

Content:

- **1. Thermal Correction System**
 - a. Ring heater (for Giacomo Ciani)
 - **b.** Adaptive Optical Element (for Paul Fulda)
- 2. Alignment Sensing and Control
 - a. Fast beam pointing (for Daniel Amariutei and Paul Fulda)

Guido Mueller University of Florida @ LVC Meeting Nice, March 2014

G1400317

G1400317

Ring Heater

aLIGO RH:

- NiCr wire around glass rod
- Thermal inhomogeneities due to
 - heat sinks
 - winding densities
- brittle (but now installed)

Requirements:

LIGO

- Astigmatism in reflection (AC side) < 3nm over ~8cm
- In transmission (RC side): Undefined

UF RH:

- Alumina coated Al
- NiCr wires clamped
- Flexible
- Compatible with current shield
- Still need final RGA scan

G1400317

Tuesday, March 18, 14

Ring Heater

G1400317

Tuesday, March 18, 14

G1400317

Adaptive Optical Element

Useful in two places:

LIGO

- » Mode matching from IMC to PRC.
 - Must deal with high transmitted power (>50W).
 - Required optical power < $1/zR_{IMC} \sim 0.1$ D.
- » Mode matching from SRC to OMC
 - Low transmitted power.
 - Required optical power ~0.15 D [1].
- Heat load to HAM table should be <1W.
- Should not add higher-order distortions to transmitted beam (mode purity >99%).
- Vacuum compatible, reliable actuator.

[1] LIGO-G1301154 S. Ballmer

Tuesday, March 18, 14

Testing in vacuum: DBB mode purity and range measurement

- Diagnostic breadboard of aLIGO PSL design used.
- » Consists of triangular PMC cavity with PZT mirror.
- Scan cavity and observe higher-order mode peaks.
- Perform beam scan to find beam parameters.
- Actuate AOE at different levels, re-mode match and repeat scan, observe change in HOM content.
- Calculate AOE focal length.

G1400317

Adaptive Optical Element

Positive results shown at ~-0.05D (f~-20m) actuation:

Mode purity actually increased by astigmatic AOE heating.

G1400317

Tuesday, March 18, 14

Adaptive Optical Element

Conclusions and next steps

- Design performed well in vacuum from mode purity and dynamic range perspective.
- Power in too much (>10W to reach ~0.5D) though.
- Implement improvements in design:
 - » Use optics with polished barrel.
 - » Use reflector to direct radiated heat to tank walls rather than bench.
 - » Try micro-etching heater material (NiCr) directly on optic barrel (alternative design).
- Run up to high-power again with recent alterations check power efficiency.
- Test for full vacuum compatibility at Caltech facility.

G1400317

Case studies:

LIGO

Thermal substrate lens

• Changes PRC mode

• Changes MM into AC from IMC

Note:

The mode matching between PRC and AC is fairly insensitive to substrate thermal lens

Assume no RH, no CO2

Try to maintain MM from front end with different power levels

G1400317

Case studies:

LIGO

Thermal substrate lens

• Changes PRC mode

• Changes MM into AC from IMC

Note:

The mode matching between PRC and AC is fairly insensitive to substrate thermal lens

 $1\mu D \sim 1W$ input power

Assume no RH, no CO2

Try to maintain MM from front end with different power levels requires differential operation

G1400317

G1400317

How it works: n₀–δn 🛉 Ε, n₀+δn ↓E, n₀–δn θ_{int} B. n_0 A С В Idealized!

Fast Beam Pointing

Motivation:

LIGO

- Enable larger bandwidth in alignment servo systems
- Generate 10-mode at RF-frequency to enlarge design space for alignment sensing

 $\langle \alpha_1 \rangle$ n_o+δn • electro optic effect:

$$\delta n = \frac{n_0^3 r_{33} E}{2} = \frac{n_0^3 r_{33} V}{2d}$$

• changing the voltages will change the deflection angle:

$$\theta = \frac{2L\delta n}{h} = \frac{n_0^3 r_{33} LV}{hd}$$

Fast Beam Pointing

G1400317

Tuesday, March 18, 14

Fast Beam Pointing

Testing it:

LIGO

LiNbO₃ crystal $n_0 = 2.232$ $r_{33} = 32.8 \text{ pm/V}$

• Polarization: no observed change

- the electrodes are milled in the Cu layer of PCB, with a 55 µm width gap between the two interposed rows
- thin layer of dielectric lacquer applied (dielectric strength 48 KV/mm)
- black delrin holder and spacers (dielectric strength 5.735 KV/mm)

G1400317

Tuesday, March 18, 14

Using it...

Potential applications:

- 1. Fast feedback actuator for ASC
 - Possible location: from PSL table into IMC
 - Note: We would need four elements
 - two dimensions
 - two Gouy phases
- 2. Generate ASC signals for simple cavity
 - i. PDH-style:
 - Generate 10-mode
 - Reflect off cavity
 - Detect with single element PD
 - ii. Anderson-style:
 - Generate 10-mode to be resonant in cavity
 - Detect in transmission with single element PD
- 3. Generate ASC signals in coupled cavities/Advanced LIGO setup
 - Finesse modeling ... (no idea yet if that works/helps)

Fast Feedback Actuator

One-dimensional experiments:

Diagonalize WFS:

- BD1 -> QPD1
- BD2 -> QPD2

G1400317

Fast Beam Pointing

16 BD1 **Diagonalize WFS:** 14 BD2 • BD1 -> QPD1 12 **Finesse** WFS [W/rad] 9 & 01 • BD2 -> QPD2 Tuning of **QPD1** location 2 0 200 400 1200 1400 600 800 1000 1600 1800 2000 Distance from Gouy telescope [mm] WFS distance scan BD1 0.08 Qualitative agreement BD2 0.07 pretty good. 0.06 ∑ 0.05 0.04 Experiment Hope to close loops soon 0.03 0.02 0.01 500 600 700 800 200 300 400 900 1000 Distance [mm]

G1400317

Tuesday, March 18, 14

Alignment Sensing

Finesse simulations for an aLIGO IMC-like linear FPC

Hope to be able to look at these ideas again since we are done with IO ...

One 10-SB on resonance in reflection allows to separate misalignment or ETM and ITM (single cavity)

G1400317

Tuesday, March 18, 14