LIGO

Progress on Cryogenic Test Masses for aLIGO Upgrades

Brett Shapiro Stanford University

G1400250 - 18 March 2014 - Nice, France

Summary

- Moving from Advanced LIGO to LIGO III
- LIGO III cryogenic test mass suspensions
- Stanford experiment
- LIGO III simulation
- Lessons learned / changes made
- Future work

LIGO

Advanced LIGO Timeline

Livingston, LA

Hanford, WA

LIGO Predicted Advanced LIGO Sensitivity

Byer-Fejer Talk - 15 March 2013

LIGO Predicted Advanced LIGO Sensitivity

Byer-Fejer Talk - 15 March 2013

Predicted Advanced LIGO Sensitivity

Byer-Fejer Talk - 15 March 2013

LIGO III cryo work distribution

- Caltech cryogenic reference cavities; direct thermal noise measurements
- Jena/Glasgow/Moscow mechanical loss
- MIT high emissivity coatings
- KAGRA 20 K sapphire suspensions
- INPE Brazil Cryogenic multi-nested pendulum
- Stanford optical coatings (Riccardo Bassiri's talk); cryogenic technology

Courtesy of Nicolas Smith-Lefebvre

Ligo Cyro Test Mass Problem Statement

* For LIGO III, reduce suspension and coating thermal noise by cooling the lower quad to 124 K (-149.15 C)

- Si test masses (blue team in LIGO-T1200031)
- Get to 124 K in a timely manner <- Stanford experiment</p>
- Then maintain 124 K
- Include a warm-up scheme (don't forget!)
- Do not increase the test mass lossiness
 - Emissive coatings, heat links, thick sus fibers, optical coatings, substrate, suspension fiber bonding, etc
- Do not compromise passive seismic isolation
 - Cables, hoses, links, etc
- The same seismic isolation platforms (ISIs, HEPIs)
 - Limit the amount of extra weight on these plaforms
 - Leave the rest of the vacuum chamber warm

LIGO III Steady State Cooling

LIGO

Initial Cool Down Cold Link – 2 Designs

Conductive cooling, low pressure N ₂ gas	Pros and Cons		
liquid N ₂ pipe flexures	 Pros Operates in partial vacuum. Low heat transfer between cold and warm parts of vacuum system. Fine temperature control – just back away when at desired temperature Versatility, design permits both conductive and convective cooling. 		
Test mass thermally conductive plate with variable gap	 Cons Requires moving parts: flexible pipes actuators Physically contacts barrel of test mass 		

Initial Cool Down Cold Link – 2 Designs

Pros and Cons	Convective cooling, up to 1 atm N ₂ gas		
 Pros No moving parts or actuators No contact with test mass Faster cooling than conduction Cons Convection between cold and warm parts of vacuum system No fine temperature control – must return to vacuum to 'turn off' cold link. Does not operate under vacuum 	return liquid N ₂ supply pipes convective N2 gas Test mass thermally conductive plate with large fixed gap		

Experimental Setup

Threaded rod cold link height adjuster

Test mass holder

Close up of cold link

LIGO

LIGO Measurement – cold link engaged

Silicon Test Mass Cooling - 24 February 2014

Test mass temperature modeling

14/23

LIGO Test mass temperature modeling

14/23

Silicon Test Mass Cooling with Cold Link

Test mass temperature modeling

14/23

Test mass temperature modeling

14/23

Ligo Exponential Temperature Decay

 K_{CL} = thermal conductance of cold link C_{Si} = heat capacity of silicon

- These are both functions of temperature.
- In general, the solution is not truly exponential since the time 'constant' changes.

Exponential Temperature Decay

16/23

Exponential Temperature Decay

Exponential Temperature Decay

16/23

Ligo Measurement – cold link disengaged

Ligo Measurement – cold link disengaged

17/23

Ligo Conductive vs Convective Regimes

Finite Element Modeling

- Due to complexity, LIGO III designs must be verified with FEM
- Below: FEM of conduction through N₂ gas to cold link for Stanford experiment

 \approx 43 min into cool down

• Convective FEM is proving to require large amounts of computing power

LIGO

Ligo Cold link on a LIGO III test mass

Experimentation lessons learned

- Air dominates most heat flow across contacts
- Cold links should have distributed contacts
- Solder is not leak tight against high pressure cryogenic fluids – welding is probably best
- Cryogenic fluid should have 1 flow path
- Send fluid from bottom up

LIGO

- Use fatter pipes to minimize fluid pressure
- Minimize the number of materials in the plumbing joining and contraction issues
- Leave room for differential contraction
- Silicon diode temperature sensors are great

Flexible cold link evolution

LIGO

LIGO

Future work

- Get bigger pump to reduce pressure
- Better computing for FEM of convection
- Next generation experiment on the prototype aLIGO in-vacuum seismic isolation table.
 - More realistic LIGO setup
 - Measure temperature drifts on LIGO hardware
 - Measure seismic noise of nitrogen delivery
 - Use welded joints to prevent leaks.

LVC STANFORD August 25-29 2014

Hillon

Backups

Advanced LIGO Layout

LIGO

Possible LIGO III Mechanical Upgrades

Adapted from G1200828, courtesy of Madeleine Waller, Norna Robertson, Calum Torrie

3 Quad Conceptual Designs

	Higher	Lighter	Ideal masses with		
T1300786	payload	Test mass	PUM springs		
Table 3: Summary of model parameters for the three proposed modifications.					
Parameters	Increased P	Decreased m_4	Penultimate Springs		
P, Payload (kg)	301.9	270.0	270.0		
$m_1 \ (\mathrm{kg})$	46.79	41.93	51.55		
$m_2 \ (\mathrm{kg})$	39.54	35.42	41.71		
$m_3 \ (\mathrm{kg})$	72.57	64.86	33.74		
$m_4 \ (\mathrm{kg})$	143.0	127.8	143.0		
L_1 (m)	0.372	0.372	0.535		
$L_2 (m)$	0.372	0.372	0.535		
$L_3 (m)$	0.372	0.372	0.535		
$L_4 (m)$	1.025	1.025	0.535		
long. isolation (m/m)	1.1×10^{-7}	1.1×10^{-7}	7.9×10^{-8}		
f_{bounce} (Hz)	9.27	9.27	low, depends on springs		
σ_4 , fiber stress (Mpa)	1400	1400	1400		
E_4 , fiber modulus (Gpa) [6]	167.4	167.4	167.4		
noise budget impact	none	slightly worse	better		
relative cost	high	low	high		

LVC Sept 2013 Hannover - G1300966

How to get a LN2 Hose to ST2

LIGO

Extra stage, A, in parallel with stage 1 carries hose. Stage A is actuated to follow stage 2 so the hose has does not short seismic isolation. Stage A sensor noise is set by the stage 2 isolation requirement (so it follows stage 2 and not the sensor noise).

Test Mass Radiation Simulation

A Lot of Heat to Remove

LIGO

Ligo Dewar pressure during measurements

LIGO Effect of pressure on test mass temp

N₂ gas therm. cond. vs pressure

LIGO

Ligo Temperature Sensor Locations

Ligo Test Mass Temperature Equations

$$\dot{Q}_{Si} = K_{CL} \Delta T$$
$$\dot{T}_{Si} = \frac{\dot{Q}_{Si}}{C_{Si}}$$
$$\dot{T}_{Si} = \frac{K_{CL}}{C_{Si}} (T_{cold} - T_{Si})$$

$$\dot{T}_{Si} + \frac{K_{CL}}{C_{Si}}T_{Si} = \frac{K_{CL}}{C_{Si}}T_{cold}$$

$$T_{Si} = T_{hot} e^{-\frac{K_{CL}}{C_{Si}}t} + T_{cold}$$

Figure 7.4 Temperature dependence of substrate thermoelastic noise. Frequency f is 1 kHz and beam radius w_0 is 1 mm.

ref: Harry, Bodiya, Desalvo. Optical Coatings and Thermal Noise in Precision Measurement. 2012. pg 113.

Si CTE vs Temperature

LIGO

Single Crystaline Silicon Coefficient of Thermal Expansion

Thermoelastic component of thermal noise goes to zero with CTE.

Ligo Si Thermal Conductivity vs Temp.

Ligo Si Specific Heat vs Temperature

49

Specific Heat of Silicon

Ligo Thermal Conductivity of Materials

Beam Tube Heat Shield Length

Heat shield length in beam tube

Other Problems To Solve

- Liquid N₂ hoses flexible enough for ISI under vacuum
- Temperature/height control of blade springs
- Test mass temperature control
- How to measure temperature?
 - Measure acoustic modes Young's modulus is temp. dependent
 - Infrared camera

LIGO

- Emissivity of optical coatings
- Lossiness of emissive coatings
- Good emissivity estimates/measurements of Si?
- Power absorption in Si (ppm, W, etc)?
- How noisy is bubbling nitrogen: seismic, Newtonian? Do boiling chips help?
- Optical coating thermal noise at 120 K