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1 Abstract

Interferometric gravitational wave detectors such as the Laser Interferometer Gravitational
Wave Observatory (LIGO), are some of the most precise instruments used today, detecting
gravitational strains as small as 10-22. However, there are many significant sources of noise
when measuring such small displacements, including fluctuations in the output power of the
carrier light lasers. In an effort to reduce these fluctuations, this project aims to design and
construct an Intensity Stabilization Servo (ISS), a feedback control system that reduces laser
intensity noise. By comparing the unstabilized laser power spectrum to the noise spectrum
set by the thermal fluctuations in the mirror coatings used on the interferometers test masses
(considered a theoretical limit), it was possible to calculate an open-loop gain requirement
for the servo. To meet this requirement, an analog circuit was designed and prototyped on
a breadboard while its transfer function was determined using a spectrum analyzer. With
the filtering behavior of the analog servo verified, the design schematics were transferred to
a printed circuit board (PCB) layout. The completed board will be tested, and its behavior
optimized, in both the LIGO 40m prototyping interferometer as well as other LIGO facilities
on the Caltech campus

2 Introduction

One of the most significant issues limiting detection of gravitational waves at LIGO is the
signal-to-noise ratio observed in most measurements. A few of the major sources of noise in-
cluded thermally generated vibrations, seismic activity and mechanical vibrations, electronic
noise from signal processing as well as RMS fluctuations in the intensity of the carrier light
laser [1].

The efforts of a significant number of researchers have been dedicated to addressing these
noise limitations. Thermal noise generated by the coatings of the test masses used in LIGO
interferometers has been calculated and the coating optimized to reduce this noise [2]. Seis-
mic isolation stacks serve to reduce mechanical vibrations of the many different optics used
[3]. In aLIGO and many of the associated labs, laser intensity stabilization has also been
employed to great effect [4]. Often, it is possible to reduce the noise of the laser sufficiently
below other contributions.

As part of the LIGO collaboration, the 40m Lab on the Caltech campus can serve as a
prototyping stage for instruments and techniques that may eventually be used in Advanced
LIGO (aLIGO), the now current generation of detector being pursued. The designs for
an Intensity Stabilization Servo (ISS) have been discussed at the 40m Lab, although never
employed. Creating a working ISS would allow more precise measurements to be taken and
thus allow for more accurate assessments of efforts to increase overall sensitivity in the 40m
Lab and eventually in aLIGO.

Much work has already been done concerning intensity stabilization in general and more
specifically, of the NPRO laser used in aLIGO [5]. AC-coupled ISS systems, especially ones
employed at aLIGO, involve three main parts: a photodiode or photodiode array and a
calibrated voltage reference to produce an error signal, a servo circuit to amplify the error
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signal and finally an Acousto-Optic Modulator to feed back the error signal and adjust the
power of the laser incident on the photodiode(s) (and thus adjust the effective power of the
laser). The general design of the ISS will be very similar, although the noise suppression
behavior of this feedback loop will depend on the desired application.

3 Objectives

The primary objective of my work was the design and construction of an ISS system to
reduce the intensity noise of lasers used in the LIGO interferometer at Caltech. In addition
to reducing noise at the 40m Lab, such an ISS could be included to obtain higher sensitivity
in other experiments that use similar lasers, such as LIGOs Cryo Lab on the Caltech campus.
As such, the ISS has been designed with a modular behavior so that it might be applied to
multiple experiments/facilities.

Requirements for the noise suppression behavior of our ISS have been determined by exam-
ining significant contributions to noise as well as defining some constraints on the ISS itself.
Based on these requirements, I have designed two prototype servos, one for use in the 40m
Lab and another for use in the Coating Thermal Noise (CTN) Experiment.

4 Motivation

It is worthwhile to discuss, in part, the motivation for intensity stabilization. LIGO obser-
vatories operate by detecting very small differences between the lengths of two arms of an
interferometer. As such, anything that changes these arm lengths has an effect on attempted
measurement of gravitational waves.

We, in particular, are concerned with laser light impinging on the surface of a LIGO test
mass, which causes thermal expansion of the mirror coating. The steady state expansion can
be accounted for, but fluctuations in the laser light couple to fluctuations in the expansion of
the mirror coating. These fluctuations can then contribute significant noise to any attempted
final measurement.

We briefly reproduce some calculations and results from Cerdonio et al. [6]. The authors cal-
culated thermodynamic noise, photo-thermal noise and the noise due to fluctuating radiation
pressure on the mirrors. Thermodynamic noise is generated through statistical fluctuations
and the resulting dissipation while photo-thermal and radiation pressure noise are due to
impinging laser light.

It was found that the radiation pressure noise was significantly higher than the photo-thermal
noise with a choice of reasonable parameters of the optical cavity in question. Thus we only
concern ourselves with the results of the radiation pressure analysis. Starting from first
principles, Cerdonio et al. state that the displacement in a mirror due to an intracavity
photon flux of N [ω]

û[ω] = χeff [ω]Prad[ω] = 2~kχeff [ω]N [ω]
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Where χeff is some effective mechanical susceptibility in response to radiation pressure.
From this result, the authors infer that the noise spectrum Sû[ω] induced by radiation pres-
sure is proportional to the spectral power noise Scav[ω] of the intracavity light.

The authors then solve for the mechanical susceptibility χeff which they can then use to
relate Sû[ω] and Scav[ω]. The final result they reach is given by,

Sû[ω] =
(

2(1−σ2)√
2πEcr0

)2

Scav[ω]

where E is the Young’s modulus of the mirror substrate, σ is related to the stress tensor, r0
is the beam radius incident on the mirror and c is the speed of light.

The main result to take away from this brief reproduction is simply that fluctuations in the
cavity laser light can induce displacement fluctuations in the mirrors, subsequently introduc-
ing more noise into any attempted measurements. This would näıvely imply that intensity
stabilization of lasers is well-motivated. With this in mind, we proceed to discussing the
intensity stabilization system designed herein.

5 Approach

In general terms we proceeded as follows,

1. Determined various noise requirements and device limitations.

2. Based on these requirements and currently observed noise, formalized desired feedback
behavior of the ISS.

3. Using programs such as LISO and Matlab, simulated proposed ISS designs.

4. A prototype servo circuit was designed on a breadboard and characterized to affirm
the aforementioned behavior.

5. With a successful prototype, the ISS was built on PCB and is now being tested and
characterized.

6. If necessary, the filtering behavior of the ISS can be modified to optimize performance
once initial tests have been completed.

6 CTN Experiment Control System

The following block diagram, Figure 1 displays a very general control system. We have some
input signal ’x’ and an output ’y’. There is a single feedback path with gain G that sums
with the input signal. More complicated control systems can have additional components
with different gain/throughput, as we will see.

The total output is then given by
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Figure 1: A general control system with open-loop gain G is shown. ’x’ is the input signal
and ’y’ is the output signal. A simple signal analysis yields the expression y = x + Gy

y = x+Gy =⇒ y = 1
1−G · x

Which is the usual expression for closed-loop gain, with open-loop gain G. We can apply a
similar analysis to a block diagram of the ISS to be used in the CTN experiment.

Figure 2 shows the layout of the CTN experiment with an active ISS. Understanding that
signal pathway, as well as having quantitative measurements of the behavior of each device
shown, is crucial to developing an accurate requirement.

Figure 2: A simple block diagram of the ISS for the CTN experiment. To reiterate: P =
photodiode gain, F(f) = servo TF, A = modulator gain, C(f) = cavity TF, a = optical
throughput from beam splitter

Below, we include explicit expressions for the transfer functions of various optics and elec-
tronics included, courtesy of those working on the CTN experiment. We have 4 main devices:
the reference cavity itself, a beam splitter to obtain a control signal for modulation, a photo-
diode to convert our optical signal into an electronic signal and an Electronic Acousto-Optic
Modulator to apply the amplified control signal.
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a = 0.5W/W P = 0.9 · 104 V/W A = 5.2 · 10−6W/V

C(f) =
∣∣∣ 0.6
1+i(f/fc)

∣∣∣ fc = c T
8π L

= 97 kHz

The open-loop gain can be acquired fairly easily and is given by,

G = aC(f)P F (f)A

On occasion, we will also refer to the ’plant transfer function’ which includes all of the optics
and electronics except the servo board itself. This is given by the expression,

Plant = aC(f)P A ≈ 0.014V/V

Where we have ignored the cavity pole at 97 kHz as our servo will have an open-loop gain
less than unity at this frequency. Recognizing that the output signal is also attenuated by
C(f) and

√
1− a2, the total closed-loop transfer function of the system in Figure 2 is given

by the following:

=⇒ ASDout=
C(f)

√
1−a2

1−C(f)·aP F (f)A
·ASDin=

C(f)
√
1−a2

1−G · ASDin

where Amplitude Spectral Densities are in units of W/
√
Hz and refer to the laser’s noise.

The above formula essentially represents the functioning behavior of the ISS. The exact
transfer function of the servo being designed, represented by block F(f), depends on two
things: the plant transfer function given by the above expressions, as well as the noise
suppression requirement.

7 Developing a Requirement for the CTN Experiment

7.1 Observed Noise vs. Desired Noise

Essentially two things are necessary to develop an explicit requirement for a noise suppression
control system: the current amplitude spectral density (ASD) of the free-running system
and the desired ASD. As this work does not directly pertain to what is done in the CTN
experiment, the observed ASD and the desired ASD have been measured and formulated,
respectively, by a colleague.

From the above data, as well as the plant transfer function quantified earlier, one can easily
determine the necessary filtering behavior of the main servo. Ideally, we would want to
suppress the free-running laser noise to a level approximately 10 times (referred to as a safety
factor) lower that the theoretical brownian noise limit from the mirror coatings. Briefly,
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Figure 3: The spectral density of both the free-running laser as well as a theoretical noise
limit manifested by the brownian noise from mirror coatings.

Loop Noise Suppression Requirement ≈ Noise Limit
Free-running RIN

· 1
10

From this requirement, we can infer the necessary open-loop transfer function of our servo
board. This was done through a somewhat iterative process. A servo with open-loop gain
F (f) was designed such that the shape of the closed loop TF was similar to the loop sup-
pression requirement.

Noise Limit
Free-running RIN

· 1
10
≈ 1

1−F (f)·Plant

The shape and magnitude of F (f) was tweaked until the implied closed-loop TF matched
or surpassed the noise suppression requirement over our frequency range of interest.

7.2 Proposed Design

Understanding our device limitations as well as the desired behavior, a simple servo has
developed. It consists of three filtering stages that can switch on in a staggered manner (this
will be explained/discussed in the ISS Subsystems section). The filter stages themselves
consist of an op-amp in a negative feedback configuration with some collection of resistors
and capacitors in the feedback path.

The exact topology and component values of the resistors and capacitors were carefully
chosen to create the desired behavior. Each stage was simulated and tuned multiple times
using LISO, a analog circuit simulator, until the correct filter shape was obtained, as shown
in Figure 5.
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Figure 4: Proposed servo topology. The second and third stage are shown with the SPDT
switches that will be used to switch from a unity-gain buffer to the more complex filter
shape. Again, this mechanism will be discussed in a future section

Figure 5: Desired suppression behavior (blue) and the closed-loop transfer function of
the proposed servo shown in figure 3 (green). The blue curve is given explicitly by:
(Noise Limit/Free-running RIN) · 1

10
. We can see that our servo meets the requirement quite

well.

With the main filtering servo design complete, we can now focus on some of the other
components of the ISS.
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8 ISS Subsystems

Significant time has been spent developing a detailed schematic for the full ISS system, which
includes many subsystems aside from the main filtering servo. As such, a brief explanation
of the purpose and design of each of the subsystems is included below. They are ordered
according to their location in the signal path.

For each of the subsystems listed below, refer to the attached schematic for the relevant
circuit topology.

8.1 Instrumentation Amplifier: Schematic Appendix Pg. 2

The electronics in the ISS and the photodiode which receives the input signal for the ISS
are not referenced to the same ground so it is necessary to handle a differential signal. In
general, a single instrumentation amplifier integrated circuit (IC) is sufficient, although one
can design more complicated topologies for ulterior signal processing.

The instrumentation amplifier setup used can provide both signal gain and common mode
rejection. The first is useful as photodiodes don’t provide a standard voltage while we would
like to be able to reference the photodiode signal to a precision 5 Volt DC reference. For
instance, in the CTN experiment, colleagues are working with a 1.5 V signal (+ noise) so we
would like the instrumentation amplifier to provide a gain of 3.3.

Common mode rejection suppresses such things as 60 Hz wall power noise. With the particu-
lar topology used, the Common Mode Rejection Ratio (CMRR = differential gain / common
mode gain) is entirely determined by the signal gain, which is inherently differential. Since
common mode signals are not a dominant source of noise, any amount of CMRR is useful,
but a large CMRR is not explicitly necessary.

8.2 Dewhitening Filter: Schematic Appendix Pg. 2

Some photodiodes have very simple whitening to raise the signal and reduce noise. A typical
whitening filter has the following characteristics: a zero at 1 Hz, a pole at 100 Hz and 0 dB
gain at DC.

For accurate signal feedback it is then necessary to apply a dewhitening filter to raise the low
frequency signals. The aforementioned whitening filter would have a dewhitening counterpart
with a pole at 1 Hz, a zero at 100 Hz and 0 dB gain at 10kHz. In the ISS schematic, the
dewhitening filter can be bypassed with a jumper if the photodiode used does not have
whitening.

8.3 Differential/Summing Amplifier: Schematic Appendix Pg. 2

To obtain the error signal for amplification and subsequent feedback, one can reference the
photodiode signal to a fixed DC voltage. This is usually done with a differential amplifier
which outputs the difference between two input voltages. In the early versions of the ISS
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design, it was assumed that the signal from the photodiode would be a positive voltage, but
this is not always the case.

To account for this, I have included two signal paths (only one of which will be used at a
time): one path makes use of an op-amp in a differential amplifier configuration while the
other uses an op-amp in a summing amplifier configuration, in case the photodiode voltage
is negative.

8.4 Input Grounding and Inverting Amplifier: Schematic Appendix Pg. 2

These two systems will be operated with front panel switches.

For characterization and debugging, it is useful to ground the ISS input so a zero-amplitude
signal is sent through the filtering servo and other subsystems. By connecting the input
terminals of the differential/summing amplifier, one can effectively ground the input.

In feedback systems, it is common to have the feedback signal inverted (an extraneous ’-1’
in the gain). As such, it is useful to have an amplifier that can provide a programmable gain
of ±1. This is done with a simple SPDT switch and an op-amp.

8.5 Comparator and Boost Switching: Schematic Appendix Pg. 4

When initializing an analog control system, such as the one discussed here, the actuator that
reapplies the error signal for noise suppression can be saturated. Operating at saturation
usually has negative consequences and can destabilize the entire servo. To avoid this, a
system has been designed that initializes the noise suppression filters in stages.

Figure 6: Shown is the magnitude of the transfer function of the servo as successive boosts
turn on. Blue: 1st stage. Green: 1st+2nd stage. Red: Full servo.

The filter servo is composed of three stages, as discussed before. The first stage is a LP filter
and is always turned on. Essentially this means that any error signal that passes through the
ISS will be low-pass filtered. This first stage thus applies some amount of noise suppression
when the ISS loop is closed.
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Initially, the second and third stage, referred to as boosts, are in a unity gain configuration
and act as simple voltage followers. A secondary system monitors the noise suppression of
the first stage and ’turns on’ the second and third stage when the RMS noise of the error
signal has dropped below a certain threshold.

To do this, the error signal input to the filtering servo is taken down another signal path
which first amplifies the signal then passes it through an RMS-to-DC converter chip. This
chip takes an AC input, our amplified error signal, and outputs a DC voltage equivalent to
the RMS value of the AC input. The DC output is then fed into one input of a comparator
which compares it to a user defined threshold between 1 and 4 Volts and acts as a Schmitt
trigger. A Schmitt trigger compares two inputs and has two discrete outputs: one high and
one low. In this case, the high and low output of the Schmitt trigger are used as logic to
switch on the second and third stages.

Figure 7: (a) Topology of one proposed comparator. Ports are included which represent
the oscilloscope channels used in the accompanying image (b) Shown is an image of the
comparator operating as desired. The yellow trace represents a varying input and the blue
represents the output of the comparator. This square-wave-like signal is then used to drive
the logic input of a SPDT switch

Understanding the signal path, we can consider how this subsystem operates. As the first
stage of the ISS suppresses noise, the RMS value of the error should theoretically decrease.
This, in turn, should result in a decreasing DC voltage applied to one input of the comparator.
Initially, the comparator will be be in its low-level output configuration which corresponds to
the DC output from the RMS-to-DC converter being larger than the defined threshold. As
the DC level drops below the threshold with continued noise reduction from the first stage,
the comparator switches to its high-level output.

The high-level output is then used to switch the second and third boost from their unity
gain configuration to their more complicated filtering configuration (using the same type
of switching behavior as detailed above in figure 5). The high-level output is first passed
through LP filters with large time constants that act as analog delays so that the initialization
of the boosts can be staggered. A time constant of 1 second delays the second stage from
initializing after the comparator switches while a time constant of 5 seconds delays the third
stage from initializing. This is all done in an effort to prevent saturation of the actuator.
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8.6 Excitation: Schematic Appendix Pg. 5

This subsystem has one simple goal: facilitate measuring the open-loop transfer function of
the ISS with the loop closed. This can be used both as an initial diagnostic tool as well as
during operation of the ISS. A differential driver takes some input (for measuring a transfer
function, this will be a sine of varying frequency) and adds it to the signal path while two
voltage followers monitor the voltage directly before and after the excitation input. And
thus one obtains the closed-loop TF.

9 Completed PCB and Initial Board Characterization

The PCB layout in Schematic Appendix Pg. 6 was submitted to Sunstone PCBexpress.
Components were soldered on the board promptly after it was received. The completed
PCB, both bare and with all the components, is shown below.

Figure 8: (left) Empty PCB board as received from manufacturer (right) Board stuffed with
all components and with attached/wired headers.

Based on initial continuity tests, the board seemed to be functioning correctly. Power was
correctly distributed to all components and ground was established in all locations that were
checked.

The next stage of characterization was the attempted measuring of the servo’s transfer
function. Because the servo has such high gain (106 near 1 Hz), it is impractical to measure
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the open loop transfer function directly. However, one can ’close the loop’ by connecting the
output of the board to the input. This was done with a 36 dB attenuator to simulate the
plant transfer function.

Using the Excitation feature of the board, the open- and closed-loop transfer functions were
measured. In each case, the transfer function was measured both with the boosts on and
with the boosts off.

9.1 Open-Loop Transfer Function

An SR785 was used to drive the excitation input and measure the open-loop transfer function,
Figure 9 below. This was done using the excitation monitors discussed in the Subsystems
section.

Figure 9: Open-loop transfer function of the servo board with a 36 dB attenuator simulating
plant electronics/optics. With boosts off, we see low-pass filter behavior which matches
simulation quite well. With boosts engaged, our TF is limited by op-amp railing for low
frequency, although it is fairly consistent otherwise. Note the phase matching introduced at
low frequency due to op-amp railing.

First note that based on LISO simulations, this loop is unconditionally stable as the unstable
unity gain crossing would be at 0 degrees and we can see that the phase stays well above 0
degrees over the working frequency range of this device.

At low frequency, we can see that the transfer function reaches a maximum magnitude, which
is simply a result of the op-amps railing in response to the relatively large excitation input
from the SR785. In situ, the ’input’ will be a much smaller signal and thus not cause the
same railing.
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The slightly shifted unity gain frequency as compared to simulation simply results from use
of components with somewhat large tolerances. In later versions, more accurate components
will be used to prevent the shifting of various corner frequencies.

9.2 Closed-Loop Transfer Function

Similarly, one can measure the closed-loop transfer function, Figure 10, using the SR785 to
drive the excitation. We then analyze one of the monitor signals and the driving signal to
obtain 1/(1−G) as the location of one of the excitation monitors allows for direct measuring
of the signal: in · (1−G).

Figure 10: Closed-loop transfer function of the servo board with a 36 dB attenuator simulat-
ing plant electronics/optics. Note that low-frequency data for the servo state with the boosts
off is not included here due to negligence. As with the open-loop TF, we can see that at low
frequency in the boost-on state, the op-amps begin saturating resulting in a flattening of the
transfer function. However, the measured transfer function for f > 100Hz is consistent with
simulation.

Just as before, the unity gain frequency (and thus where the closed-loop TF approaches
1 asymptotically) has been shifted due to components with large tolerances that skew the
value of various corner frequencies. Despite this, our servo meets the noise suppression
requirements quite well.

The above plot suggests that once other minor issues (discussed later in Debugging section)
are solved, we could attempt to operate the servo in situ, as our board is behaving almost
exactly as expected.
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9.3 Closed-Loop Transfer Function vs Requirement

Just as a check, we plot our measured transfer function against the closed-loop requirement
which includes a safety factor.

Figure 11: Closed-loop transfer function of the servo board with a 36 dB attenuator simulat-
ing plant electronics/optics. This is plotted against the requirement determined earlier. We
can see the servo meets the noise suppression requirement until the op-amps start railing.

10 Debugging

A few other problems concerning the functionality of the full board have been identified.
These issues have not yet been resolved but are actively being investigated.

1. The 5V reference is not actually producing 5V, more like 2.9V

Use of a FET op-amp for the buffer will most likely resolve this issue

2. The AD8436 is causing significant fluctuation in the -5 V power line.

A simple circuit using only this part was designed and the same issue is not ob-
served. IT’s possible that a particular chip was causing this problem, although it’s
currently unknown.

3. The method used to ground the input mistakenly passes a high current through one of
the Quad SPDT switches, causing chip failure

These problems will be addressed as soon as possible.
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