LLO PRMI Contrast Defect simulation > data Hiro Yamamoto / LIGO lab @ Caltech

- 200ppm is the measured best contrast defect.
- ITM substrates are approximated by lens, and the RoC of ITMX is changed by RH, the contrast defect comes down to be
" 200ppm when beam splitter baffles are NOT attached,
" 7ppm when BS baffles are attached. I.e., the effect of the difference of the ITM substrates can be fully compensated by RH.
- 1300ppm when all maps, ITMs, CPs and BSs, are included.
" Just ITM8 (ITMY) transmission map alone is enough to make CD as bad as 600ppm. This map has a nice plateau within an aperture of 10 cm and changes rapidly outside. This is one cause of the large CD in the simulation.
- Beam pointing etc seems to be reasonably OK.
- I would like to hear any suggestions to find the cause of this big discrepancy.

Ideal case : ITM=lens ITMx:RoC=302km, ITMy:-82km

With BS baffle 7ppm

Without BS baffle 210ppm

ITM transmission maps

Back of the envelope vs FFT

High order modes and spreading

Modes at the dark port of BS
Cold case field is dominated by lower order modes due curvature mismatch

Fraction of energy in a circle

Field with RH on ITMX spreads more

Spreading of the dark port field axis : in units of beam size ($6 \mathrm{w} \times 6 \mathrm{w}$)

