LIGO Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech

Introduction

- Loss related to geometry
- Loss related to as-built arms
- Loss related to aberrations
- Loss related to thermal deformations
- Summary

Energy conservation or where the CR power goes

Arm loss designed vs as-built

Loss in arm : as-built vs design

Power Recycling Gain vs Arm loss

Introduction

now that almost all COCs have been delivered and measured

• Purpose of the talk

» Understanding the fundamental limitation by COC

• Optics data

- » Use as built / measured RoC, maps, losses
- » https://galaxy.ligo.caltech.edu/optics/ and links from this URL

Simulation tool used

- » FOGPrime13
 - FFT-based IFO simulation using matlab
 - Modular design to build FP ~ full aLIGO by adding optics and propagators
 - Easy integration with real data files and other matlab tools like COMSOL

Loss related to geometry

T1400055

- 1) no loss at all, with large mirrors. A finite HOM (3.7ppm) looks a nice gaussian so probably the base mode parameter is slightly off.
- 2) 1) + ETM transmittance 3.7ppm
- 3) 2) + test mass aperture 326mm, round trip loss by the aperture is 1.94ppm (with 340mm, RTL is 0.6ppm)
- 4) 3) + 266mm ESD aperture, placed using BS baffle (266mmx266mm) in front of BS
- 5) 4) + 35ppm arm loss
- 6) 5) + power recycling mirror and beam splitter loss and transmission. Sum of losses + RM2 transmission is 583ppm
- 7) 5) + ITM AR side loss, (ITMX loss 206ppm, ITMY loss 330ppm)
- 8) 5) + 6) and 7), i.e., losses and transmission in the PRC, BS and ITM AR
- 9) 8) + finite opening angles in PRC (0.79° for PRM2 and 0.615° for PRM3). Among the total HOM of 240ppm, major ones are HG(1,0) of 12ppm
- and HG(0,2) of 210ppm.
- 10) 9) + PRM3 aperture 262mm
- 11) 10) + BS 367.1 mm/60 mm no baffle
- 12) 11) + BS baffle (210mmx260mm). Total HOM goes up to 540ppm from
- 260ppm by clipping using BF baffle. The major is HG(4,0) of 170ppm.
- 13) 12) with BS baffle facing to X arm offset by *1mm* in horizontal direction
- 14) 12) with BS baffle facing to X arm offset by 2mm in horizontal direction
- 15) 10) + BS 410mm/67mm with BS baffle (237mmx260mm)
- 15) 10) + BS 410mm/6/mm with BS baffle (23/mmx260mm)
 16) 15) with BS baffle facing to X arm offset by 2mm in horizontal direction for the set of th
- 17) with BS baffle facing to X arm offset by 2mm in horizontal direction in the section of the section

Hiro Ya

LIGO-G1400198

Arm performance only aberrations in arms included

- Low arm loss (70 ppm design to 35-50 ppm expected)
- High power recycling gain and high arm power
- High (~0.15) reflected power
- High higher order mode content in the bright port

	LHO Тітм=1.39%,1.42%	LLO TITM=1.48%,1.48%	LLO (no maps)
CD	29 ppm	48 ppm	44 ppm
PRG	63	61	74
Arm power	8800 W (1W input)	8100	9900
HOM in bright	1900	1600	520
HOM in x/y arm	95 / 114 ppm	97 / 113	38 / 62
Round trip loss	33 / 37 ppm	40 / 38	23 / 26

LIGO-G1400198

Hiro Yamamoto LVC Nice 3/17/2014

Noise injection by the spiral pattern on test mass coatings

Higher order mode due to imperfect test mass coating figures

The sign flip basic

HOM amplification

Eref = Ein $Eleak = -2Ein(1 + \varepsilon HOM)$ $Eout = -Ein(1 + 2\varepsilon HOM)$ $HOM(arm) = \varepsilon HOM^{2}$ $HOM(bright) = 4\varepsilon HOM^{2}$ HOM(dark) = 0

Higher order mode power fraction (H1)

		ITMX	ITMY	BS bright
	LG10	26	43	83
	LG20	40	38	890
	LG30	7.8	9.9	47
Hiro Yamamoto		/C Nice 3/17/20	014	11

LIGO-G1400198

ITM lens some sees, some not

- CR (Eout) : don't see
- SB (Eref) : see
- Signal SB (Eleak) : see

$$\begin{split} E_{ref} &\approx \exp(i2\phi)E_{00} \\ E_{leak} &= \exp(i\phi) \left\{ \begin{array}{c} -2 \\ 0 \end{array} \right\} Ein \qquad E_{tot} = \left\{ \begin{array}{c} \exp(2i\phi) \\ \exp(i2\phi) \end{array} \right\} E_{00} + \left\{ \begin{array}{c} -2\exp(i\phi) \\ 0 \end{array} \right\} E_{00} \approx \left\{ \begin{array}{c} -1+O(\phi^2) \\ 1+i2\phi \end{array} \right\} E_{00} \end{split}$$

Hiro Yamamoto LVC Nice 3/17/2014

(In)Sensitivity on ITM SPTWE + CP lens

BS Thermal distortion

		PRC			X arm		Y arm				
		CD ppm	PRG	HOM (BS)	Refl	Power	HOM (ppm)	Round trip loss	Power	HOM (ppm)	Round trip loss
TT With miracle H TCS H	BS06	190	62	1380	0.14	8840	98	33	8660	115	38
	No BS	139	63	1380	0.14	8850	98	33	8670	115	38
	BS thermal	288	50	1330	0.06	7130	98	33	6990	115	38
	♥0.3-0.3 0.4-0.4	7	61.7	2400	0.14	8730	81	37	8550	137	37
	0.3-0.3 0.3-0.5	23	58.7	2900	0.11	8300	81	37	8110	151	45
	BS05	112	61	1165	0.15	8090	98	41	8090	111	38
	No BS	64	61	980	0.15	8120	98	41	8100	110	38

LIGO-G1400198

Hiro Yamamoto LVC Nice 3/17/2014