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0 Preview

Most important formula in lecture: strain measured by detector

h = h
↔

: d
↔

= h+ e↔+ : d
↔︸ ︷︷ ︸

F+

+h× e↔× : d
↔︸ ︷︷ ︸

F×

(0.1)

where

e↔+ = ~̀⊗ ~̀− ~m⊗ ~m (0.2a)

e↔× = ~̀⊗ ~m+ ~m⊗ ~̀ (0.2b)

and

d
↔

=
~u⊗ ~u− ~v ⊗ ~v

2
(0.3)

Note ~ı,~,~k, ~̀, ~m, ~u,~v are all unit vectors.
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1 Propagating Gravitational Waves

1.0 Reminders from General Relativity

Given a spacetime on which you’ve defined some coördinates {xµ}
where µ ∈ {0, 1, 2, 3}, the metric tensor can be written in terms of
its components {gµν}, and the spacetime interval is1

ds2 = gµν dx
µ dxν (1.1)

{gµν} are the components of a tensor field, which means they are
functions of the spacetime coördinates {xµ}. We can consider a
different set of coördinates {xµ̄}, and as with any tensor, the met-
ric tensor has a new set of components {gµ̄ν̄} associated with the
corresponding basis, defined by

gµ̄ν̄ = gµν
∂xµ

∂xµ̄
∂xν

∂xν̄
(1.2)

which ensures that

ds2 = gµν dx
µ dxν = gµ̄ν̄ dx

µ̄ dxν̄ (1.3)

is the same no matter which coördinate system we use. Note
that this notation considers µ̄ and µ to be different indices, and
stresses that there are different sets of coördinates, so that there’s
no real connection between x1 and x1̄. (They might for example
be Cartesian coördinates {t, x, y, z} and double-null coördinates
{u, v, θ, φ}.) This does conceal, however, that as functions of four

1We’re using the Einstein summation convention: there is an implicit sum
over repeated µ, ν, λ, . . . indices, e.g.,

∑3
µ=0. In this linearized 3-space lan-

guage, there’s no strong distinction between subscripted and superscripted
indices, but we should have one “upstairs” and one “downstairs” for the im-
plicit sum, and have the same “unbalanced” indices in the same places on
both sides of an equation.

variables, {gµν} and {gµ̄ν̄} take different sets of arguments to de-
scribe the geometry at the same spacetime point. So we could
write, more completely,

ḡαβ({x̄γ}) = gµν({xλ})
∂xµ

∂x̄α
∂xν

∂x̄β
(1.4)

This form is especially useful when considering an infinitesimal
coördinate transformation, in which x̄µ = xµ + ξµ where ξµ is in
some sense small. Then, to first order in {ξµ}, the change in the
components of the metric tensor can be shown to be

ḡµν({xλ})− gµν({xλ}) = −∇µξν −∇νξµ (1.5)

where

∇µξν =
∂ξν
∂xµ
− Γλµνξλ (1.6)

is the usual covariant derivative defined in terms of the Christoffel
symbols

Γλµν =
gλρ

2

(
∂gµν
∂ρ
− ∂gρν

∂µ
− ∂gµρ

∂ν

)
(1.7)

and {gµν} is the matrix inverse of {gµν}, so that gµλgλν = δµν .
The spacetime interval of special relativity is associated with the

Minkowski metric, which can be written as

ηµν dx
µ dxν = −c2 dt2 + δij dx

i dxj (1.8)

the linearized theory of gravity assumes that the metric tensor can
be written as some background metric plus a small perturbation.
Choosing Minkowski as the background metric, we have

gµν = ηµν + hµν (1.9)

we can make a gauge transformation (small coördinate change)

hµν → hµν − ∂µξν − ∂νξµ (1.10)
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and represent the same physical spacetime in slightly different
coördinates. This gauge transformation is analogous to the trans-
formation that allows us to change {Aµ} = {ϕ, ~A} in electro-
magnetism and not change the physical electric and magnetic
fields. One convenient gauge condition that we can enforce is the
so-called transverse-traceless-temporal gauge, in which h0µ = 0,
ηµλ∂λhµν = 0, and ηµνhµν = 0. The temporal part of the gauge
condition means that we can just talk about the spatial compo-
nents of the metric perturbation, and in fact we won’t need to
talk about spacetime indices outside of this introductory review.
Instead, we have spatial components {hij} where δijhij = 0 and
δik∂khij = 0.

1.1 The polarization decomposition

If we describe linearized GR in the transverse-traceless-temporal
gauge, the spacetime interval is replaced by2

ds2 = −c2 dt2 + (δij + hij) dx
i dxj (1.11)

where

δij =

{
1 i = j

0 i 6= j
(1.12)

is the Kronecker delta and {hij} are small perturbations. In this
gauge, the components {hij} all obey the wave equation(

− 1

c2

∂2

∂t2
+∇2

)
hij = 0 (1.13)

Because the metric (1.11) is the Minkowski metric plus a small
spatial perturbation, we can do all of the important calculations

2We’re again using the Einstein summation convention: there is an implicit
sum over repeated i, j, k, . . . indices, e.g.,

∑3
i=1.

for GW detection in the notation of vectors in a three-dimensional
Euclidean space.

A wave coming from a single distant source can be treated as a
plane wave propagating along a unit vector ~k which points from
the source to the observer. If we choose our coördinate axes so
that this unit vector has components

{ki} ≡ k =

0
0
1

 (1.14)

the components of the metric tensor perturbation are

{hij} ≡ h =

h+ h× 0
h× −h+ 0
0 0 0

 (1.15)

where the two independent degrees of freedom h+ and h× are func-
tions of t− ~k · ~r/c. We can also write this as

hij = h+e+ ij + h×e× ij (1.16)

or
h = h+e+ + h×e× (1.17)

in terms of the matrices

{e+ ij} ≡ e+ =

1 0 0
0 −1 0
0 0 0

 and {e× ij} ≡ e× =

0 1 0
1 0 0
0 0 0


(1.18)

It’s useful, however, to be able to write things without referring to
a specific coördinate system.3 We think of a vector ~v as a physical
object with magnitude and direction, not just as the collection of

3Our “coördinate-free” notation will only be covariant in the three-
dimensional sense; since it assumes we’re still in the TT gauge.
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three numbers {vi}. In fact, we can resolve the vector ~v in different
bases, e.g., {~ei} and {~e ′i}. There will be different components {vi}
and {vi′} defined by

vi = ~ei · ~v vs vi′ = ~e ′i · ~v (1.19)

and we could collect them into different 3 × 1 matrices (column
vectors)

{vi} ≡ v =

v1

v2

v3

 vs {vi′} ≡ v′ =

v1′

v2′

v3′

 (1.20)

The matrices v and v′ contain different triples of numbers, but they
are just different ways of describing the same object ~v. The vector
~v is what’s fundamental, because “physics is about things.”4 Some-
times we’ll want to refer to a complicated object in a coördinate-
independent way. For that purpose it’s useful to introduce what’s
known as abstract index notation, using Latin indices from the
front of the alphabet. So if I write va, this is the same as writing
~v. It refers not to a particular component or set of components,
but to the object which has components {vi} when resolved in the
basis ~ei.

Now we return to consideration of equation (1.16) which de-
scribes the metric perturbations {hij}, or the corresponding ma-
trix equation (1.17). We’d like to describe this in an abstract way
which doesn’t rely on a particular set of basis vectors. We can
do this by considering the construction of the matrices e+ and e×
from the components of unit vectors ~̀ and ~m which form an or-
thonormal triple with ~k. In the coördinate system we’re working

4T. Dray and C. A. Manogue, The Geometry of Vector Calculus,
http://www.math.oregonstate.edu/BridgeBook/book/revper/things

in so far those vectors have components

{`i} ≡ ` =

1
0
0

 and {mi} ≡m =

0
1
0

 (1.21)

and we can write the plus and cross polarization matrices as

e+ = ``T −mmT (1.22a)

e× = `mT + m`T (1.22b)

Or, in terms of components,

e+ ij = `i`j −mimj (1.23a)

e× ij = `imj +mi`j (1.23b)

We know how to talk about a vector like ~̀ (in arrow notation)
or `a (in abstract index notation). If we think about the matrix
{e+ ij} as making up the components, in a particular basis, of a
tensor, we can describe that tensor in abstract index notation as
e+ ab and define it and its counterpart e× ab by

e+ ab = `a`b −mamb (1.24a)

e× ab = `amb +ma`b (1.24b)

If we like to use arrow notation, we can define these two basis
tensors equivalently using the tensor (dyad) product as

e↔+ = ~̀⊗ ~̀− ~m⊗ ~m (1.25a)

e↔× = ~̀⊗ ~m+ ~m⊗ ~̀ (1.25b)

That then allows us to write the general plane wave propagating
along ~k in covariant tensor notation as

h
↔

= h+ e↔+ + h× e
↔
× (1.26)
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where e↔+ and e↔× are defined according to (1.25) from the or-

thonormal basis vectors ~̀ and ~m perpendicular to ~k, and h+ and
h× are functions of t− ~k · ~r/c.

Examples of other tensors you may have seen are the inertia

tensor I
↔

from rigid body motion, the stress tensor
↔
T from statics

or electromagnetism, and the quadrupole moment tensor
↔
Q from a

multipole expansion. These are all symmetric, second-rank tensors

like h
↔

.

1.2 Exercise: Normalization of Basis Tensors

Dot products involving tensors can be defined in straightforward
ways using the abstract index notation as a guide. For example,
↔
T ·~v is the vector which can be written in abstract index notation5

as [
↔
T · ~v]a = Tabv

b, S
↔
·
↔
T is the tensor [S

↔
·
↔
T ]ab = SacT

c
b and the

double dot product S
↔

:
↔
T is the scalar which is the “trace” of this:

S
↔

:
↔
T = SabT

ba

1. Use the abstract index notation to show that the double dot
product of two dyads is (~u⊗ ~v) : (~a⊗~b) = (~v · ~a)(~b · ~w)

2. Calculate the four double dot products e↔A : e↔B, where A and
B can each be + or ×. (I.e., calculate e↔+ : e↔+, e↔+ : e↔×, etc.)

1.3 Change of Basis

The propagation direction ~k does not uniquely specify the con-
struction of basis tensors e↔+ and e↔×; we also need to choose a
vector ~̀ in the plane perpendicular to ~k. (This then uniquely de-

termines ~m = ~k × ~̀.) For different types of sources and analyses,

5In an expression like ~u ·~v = uava = uav
a, it doesn’t matter which abstract

index is written “upstairs” and which “downstairs”, as long as there is one in
each position.

there may be a choice of polarization basis which is particularly
convenient. It may also be desirable to convert between a con-
venient polarization basis and some canonical reference basis con-
structed only from the propagation direction and some absolute
reference directions.

For example, suppose that we specify the source location in
equatorial coördinates in terms of its right ascension α and declina-
tion δ. This is equivalent to specifying ~k; we can assign a reference
basis to each sky position by producing a prescription for defining
additional unit vectors ~ı and ~ which, together with ~k, form a an
orthonormal set. One prescription is to require ~ı to be parallel
to the celestial equator, i.e., perpendicular to the direction of the
Earth’s axis. We choose ~ı to point in the direction of decreasing
right ascension, so that the third vector ~ = ~k ×~ı points into the
Northern celestial hemisphere. This is illustrated in figure 1. From
these unit vectors~ı and ~ we can construct a reference polarization
basis for traceless symmetric tensors transverse to ~k:

ε↔+ =~ı⊗~ı− ~⊗ ~ (1.27a)

ε↔× =~ı⊗ ~+ ~⊗~ı (1.27b)

The basis vectors ~̀ and ~m, from which the source’s natural polar-
ization basis is constructed, lie in the same plane as ~ı and ~, since
they’re all perpendicular to the propagation direction ~k. The nat-
ural basis can be located relative to the reference basis by the angle
from ~ı to ~̀, measured counter-clockwise around ~k, as shown in fig-
ure 2. As in the usual rotation of basis vectors, we can resolve ~̀

and ~m in terms of ~ı and ~:

~̀ = ~ı cosψ+~ sinψ (1.28a)

~m = −~ı sinψ +~ cosψ (1.28b)

We can substitute (1.28) into (1.25) to get e↔+ and e↔× in terms of
ε↔+ and ε↔×. The one tricky thing is the tensor product, which is
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Figure 1: Definition of the unit vectors ~ı and ~, orthogonal to the
propagation direction ~k, used to define the reference polarization
basis tensors ε↔+ and ε↔× via (1.27). The unit vector~ı is orthogonal

both to ~k (which points from the source to the observer) and to
the axis of the equatorial coördinate system. (I.e., it is parallel to

the celestial equator.) The unit vector ~ (= ~k ×~ı) points into the
Northern hemisphere.

Figure 2: Rotation of basis. The natural polarization basis ten-
sors e↔+ and e↔× are created from the unit vectors ~̀ and ~m. The
reference polarization basis tensors ε↔+ and ε↔× are created from
the unit vectors~ı and ~ via (1.25). The polarization angle ψ which

completes the specification of ~̀ and therefore of the natural polar-
ization basis, is measured from ~ı to ~̀, counter-clockwise around ~k.
(For the example illustrated in this figure, ψ lies between 0 and
π/2.)
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not commutative. One example term is

~̀⊗ ~m = −~ı⊗~ı cosψ sinψ+~ı⊗~ cos2 ψ+~⊗~ı sin2 ψ+~⊗~ sinψ cosψ
(1.29)

1.4 Exercise: Change of Polarization Basis

Do the algebra and apply the double angle formulas to show that

e↔+ = ε↔+ cos 2ψ+ ε↔× sin 2ψ (1.30a)

e↔× = − ε↔+ sin 2ψ + ε↔× cos 2ψ (1.30b)

This shows that the specification of the polarization basis asso-
ciated with a particular source requires three angles: the right as-
cension α and declination δ to specify the sky position and thus the
propagation direction ~k, and an additional polarization angle ψ to
define the orientation of the preferred polarization basis {e↔+, e

↔
×}

relative to some reference basis like {ε↔+, ε
↔
×}. Note that, since

(1.30) contains only trig functions of 2ψ, the polarization angle ψ
can generally be taken to range over π rather than 2π. (Changing

ψ to ψ + π would flip both ~̀ and ~m, and leave the polarization
basis tensors unchanged.)

2 Interaction with a Detector

2.1 The Detector Tensor

The simplest description of an interferometric gravitational-wave
detector (see figure 3) is to say it measures the difference between
the lengths of its arms. That’s a bit too simplistic, though, and
it opens the trap of outsiders asking “how can a GW measure
anything if both the spacetime and the detector are stretching?”
So instead, let’s note that it measures the difference in phase of

Figure 3: Schematic of an interferometric gravitational wave de-
tector. Image by Ray Frey. We define the basis vectors ~u and ~v to
lie parallel to the two arms.

light which has gone down and back one arm versus the other. This
is equivalent to measuring the difference in the roundtrip travel
time of photons down the two arms, a measurement which can
be made entirely locally, and without worrying about the effects
of the wave, since the time components of the spacetime metric
are not changed in the transverse-traceless-temporal gauge. We
also use the fact that points with constant coördinates in the TT
gauge are in free fall, i.e., experience no non-gravitational forces,
to note that if define coördinates so that the beam splitter is at the
origin and the end mirror of an arm is at position (x1, x2, x3) =
(L0, 0, 0), those coördinates will not be changed by the passage
of a gravitational wave. We can now consider the trajectory of a
photon going down the arm from (0, 0, 0) to (L0, 0, 0) and back. Its
trajectory x1(t) will be given by solving the differential equation

ds2 = −c2 dt2 + (1 + h11)(dx1)2 = 0 (2.1)
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or, working to first order in the perturbation h11,

dt =

√
1 + h11

c

∣∣dx1
∣∣ ≈ (1 +

1

2
h11

) |dx1|
c

(2.2)

Now, in general, we have to worry about the fact that h11

(
t− ~k·~r

c

)
is a function of space and time, but if the travel time of the pho-
ton is short compared to the period of the gravitational wave, or
equivalently if the gravitational wavelength is large compared to
the length of the arm, we are in the so-called long-wavelength limit,
and we can approximate h11 as a constant during the trajectory of
the photon. Then the time the photon takes to go from (0, 0, 0) to
(L0, 0, 0) and back is

T1 =

(
1 +

1

2
h11

)
2L0

c
=:

2L1

c
(2.3)

As usual, we would like to approach this problem in a coördinate-
free way, so we define a unit vector ~u along the arm, which has
components

{ui} ≡ u =

1
0
0

 (2.4)

in the specialized coördinate system we’ve used to describe the
detector arm. The metric perturbation component h11 appearing
in (2.3) can be written as

h11 = uihiju
j = uThu (2.5)

This quantity can be written in a basis independent way, using
either abstract index or arrow notation, as

uahabu
b = ~u · h

↔
· ~u (2.6)

so that

L~u = L0

(
1 +

1

2
habu

aub
)

= L0

(
1 +

1

2
~u · h
↔
· ~u
)

(2.7)

where we have written L~u to emphasize that the interferometer
arm is parallel to the unit vector ~u.

Now consider an interferometer with one arm along the unit
vector ~u and the other along the unit vector ~v.6 The interferometer
measures the difference in roundtrip times down the two arms; this
divided by 2L0/c is known as the gravitational wave strain h(t):

h =
L~u − L~v
L0

=
1

2

(
~u · h
↔
· ~u− ~v · h

↔
· ~v
)

= hab
uaub − vavb

2
= habd

ab = h
↔

: d
↔

(2.8)

where we have defined the detector tensor

dab =
uaub − vavb

2
or d

↔
=
~u⊗ ~u− ~v ⊗ ~v

2
(2.9)

Subject to the approximations of this section (primarily the long-
wavelength limit), the detector response to a particular gravita-

tional wave tensor h
↔

is determined by the detector tensor d
↔

. (We
also need to know the location of the detector, in order to tell what
phase of the gravitational wave is hitting at what local time.)

2.2 Antenna response functions

If we recall the resolution (1.26) of h
↔

into a preferred polarization
basis, the strain measured by a detector is

h = h
↔

: d
↔

= (h+ e↔+ + h× e
↔
×) : d

↔
= h+F+ + h×F× (2.10)

6Note that in this approach we do not need to assume the arms are perpen-
dicular, as would be the case if we did everything in a Cartesian coördinate
system where ~u had components (1, 0, 0) and ~v had components (0, 1, 0).
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where the antenna pattern factors are given by

F+ = d
↔

: e↔+ = dabe+ ab (2.11a)

F× = d
↔

: e↔× = dabe× ab (2.11b)

For a given detector at a given time (i.e., for a fixed detector

tensor d
↔

), F+ and F× will depend on the three angles defining the
sky position and polarization basis with respect to some reference
system. E.g., using equatorial coördinates, they will depend on
right ascension, declination and the polarization angle ψ. Note
that we don’t need to define F+ and F× as explicit complicated
functions of detector latitude, longitude, etc. The fundamental
conceptual definition of the antenna pattern functions is (2.11),
and all the rest is just working out the dot products. In particular,
we can separate out the dependence on the polarization angle ψ;
if we know the sky position of the source, we can construct the
reference polarization basis {ε↔+, ε

↔
×}, and for a given detector at

a given sidereal time, we can construct the combinations

a = d
↔

: ε↔+ = dabε+ ab (2.12a)

b = d
↔

: ε↔× = dabε× ab (2.12b)

from which we get

F+(α, δ, ψ) = a(α, δ) cos 2ψ+ b(α, δ) sin 2ψ (2.13a)

F×(α, δ, ψ) = − a(α, δ) sin 2ψ + b(α, δ) cos 2ψ (2.13b)

2.3 Exercise: Invariant Combination

Consider the combination

F 2
+ + F 2

× = a2 + b2 (2.14)

which is manifestly independent of the polarization angle ψ and
therefore the same in any polarization basis. Define a transverse
traceless projector

PTT~kab
cd =

1

2

∑
A=+,×

eA
abeAcd =

1

2

∑
A=+,×

εA
abεAcd (2.15)

and show that
F 2

+ + F 2
× = 2dabP

TT~kab
cdd

cd (2.16)

The projector PTT~kab
cd picks out the symmetric traceless tensor

components transverse to ~k. For the case of an interferometer
with perpendicular arms, whose detector tensor is given by (2.9),
the detector tensor is already traceless and transverse to a vec-
tor normal to the plane of the detector. Use this to calculate the
maximum value of F 2

+ + F 2
×, which occurs for waves coming from

directly overhead or underfoot.

2.4 Earth-fixed basis vectors

A convenient basis for describing ground-based GW detectors is
one fixed to the Earth: the unit vector ~e ∗3 points parallel to the
Earth’s axis, from the center of the Earth to the North Pole. The
unit vector ~e ∗1 points from the center of the Earth to the point on
the equator with 0◦ latitude and longitude. This then makes the
remaining unit vector ~e ∗2 = ~e ∗3 × ~e ∗1 point from the center of the
Earth to the point on the equator with latitude 0◦ and longitude
90◦E. The asterisk has nothing to do with a complex conjugate,
but rather stresses that the basis vectors are co-rotating with the
Earth.

2.5 Exercise: Detector Tensor

Consider a detector located at a latitude of 30◦N and a longitude of
90◦W, with one arm pointing due West and the other arm pointing
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due South. (This is approximately the configuration of the LIGO
Livingston detector, except that the angles are not quite so nice.)
Write the components of the following along the co-rotating basis
vectors {~e ∗i }:

1. The unit vector ~u along the West arm

2. The unit vector ~v along the South arm

Resolve the detector tensor d
↔

= ~u⊗~u−~v⊗~v
2

along the unit dyads
{~e ∗i ⊗ ~e ∗j }.

2.6 Equatorial basis vectors

There is a corresponding basis, inertial with respect to the fixed
stars: the unit vector ~e3 points to the Celestial North Pole (which
means that ~e3 = ~e ∗3 ). The unit vector ~e1 points to the point
with declination δ = 0◦ and right ascension α = 0 hr, i.e., the
intersection of the ecliptic with the celestial equator known as the
Vernal (March) Equinox. The third unit vector ~e2 = ~e3 × ~e1 thus
points to the point with δ = 0◦ and right ascension α = 6 hr.

The relationship between these bases is shown in figure 4. In
particular, if we define the angle γ to correspond to the Sidereal
Time at the Greenwich Meridian (which increases by 24 hours,
i.e., 360◦ = 2π, every sidereal day of approximately 23 hours and
56 minutes, so that γ = Ω⊕(t − tGmid), where Ω⊕ is the Earth’s
rotation frequency and tGmid corresponds to sidereal midnight at
0◦ longitude), then

~e ∗1 = ~e1 cos γ+~e2 sin γ (2.17a)

~e ∗2 = −~e1 sin γ +~e2 cos γ (2.17b)

Figure 4: Relationship between the Earth-fixed and inertial bases,
and illustration of right ascension. ~e3 = ~e ∗3 points along the Earth’s
rotation axis towards the North Pole and the Celestial North Pole.
~e ∗1 points to 0◦ latitude and longitude while ~e1 points to δ = 0◦ and
right ascension α = 0 hr. As the Earth rotates, the starred unit
vectors rotate relative the unstarred ones. ~e ∗1 and ~e1 coincide when
the sidereal time at Greenwich is midnight. We define the angle γ
to be the Greenwich Sidereal Time (GST), which is the angle from
~e1 to ~e ∗1 , measured counterclockwise around ~e3. The unit vector

~eq is the projection into the equatorial plane of the vector ~k from
the observer to the source, as shown in figure 5.
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2.7 Exercise: Basis associated with a sky posi-
tion

Consider a potential source of gravitational waves with right ascen-
sion α = 0 hr and declination δ = +60◦. Work out the components
in the equatorial basis {~ei} of the propagation vector ~k, as well as
the vectors ~ı and ~ which point “West on the sky” and “North on
the sky” at that point. Take the dot products {~ı · ~e ∗i } and {~ · ~e ∗i }
to find the components of ~ı and ~ in the Earth-fixed basis, as a
function of Greenwich sidereal time γ. These can be used to find
the amplitude modulation coëfficients a and b for this source and
e.g., the detector of exercise 2.5.

2.8 Sketch of General Calculation

2.8.1 Polarization basis from α, δ, and ψ

To get the antenna response functions for an arbitrary sky point,
we need to do the following: calculate the components of ~k in some
basis, given α and δ; do likewise for the perpendicular unit vectors
~ı and ~; find ~̀ and ~m for the given ψ, if desired. We can then
construct ε↔+,× from ~ı and ~ or e↔+,× from ~̀ and ~m, as needed.

The first step is to resolve the propagation direction ~k for a
given right ascension α and declination δ. First, consider the plane
containing ~e3 and ~k, as shown in figure 5 Define ~eq to be the unit
vector pointing towards the point on the Celestial Equator with
right ascension α, which also lies in the same plane. Since δ is the
angle measured up from the Celestial equator to the sky position
of the source, we can resolve

~k = −~eq cos δ − ~e3 sin δ (2.18)

To get the components of ~eq in the equatorial basis, we look at
the equatorial plane in figure 4. The right ascension is the angle

Figure 5: Illustration of declination, in the plane containing the
propagation vector ~k and the unit vector ~e3 pointing along the
Earth’s rotation axis towards the Celestial North Pole. The unit
vector ~eq is the projection into the equatorial plane of the vector
~k from the observer to the source.
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around from the Vernal Equinox (~e1) to the sky position of the
source, so

~eq = ~e1 cosα + ~e2 sinα (2.19)

and thus

~k = −~e1 cos δ cosα− ~e2 cos δ sinα− ~e3 sin δ (2.20)

The components along ~e1, ~e2, and ~e3 will be constant for a given
source. To get the components along the starred unit vectors, we
just need to note that the angle from ~e ∗1 to ~eq is α− γ.7 In terms
of the starred basis,

~e ∗q = ~e ∗1 cos(α− γ) + ~e ∗2 sin(α− γ) (2.21)

and thus

~k = −~e ∗1 cos δ cos(α− γ)− ~e ∗2 cos δ sin(α− γ)− ~e ∗3 sin δ (2.22)

The calculations of ~ı and ~ in either basis proceed along similar
lines.

Note that to calculate F+,× = d
↔

: e↔+,× it may actually be easier
to work out

F+ = d
↔

: e↔+ = ~̀ · d
↔
· ~̀− ~m · d

↔
· ~m (2.23a)

F× = d
↔

: e↔× = ~̀ · d
↔
· ~m+ ~m · d

↔
· ~̀ (2.23b)

rather than constructing the matrix representations of e↔+,× in a
particular basis.

7Note that in astronomy one defines a quantity called “hour angle” asso-
ciated with a point on an observer’s sky so that the hour angle increases with
increasing sidereal time. Since γ is the Greenwich Sidereal Time, γ − α is the
Greenwich Hour Angle of a source with right ascension α. The combination
α− γ can thus be referred to as “Minus Greenwich Hour Angle”.

2.8.2 Detector tensor from coördinates of detector

Given the coordinates of an Earth-bound detector (latitude, lon-
gitude and elevation) and some angles to identify the directions
of its arms (usually and azimuth measured clockwise from local
North and an altitude angle above or below the local horizontal
plane), we can work out the components in the Earth-fixed basis
{~e ∗i } of the unit vectors ~u and ~v along its arms. (Note that we
often neglect both the elevation in meters relative to some refer-
ence shape of the Earth–sphere or ellipsoid–as well as the altitude
angles of the arms relative to the horizontal, since these are both
small for practical detectors.) Since there are only a few detec-
tors on the Earth, it’s actually usually easiest just to work out the

components of d
↔

in the Earth-fixed basis, once and for all.
The calculation can be done by working out the components of

vectors and tensors in the Earth-fixed (starred) or the non-rotating
(unstarred) inertial basis by going in two steps:

1. Express the unit vectors ~u and ~v in terms of a local basis
{ ~E, ~N, ~U} of unit vectors pointing East (along a parallel of
latitude), North (along a meridian) and Up (normal to the
local reference tangent plane, using the azimuth and possibly
altitude angle of each arm.

2. Express the basis vectors { ~E, ~N, ~U}, which correspond to a
particular latitude and longitude, in terms of the starred or
unstarred reference basis.

3 Preferred polarization basis

3.1 The Quadrupole Formula

Gravitational waves from a particular direction can be resolved in
different polarization bases, but some make the calculations more

12



convenient than others. For a stochastic background, we’re looking
at a superposition of different sources, so the result is an unpolar-
ized signal which can be described equally well in any basis. For
unmodelled bursts, there’s nothing special about the source, but
the detector network can pick out a preferred basis for some search
methods. For modelled signals such as nearly periodic continuous
wave signals, or compact binary inspirals, the geometry of the sys-
tem provides us with a preferred polarization basis in which the
signal description is simple.

Most of the gravitational waves seen by a distant observer, from
a typical system, are in the form of quadrupole radiation. The
metric perturbation is given by the quadrupole formula as8

hab =
2G

c4d
PTT~kcd

ab
-̈Icd(t− d/c) (3.1)

where ~k is the direction from the source to the observer and d is the
distance. We can accomplish the projection onto transverse trace-

less states by writing h
↔

in terms of its plus and cross components
as usual:

h
↔

= h+ e↔+ + h× e
↔
× (3.2)

where (3.1) tells us that

hA =
2G

c4d

e↔A
2

:
d2

dt2
-I
↔

(t− d/c) A = +,× (3.3)

The t − d/c indicates that the observer is seeing the source as it
was at a time in the past, when the gravitational waves now reach-

ing the observer were emitted. Here -I
↔

is the reduced quadrupole
moment defined in MTW equation (36.3):

-I
↔

=
y

ρ

(
~r ⊗ ~r − 1

↔r2

3

)
d3V (3.4)

8See for example equation (36.20) of Misner, Thorne and Wheeler, Gravi-
tation (1973)

If we recall the standard definition of the moment of inertia tensor
I
↔

from mechanics

I
↔

=
y

ρ
(

1
↔
r2 − ~r ⊗ ~r

)
d3V (3.5)

we see that the two are related by

-Iab = −PTcd
abIcd (3.6)

(note the minus sign!), where PTcd
ab is the projection operator onto

traceless symmetric tensors:

PTcd
ab =

1

2

(
δcaδ

d
b + δdaδ

c
b

)
− 1

3
δabδ

cd (3.7)

3.2 Geometry of a non-precessing quasiperi-
odic source

Consider a mass distribution which is rigidly rotating with con-
stant angular velocity about one of its principal axes of inertia.
This could be the nearly-periodic signal given off by a rotating
neutron star, or the signal from a binary system where the inspiral
is occurring slowly. We can expand the inertia tensor about its
principal axes like this:

I
↔

= I1~u1 ⊗ ~u1 + I2~u2 ⊗ ~u2 + I3~u3 ⊗ ~u3 (3.8)

In this approximation, I1, I2, and I3 are all constant; if it’s rotating
about ~u3 with angular speed Ω, then the principal axes can be
written with respect to some non-rotating axes {~u 0

i } as

~u1 = ~u 0
1 cos Ω(t− t0) + ~u 0

2 sin Ω(t− t0) (3.9a)

~u2 = − ~u 0
1 sin Ω(t− t0) + ~u 0

2 cos Ω(t− t0) (3.9b)

~u3 = ~u3 (3.9c)
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It’s not hard to work out the time derivatives of the basis vectors
along the principal axes due to the rotation:

d~u1

dt
= Ω~u3 × ~u1 = Ω~u2 (3.10a)

d~u2

dt
= Ω~u3 × ~u2 = −Ω~u1 (3.10b)

d~u3

dt
= Ω~u3 × ~u3 = ~0 (3.10c)

This means that

d

dt
I
↔

= ΩI1(~u1 ⊗ ~u2 + ~u2 ⊗ ~u1)− ΩI2(~u2 ⊗ ~u1 + ~u1 ⊗ ~u2)

= Ω(I1 − I2)(~u1 ⊗ ~u2 + ~u2 ⊗ ~u1)
(3.11)

and
d2

dt2
I
↔

= −2Ω2(I1 − I2)(~u1 ⊗ ~u1 − ~u2 ⊗ ~u2) (3.12)

Since this is already traceless, (3.6) tells us that

d2

dt2
-I
↔

= 2Ω2(I1 − I2)(~u1 ⊗ ~u1 − ~u2 ⊗ ~u2) (3.13)

To get the explicit time dependence of (3.13), we could substitute
the explicit time-dependent forms of ~u1 and ~u2 into (3.13), but it’s
easier to note that the combination ~u1 ⊗ ~u1 − ~u2 ⊗ ~u2 appearing
in (3.13) is a traceless tensor transverse to ~u3 and so if we define
basis tensors9

↔
E+ = ~u 0

1 ⊗ ~u 0
1 − ~u 0

2 ⊗ ~u 0
2 (3.14a)

↔
E× = ~u 0

1 ⊗ ~u 0
2 + ~u 0

2 ⊗ ~u 0
1 (3.14b)

9Note that these are traceless tensors transverse to ~u3 and not to the
propagation direction ~k.

then, by analogy to the polarization rotation in section 1.3, we
have

~u1 ⊗ ~u1 − ~u2 ⊗ ~u2 =
↔
E+ cos 2Ω(t− t0) +

↔
E× sin 2Ω(t− t0) (3.15)

and

d2

dt2
-I
↔

= 2Ω2(I1 − I2)
(↔
E+ cos[Φ(t) + φ0] +

↔
E× sin[Φ(t) + φ0]

)
(3.16)

where

Φ(t) = 2Ω(t− d/c) (3.17)

and

φ0 = −2Ωt0 (3.18)

This means that the polarization components of the gravitational
wave travelling in a particular direction are

hA =
4GΩ2(I1 − I2)

c4d

[
e↔A :

↔
E+

2
cos[Φ(t) + φ0] +

e↔A :
↔
E×

2
sin[Φ(t) + φ0]

]
(3.19)

So far, we haven’t specified the non-rotating basis vectors ~u 0
1 and

~u 0
2 , perpendicular to ~u3 = ~u 0

3 (which, incidentally, determine φ0),

nor the basis vectors ~̀ and ~m, perpendicular to ~k, which define
the polarization basis. We can do this by picking ~̀ = ~u 0

1 along
the line of nodes, which is perpendicular to both the propagation
direction ~k and the system angular momentum direction ~u3. If ι
is the inclination angle between the angular momentum direction
~u and the propagation vector ~k, as shown in figure 6, the dot

products between the basis vectors defining {e↔A} and {
↔
EA} are

~̀ · ~u 0
1 = 1 ~m · ~u 0

1 = 0 ~̀ · ~u 0
2 = 0 ~m · ~u 0

2 = cos ι (3.20)
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~u 0
2

~u 0
3

~m

~k

~ℓ = ~u 0
1

(line of nodes)

⊙
ι

ι

Figure 6: Illustration of bases associated with a rotating
gravitational-wave source and its propagation. The unit vector
~k points from the source to the observer, and ~u 0

3 points along the
axis of rotation; the angle between these is the inclination ι. The
preferred polarization basis (see figure 2) is constructed by choos-

ing ~̀ to be along the line of nodes, perpendicular to both ~k and
~u 0

3 .

3.3 Exercise: Projection from source to prop-
agation basis

Use the inner products (3.20) to show that

e↔+ :
↔
E+ = 1 + cos2 ι and e↔+ :

↔
E×= 0 (3.21a)

e↔× :
↔
E+ = 0 and e↔× :

↔
E×= 2 cos ι (3.21b)

3.4 Waveform in preferred basis

This then means that, in the preferred basis,

h+ = h0
1 + cos2 ι

2
cos[Φ(t) + φ0] (3.22a)

h× = h0 cos ι sin[Φ(t) + φ0] (3.22b)

where the GW amplitude is

h0 =
4GΩ2(I1 − I2)

c4d
(3.23)

Placing the basis vector ~̀ along the line of nodes means that this
preferred polarization basis has ψ as the angle from “West on the
sky” to the line of nodes, i.e., if we’re talking about objects mov-
ing in circular orbits, this is the angle from “West on the sky” to
the long axis of the projected orbit. The nice feature of the pre-
ferred basis is that h+ and h× are a quarter-cycle out of phase, as
illustrated in http://ccrg.rit.edu/~whelan/gwmovie/

3.5 Exercise: slow inspiral

The waveform (3.22) also applies to the early stages of a binary
inspiral. Consider two objects of mass m1 and m2, total mass M ,

15

http://ccrg.rit.edu/~whelan/gwmovie/
http://ccrg.rit.edu/~whelan/gwmovie/


and reduced mass m1m2/M . If the trajectories are

~r1(t) =
m2

M
~r(t) (3.24a)

~r2(t) = −m1

M
~r(t) (3.24b)

where
~r(t) = r(t) cosφ(t)~u 0

1 + r(t) sinφ(t)~u 0
2 (3.25)

show that
d2

dt2
-I
↔
≈ −µr2φ̇2 (~u1 ⊗ ~u1 − ~u2 ⊗ ~u2) (3.26)

What conditions are needed on ṙ, r̈, and φ̈ in order to make this
approximation valid?

3.6 “Effective distance” for inspiral signals

If we compare the form (3.26) to (3.13), we see that we’ve just
replaced 2Ω2(I1− I2) with −µr2φ̇2 and therefore by comparison to
(3.22) we can write down

h+ ≈ −
A(t)

d

1 + cos2 ι

2
cos Φ(t) (3.27a)

h× ≈ −
A(t)

d
cos ι sin Φ(t) (3.27b)

where we’ve collected together the part of the amplitude

A(t) =

(
4Gµ[r(t− d/c)φ̇(t− d/c)]2

c4

)
(3.28)

which depends only on properties of the source like masses and
trajectory.10 If we think about the signal generated in a detector

10There is still some dependence on distance to the source, of course, but
only in terms of when the signal arrives, not in the overall magnitude.

with antenna pattern factors F+ and F×, we get

h(t) =
A(t)

d

[
−F+

1 + cos2 ι

2
cos Φ(t)− F× cos ι sin Φ(t)

]
=
A(t)

d

(√
F 2

+

(1 + cos2 ι)2

4
+ F 2

× cos2 ι

)
cos[Φ(t)−Ψ]

(3.29)

where we have used the usual trick of rewriting

α cosϕ+ β sinϕ = γ cos(ϕ− ψ) (3.30)

where
α = γ cosψ and β = γ sinψ (3.31)

so
γ =

√
α2 + β2 (3.32)

So we see that the overall amplitude is determined by the dis-
tance to the source, but in this slow-inspiral approximation, that
distance appears together with the observing geometry in a com-
bination known as effective distance:

deff =
d√

F 2
+

(1+cos2 ι)2

4
+ F 2

× cos2 ι
(3.33)

Note that the factor in the square root is a maximum (and there-
fore the effective distance corresponding to a given physical dis-
tance) when |cos ι| = 1, i.e., we are seeing the binary face on
(ι = 0 or ι = π). Using the result of section 2.3, that F 2

+ +F 2
× ≤ 1,

we have(
d

deff

)2

= F 2
+

(1 + cos2 ι)2

4
+ F 2

× cos2 ι ≤ F 2
+ + F 2

× ≤ 1 (3.34)

which means that deff ≥ d. The effective distance equals the phys-
ical distance if the binary is seen face-on, and is at the detector’s
zenith or nadir.
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