvalue
at each point. Figure 13 plots these results for the constraints of P = 270 kg and m4 = 143
kg. m1, m2, m3 are also constrained to be no less than 10 kg. Within these constraints, the
smallest eigenvalue is always positive. Interestingly, if m1, m2, or m3 shrink all the way to
0, than a 0 eigenvalue is found, however reality requires masses with greater than zero size.

Figure 13: Scanning the LIGO III quad model with the m2 and m3 values. The color axis
is the log of the smallest eigenvalue (in the pair) of H̄ at each point in the parameter space.
The parameter space is constrained so the no mass is ever less than 10 kg when the payload
P = 270 kg and the test mass m4 = 143 kg. All eigenvalues within these constraints are
greater than zero, indicating that the minimization of longitudinal isolation over m2 and m3

is convex. The minimum eigenvalue would go to zero as a stage approaches 0 kg, but we
have imposed the more reasonable constraint of a 10 kg minimum.

We also consider the possibility of changing the payload and test mass constraints and show
that all eigenvalues still remain positive for any reasonable constraint combination. Figure
14 plots these results. The figure is constructed essentially by compiling many plots like
Figure 13 for a variety of payload and test mass constraints. In each case the minimum
eigenvalue in each plot is recorded. Figure 14 shows the minimum value from each of these
plots. In all cases, the eigenvalues remain positive. Thus, the simultaneous solution of m2

and m3 by iterating Eqs. (2) and (3) is optimal.
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Figure 14: Scanning the LIGO III quad model with the P and m4 values. The color axis is
the log of the smallest eigenvalue at each point in the parameter space. At each point the
smallest eigenvalue is the smallest in the entire m2 and m3 parameter space (constrained so
the no mass is ever less than 10 kg). In other words, Fig. 13 is generated at each point and
the smallest value in that figure is what is plotted here. All eigenvalues are greater than zero
in the shown range, indicating that the minimization of longitudinal isolation over m2 and
m3 is convex within what is assumed reasonable bounds for any choice of payload and test
mass.
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B Bounce Mode Derivation

This section derives Eq. (5), which estimates the vertical bounce mode between the PUM
and the test mass, for the case where no springs exist at the PUM. Figure 15 illustrates the
conceptual mass spring system used by this estimation. Only the lower half of the quadruple
pendulum is considered. Assuming the bounce mode is significantly higher in frequency (at
least twice) than all the other vertical modes, this is a valid simplification to make. This
simplification is also powerful in that we do not need to know the masses or stiffnesses of
the other stages.

m3

m4

k4L4

PUM

Test
Mass

z3

z4

Figure 15: Mass spring system for estimating the bounce frequency between the PUM and
test mass.

This system follows the following equation of motion

Mz̈ + Kz = 02×1 (64)

where,

M =

[
m3 0
0 m4

]
(65)

K =

[
k4 −k4
−k4 k4

]
(66)

z =

[
z3
z4

]
(67)

The mode frequencies are determined by the eigenvalues of this system. The eigenvalues are
given by the matrix M−1K.

M−1K =

[
k4/m3 −k4/m3

−k4/m4 k4/m4

]
(68)

The eigenvalues λ for this matrix are determined by the equation

(k4/m3 − λ)(k4/m4 − λ)− k24
m3m4

= 0 (69)
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One solution for λ is zero, because the system is free floating. The other is,

λ =
k4
m3

+
k4
m4

(70)

The bounce mode frequency, in rad/s is the square root of λ. Thus, the frequency in Hz is

fbounce =
1

2π

√
k4
m3

+
k4
m4

(71)

k4 is given by the cross-sectional area A4, length L4, and modulus of elasticity E4 of the
fiber. A factor of 4 is included because we have 4 fibers.

k4 =
4E4A4

L4

(72)

The smallest cross section gives the lowest stiffness and lowest frequency. The smallest cross
section is limited by the test mass weight m4g and maximum allowed fiber stress σ4.

A4 =
m4g

4σ4
(73)

The factor of 4 is because each fiber carries 1/4 of the load. Thus,

k4 =
E4m4g

L4σ4
(74)

Plugging into the fbounce equation, we reproduce Eq. (5),

fbounce =
1

2π

√
E4g

L4σ4

(
1 +

m4

m3

)
(75)
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