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Abstract Crackle is a type of nonlinear, high frequency noise generated as individual molecules in a material shift
when the entire system is driven at low frequencies. Such unwanted noise may occur in components of LIGO’s gravita-
tional wave observatories. Components of specific importance in studying this phenomenon are the steel blade springs
that hold the observatories’ highly sensitive mirrors in place. These blade springs were the primary focus of this inves-
tigation of crackle. For the project, an optical apparatus was created to determine the upper limit for the intensity of
crackle that could occur in such springs. Several improvements were made to the apparatus for the purpose of ampli-
fying the crackle, while decreasing the effects of other background noise sources, and a detailed data simulation was
created for use in testing the analysis process. Using a demodulation technique to analyze preliminary data, I found
that in the worst case scenario, crackle could cause displacement noise of up to 1.84×10−14 m√

Hz
against a background

displacement noise of 4.00×10−13 m√
Hz

. Longer data collection runs will be needed in order to make more conclusive
statements. Ultimately, this study will help LIGO to ascertain whether provisions will be necessary to mitigate the
effects of such nonlinear noise in its observatories.
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1 Introduction

1.1 Background

LIGO, or Laser Interferometer Gravitational-Wave Observatory, is a large scale experiment run jointly by Caltech
and MIT for the purpose of finding evidence for the existence of gravitational waves. LIGO observatories in Hanford,
Washington and Livingston, Louisiana are large Michelson interferometers with perpendicular arms each four kilome-
ters in length. Ultimately, the project hopes to observe changes in the apparent length of one arm relative to the other
- an indication that a gravitational wave, propagating through the fabric of space-time, has passed through the earth.
This can be achieved by observing the interference pattern created at the output of the interferometer. A small change
in that pattern could indicate a change in the distance light has traveled to get to the detector1. A simple representation
of a Michelson is shown in Figure 1. Here, light is emitted from the laser, shown by the heavy black arrow. The beam
splitter subsequently splits the beam so that fifty percent of the power travels into each arm of the apparatus. The light
then reflects off of the end mirrors and returns to the beam splitter. Fifty percent of the power in each arm is transmit-
ted into the photo detector, while the other half travels back in the direction of the laser. The interference pattern is
measured at the photo detector where half of the beam power is from each arm.

Fig. 1 Schematic drawing of the basic path that light travels through a Michelson interferometer. The beam splitter separates incoming
light into two perpendicular beams of equal power. This basic design is used both in the LIGO observatories and in my project.

Despite this clever design, the first iterations of LIGO were not able to detect gravitational waves. Because large
sources of gravitational waves (such as colliding binary stars) are so rare, detectable events are likely to be located
far from the earth. This means that their waves will be exceedingly weak and difficult to detect against the diverse
background of noise sources that constantly bathe our planet. In order to be sure that measurements made at the
observatories actually indicate the detection of gravitational waves, LIGO scientists and engineers must isolate the
observatories as much as possible from all conceivable sources of noise. For example, they are isolated seismically
to reduce the effects of earthquakes and passing trains.1 Some types of noise can be dealt with in this manner, while
others, such as quantum shot noise, are completely unavoidable. This project investigates a type of noise that has not
yet been studied thoroughly.
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1.2 Crackle Noise and its Importance

One of the many types of noise that may appear in LIGO’s signal is “crackle noise.” Crackle is a common phenomenon.
It occurs when a system responds to slowly changing external conditions (for example, a driving force) through dis-
crete, impulsive events spanning a broad range of sizes.2 Importantly, crackle is classified as “nonlinear noise” because
there is no simple relationship between the slow driving and the discrete events. Though these effects can manifest
in systems ranging widely in areas such as superconductors, stock markets and rearranging foam bubbles, one simple
example can be demonstrated with paper. It is nearly impossible to bring two ends of a sheet of binder paper together
without producing audible crackling sounds. Even if the paper is moving at extremely slow speeds (i.e. slowly chang-
ing external conditions), it will be difficult to eliminate these sounds.2 This type of disturbance is of importance to
LIGO because high-frequency noise caused by the slow movement of Earth’s tectonic plates could yield crackle in
LIGO’s suspensions, which would cause them to vibrate and add unwanted noise to the signal. Right now, the effects
of crackle on LIGO are not well understood, so it is important that we find an upper limit for this type of noise due to
seismic oscillations in our interferometers.3 Crackle could of course occur in many components, but we have chosen
to concentrate on examining its effects in the maraging steel blade springs from which the end mirrors are suspended
at the observatories.

1.3 Blade Springs

LIGO’s blade springs are a part of the complex system of masses, springs and pendula that work together to isolate the
end mirrors from outside noise. They are machined from maraging steel, a highly flexible, light, and crack resistant
alloy that can be found in applications from aerospace to fencing blades. As is shown in Figure 2, the mirrors are hung
as the fourth pendulum in a series which ultimately is suspended by the blade springs at the very top. In fact, these
springs exist at every level of the suspension. Even though crackle may occur in other components of these suspensions,
it was most convenient to investigate crackle in the blade springs, so they were chosen for experimentation.3

Fig. 2 The narrow metal band on the left is a computer model of one of LIGO’s maraging steel blade springs. They are baked into this bent
position so that when the end mirrors of the quadruple pendulum suspension are hung from them, they flatten out, and stress is more evenly
distributed across their surface. The assembly to the right of the blade shows the suspension with four of the blade springs at the top.
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After careful study of these blade springs, a tabletop Michelson interferometer was ultimately created in such a way that
it could be driven sinusoidally. It was proposed that by analyzing data taken from the interferometer’s photo detector
outputs, we would be able to determine the maximum amount of crackle that could be present in two blade springs
when they were driven. Undriven test runs would act as a control. Although we were not able to take enough data
before the end of the summer session at Caltech to come to any strong conclusions relating to LIGO’s observatories,
I have successfully calculated a preliminary upper limit for crackle in our signal. This work has also increased our
understanding of the analysis pipeline that will be utilized once we have more data.

2 Basic Experimental Overview

Crackle noise is such a low-level phenomenon, that it would be impossible to detect directly without optics on the
scale of LIGO’s observatories.3 In order to make such measurements feasible in a lab, we set up an environment in
which we knew what our crackle signal should look like, and then we used this information to simplify the detection
process.

On a basic level, we measured the differential displacement between two test masses each hung from a blade spring.
Crackle is a random phenomenon, so when these two blade springs were driven sinusoidally we hypothesized that
discrete random events in the two blades would cause differential displacements which could be measured. In or-
der to actually make this measurement, we used a Michelson interferometer as described in section 1.1 with the two
hanging test masses acting as the end mirrors. We set up the optics such that each photo detector (denoted as PD in
Figure 3) gave information about one blade spring. When the two signals were subtracted, we had a data stream of
the differential displacements between the blades. Because any seismic noise that affected both blades equally was
simply subtracted away in this process, along with all other such “common mode” noise, what we were left with was
displacement caused by events such as crackle that occurred in just one blade or the other.

Fig. 3 Basic experimental setup showing two masses, (M), each hanging from the ends of blade springs. The masses are also the end
mirrors of a Michelson interferometer, which is used to measure the differential displacement of the masses. Such displacment could be
caused by crackle noise.
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Crackle is not the only type of random noise that could manifest in just one blade or the other. Other types such
as quantum shot noise constantly bathe the photo detector output signals. In order to make sense of this jumble, we
use the fact that the amount of crackle present in a system is proportional to the driving force. We drove our table
sinusoidally so that the magnitude of the crackle would also oscillate sinusoidally as shown in Figure 4. We then used
a demodulation technique to pick out this distinctive signal from the background.
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Fig. 4 This plot shows a Gaussian background noise signal including crackle noise similar to what we might detect with our experiment.
The sinusoidal red trace is a simulated driving force (shown with a greatly reduced amplitude for clarity), and the green trace is the resulting
crackle signal that is usually hidden inside the blue trace. Note how the crackle varies with the driving force.

3 Results

Using the methods outlined above, I developed a data analysis scheme to find the amount of crackle noise in the
400−500Hz region of our signal. My code utilized the Student’s t-test to find a noise spectral density interval. We can
be 95% confident that the crackle’s noise spectral density lies on this interval. Before the end of the Caltech summer
session, we were able to take 2 hours of data with the drive on, and 1 hour with the drive off. The confidence interval
for this data is:

[−6.84×10−15 m√
Hz

, 1.84×10−14 m√
Hz

]

This can be compared with a mean background noise spectral density in the 400−500Hz region of:

4.00×10−13 m√
Hz

Though the interval is very large (so large, in fact that it encompasses zero, the case where there is no crackle noise
at all), it does provide us with an upper limit for the amount of crackle that could possibly be occurring in the blade
springs. According to this data we can be 95% sure that no crackle will occur above 1.84×10−14 m√

Hz
. Figure 5 shows
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a plot of the displacement noise spectral density of the total signal with the upper limit of crackle shown as a dashed
line.
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Fig. 5 This plot shows the displacement noise spectral density of the total signal along with the upper threshold for crackle noise that I
calculated to be 1.84×10−14 m√

Hz
. The data represented has been bandpassed in the 400−500Hz region.

This experiment is still underway, so there is much more work to be done in the future. Perhaps most importantly, we
need to take more data. Currently our confidence bound is on the order of 10−14 which is enormous when compared
with the actual magnitude of crackle that we expect to see. More data will allow for longer integration times which will
in turn allow for much more certain results. However, longer data collection runs will also require more optimization
of the systems that stabilize the test masses against common mode vibrations. Currently, vibrations such as heavy
footsteps have the potential to “unlock” the masses, ruining the data stream.

Another area that needs investigation is the scaling of our results in this small lab experiment to LIGO’s larger blade
springs at the observatories. It is not currently obvious if crackle will occur at the same levels in a spring with a
greater volume, and if not, how to appropriately scale quantities so that we can extrapolate to behavior on the full
suspensions. Depending on the results of this experiment, it may also be necessary to examine additional components
of the quadruple suspension for crackle. The blade springs have the least damped connection to the ground of any part
of the suspension, meaning that they would likely be most susceptible to crackle induced by seismic activity. If it were
found that crackle levels in the springs could actually be problematic, it would be important to test components that
are further down the suspensions and closer to the mirrors. It is crackle at the mirrors - not at the blade springs - that
would actually hinder the detection of gravitational waves. The welded connection between the silica fibers and the
end mirror could prove to be an area where further study is needed.
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4 Methods

In this section I will give a more in-depth description of the experimental design. I will also discuss at length some of
the areas of this project on which I spent the most time while working for LIGO.

4.1 Experimental Design and Data Collection

4.1.1 Physical Set-Up

We began with a vacuum chamber on an optics table. In the vacuum chamber we placed two blade springs each with
masses hanging from the ends. To the bottoms of the masses, we attached mirrors which acted as the end mirrors for
the two arms of a Michelson interferometer similar to, but much smaller than the ones at the heart of each of LIGO’s
observatories. The input to the interferometer was a 1064nm HeNe Laser fed into the chamber by a polarization-
maintaining fiber optic cable. As shown in Equation 3, we used the difference between the outputs from the symmetric
and asymmetric ports of the interferometer, sampled 4096 times a second with photo detectors, as a control signal.

Vsy = dx+ IntesityNoise+ShotNoisesy (1)

Vasy =−dx+ IntesityNoise+ShotNoiseasy (2)

control =Vsy−Vasy = 2dx+ShotNoisesy−ShotNoiseasy (3)

In Equations 1 and 2 I have represented the outputs from the symmetric and asymmetric Michelson ports (Vsy and
Vasy respectively) as the sum of any differential displacement between the blades (dx and −dx: the crackle signal),
intensity noise (one of several common mode noise sources that may be present), and quantum shot noise (an example
of a random, unavoidable phenomenon). When we subtract the two outputs, we amplify the crackle signal, dx, while
eliminating common mode fluctuations such as intensity noise.

4.1.2 Optimization of Photo Detector Gain for Data Collection

Before actually collecting data, I had to deal with a potentially problematic aspect of the subtraction discussed in the
previous section. In reality, minor misalignment of the Michelson could lead to Vsy and Vasy being scaled by different
factors. That is, these two outputs were actually multiplied by unknown gain coefficients (Gsy and Gasy) that could be
different. Equations 1 and 2 could more accurately be written as follows:

Vsy = Gsy(dx+ IntesityNoise+ShotNoisesy) (4)

Vasy = Gasy(−dx+ IntesityNoise+ShotNoiseasy) (5)

If Gsy 6= Gasy, then taking Vsy−Vasy would no longer completely eliminate the intensity noise as it was eliminated in
Equation 3. To remedy this, I wrote code that would find the best coefficient, C by which to multiply Vasy in order to
eliminate any gain imbalance. To this end, I made use of mathematical coherence. Ideally, Vsy−Vasy and Vsy +Vasy
should be as dissimilar (or “incoherent”) as possible. The sum should contain no crackle and a great deal of intensity
noise, while the difference should contain crackle but no intensity noise. All I had to do was find C in Equation 6 such
that coherence between the sum and the difference was minimized.

Vasy =C×Gasy(−dx+ IntesityNoise+ShotNoiseasy) (6)

Figure 6 shows the mean square coherence functions of an ideal and an imbalanced pair of simulated sum and differ-
ence signals.
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Fig. 6 The top, green trace plots the mean square coherence of the sum and difference signals where Vsy and Vasy have unbalanced gain
coefficients. The blue, bottom trace shows the ideal case where there is no imbalance and the signals are as incoherent as possible. Both
signals are from Gaussian distributions.

I then used Newton’s root finding method to find the value of C for which the integral of the coherence for the
imbalanced signal was least. By applying this coefficient to Vasy and re-plotting the coherences of the two signal pairs,
I obtained the plot in Figure 7.
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Fig. 7 This is the same plot as in Figure 6, but with Vasy for the imbalanced case being multiplied by the optimal coherence-reducing
coefficient C.
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We took minute-long Vasy and Vsy data streams and ran them through this code. We then used the coefficient that was
returned as a new gain coefficient for the Vasy signal in the control software. With this in place we took driven data for
2 hours, and undriven data for 1 hour during my time working on the experiment. Although many days of data will be
needed before we can hope to make any strong assertions about the nature of crackle, this was enough data to allow me
to begin analysis. The last step before I could begin was to bandpass the 400−500Hz region of the signal. This was
the region in which we had the most sensitivity and it also represented the most sensitive (and thus most susceptible)
region of the LIGO observatories.

4.1.3 Background Noise Damping

Several steps were taken to mitigate the effects of seismic and acoustic vibrations. Except for the laser, the entire exper-
iment was housed within a vacuum chamber which shielded it from air currents and acoustic vibrations, and reduced
the likelihood of photons in the laser beam scattering off of air molecules. Additionally, the optics table inside the
chamber was mounted on two levels of springs and masses, which reduced the effects of vibrations traveling through
the floor.

A multifaceted active damping scheme was also employed. The control signal from the Michelson was used as part of a
digital feedback loop in which coil and magnet actuators attached to the ends of each blade spring, locking the masses
to a definite differential displacement. This system compensated for most common mode noise while still allowing
potentially interesting, isolated events such as crackle noise to create differential displacements between the blades.
An additional feedback loop was necessary in order to bring the blades into the vicinity where they could be “locked”
by the computer. This system used shadow sensors as input, and actuated using the same coils and magnets as the main
feedback loop. Once the Michelson had achieved a lock, this damping was turned off so as not to inject noise from the
shadow sensors into the signal. This entire setup is shown as a block diagram in Figure 9, a more complete version of
Figure 3. Note the presence of two feedback loops - one using the Michelson output, and the other using the shadow
sensor output to drive the coil and magnet actuators.

Fig. 8 This block diagram shows the Michelson interferometer at the center of the crackle noise experiment housed inside a vacuum
chamber. The signals from the symmetric and asymmetric port photo detectors are subtracted and both used as an input for a digital active
feedback loop, and as the data output from the experiment. Shadow sensors provide a coarse level of damping and the signal output provides
a finer level, both using the coil and magnet actuators. The low-frequency sinusoidal drive used to induce crackle noise is also applied using
these actuators.
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4.1.4 Shadow Sensor/Actuator Mount Mechanical Redesign

One area of the experiment that seemed particularly susceptible to vibrations was the mounting mechanism for the
shadow sensors and the actuators. When I first began working on the experiment, this sub-assembly was made largely
of thin pieces of metal, mesh, and circuit boards. Using this system, we risked inducing inaccuracies that could have
hindered the performance of the precision actuators and shadow sensors. Additionally, adjusting the vertical position
of the shadow sensor diodes was not easy - a problem because future experimentation would likely call for frequent
realignment of the Michelson. I set out to design a new mount that would be both ridged and adjustable.

Fig. 9 The lefthand image shows the shadow sensor mount in its previous state with extensive use of aluminum mesh and circuit boards
for structural components. The righthand image shows my redesigned mount with stronger parts and a nob for fine adjustments.

I used Solidworks to design a new assembly made from four aluminum parts. After they were machined, I assembled
them and soldered the new circuit boards. The product was a much more robust, adjustable mounting apparatus for the
coil and magnet actuators and the shadow sensors.

4.2 Data Analysis

4.2.1 Demodulation

I used a demodulation scheme that leveraged our crackle noise’s sinusoidal dependence to detect crackle even when
it was buried deep within the much larger total noise signal. As demonstrated in Figure 4, the magnitude of crackle is
proportional to the driving force. There is also a component of crackle hypothesized to be dependent on the driving
jerk, but it is smaller than force-crackle, and I did not include it in my analysis due to time constraints. If we name
our displacement due to force-crackle dx f , and the driving frequency ωd , we can see that the crackle portion of our
control signal (x(t)) could be represented by the expression in Equation 7.

x(t) ∝ 2cos(ωdt)dx f (7)

We can square x(t) and, disregarding a DC offset that appears due to the identity cos2(x) = 1
2 +

1
2 cos(2x), we get:

x(t)2
∝ 2cos(2ωdt)dx2

f (8)

At this point we can note that x(t)2 is either positive in the presence of crackle, or zero when no crackle is present.
Keeping this fact in mind, we define the quantities Q and I as follows:
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Q≡ cos(2ωdt)x(t)2 (9)

I ≡ sin(2ωdt)x(t)2 (10)

Finally, we plug x(t)2 into Equations 9 and 10 and rewrite them using trigonometric identities.

Q = dx2
f + cos(4ωdt)dx2

f (11)

I = 2sin(2ωdt)cos(2ωdt)dx2
f (12)

As can be seen in Equations 11 and 12, when there is no crackle signal, dx2
f is 0, so both I and Q will equal 0. If

however dx2
f is not 0, Q will exhibit a DC offset, while I will continue to have an average value of 0. If values of I and

Q were recorded over long periods of time both with the drive on and off, we would expect to see the average driven
Q value converge to an offset from the average undriven I, Q, and driven I values. The displacement of Q corresponds
to the amount of displacement due to crackle in the system (in m2).

4.2.2 Confidence Bounds

I then used the Student’s t-test to find the 95% confidence interval for the average Q value offset. The upper bound
of this confidence interval represented the highest level of crackle consistent with our data to 95% certainty. Finally, I
converted the confidence bounds of Q to more useful units by first multiplying by the 100Hz bandwidth to get power
spectral density (in m2

Hz ), and then I took the square root to get noise spectral density in m√
Hz

.

4.2.3 Simulated Data Analysis

In order to check that my demodulation schemes worked, and to gain a better feel for the manner in which they
worked, I also developed code to analyze the detection capabilities of the demodulation scheme. To do this, I created
a model displacement signal using a Gaussian distribution which could be adjusted to have a noise spectral density
from 10−15 to 10−12 m√

Hz
. To this I added a model Gaussian crackle signal with the crackle represented as variations in

the blade spring constants proportional to the driving forces. The crackle signal was multiplied by a coefficient that I
called α . To see the full simulated signal, refer to Figure 4. Then, beginning with short integration times of just 600s,
I generated vectors of I and Q values and calculated the minimum α value necessary to generate a level of crackle
distinct enough from the background distribution that we could be 95% confident in its detection. As can be seen in
Figure 10, detection became more difficult as the background noise spectral density increased. These results matched
expectations, and lent credence to the effectiveness of my code.
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Fig. 10 This plot shows that as the noise spectral density of my background signal increased, it became increasingly difficult to detect
crackle noise. A 600s integration time was used for this simulated, Gaussian datastream.
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