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The Fisher matrix (FM) has been generally used to predict the accuracy of the gravitational
wave parameter estimation. Although a limitation of the FM has been well known, it is still mainly
used due to its very low computational cost compared to the Monte Carlo simulations. Recently,
Rodriguez et al. [Phys. Rev. D 88, 084013 (2013)] performed Markov chain Monte Carlo (MCMC)
simulations for nonspinning binary systems with total masses M ≤ 20M�, they found systematic
differences between the predictions from FM and MCMC for M > 10M�. On the other hand, an
effective Fisher matrix (eFM) was recently introduced by Cho et al. [Phys. Rev. D 87, 24004
(2013)]. The eFM is a semi-analytic approach to the standard FM, in which the partial derivative
is taken by a quadratic fitting function to the local overlap surface. In this work, we apply the
eFM method to several nonspinning binary systems and find that the error bounds in eFM are
qualitatively in good agreement with the MCMC results of Rodriguez et al. in all mass regions.
In particular, we provide concrete examples showing an importance of taking into account the
template-dependent frequency cutoff of the inspiral waveforms.

PACS numbers: 04.30.–w, 04.80.Nn, 95.55.Ym

I. INTRODUCTION

In ground-based gravitational wave data analysis, var-
ious parameter estimation methods are implemented to
find the physical parameters of the gravitational wave
sources. One of the most promising techniques is the
Markov chain Monte Carlo (MCMC) [1–6], which in-
volves the Bayesian analysis framework. The MCMC
enables us to search the whole parameter space within
given templates and find the physical parameters from
the wave signal and the error bounds on their variances.
The Fisher matrix (FM) has been generally used to es-
timate the error bounds [7–12]. Despite the well-known
limitations [13], the FM method is being used because it
is quite easy to use and needs very low computational cost
compared to the Monte Carlo simulations. In the past
FM studies, the inspiral waveforms, neglecting merger
and ring down phases, have been generally considered
because not only the inspiral-only waveform is compu-
tationally inexpensive to calculate, but also most of the
signal power is expected to be contained in the inspi-
ral phase. Meanwhile, several studies investigated the
inconsistencies between the FM and the Monte Carlo
methods [1, 14, 15] for the frequency domain inspiral
waveforms, especially, Rodriguez et al. [15] (henceforth
denoted RFFM) performed a systematic comparison be-
tween the FM error estimates and the MCMC probabil-
ity density functions using plenty of nonspinning binary
systems. They found that the FM overestimates the un-
certainty in the parameter estimation achievable by the
MCMC in high mass region (m1 +m2 > 10M�), and the
disagreement increases with total mass. Most recently,
Mandel et al. [16] clearly explained the origin of the dis-
crepancy.

On the other hand, an effective Fisher matrix (eFM)
was recently developed by Cho et al. [17]. They showed
a good agreement between the eFM and MCMC uncer-
tainty predictions of mass parameters using a time do-

main inspiral waveform for a black hole-neutron star bi-
nary with masses of 10M� and 1.4M� [5, 6]. While the
FM computation is based on differentiating a waveform
with respect to its parameters at the maximum overlap
point, the eFM calculates the derivative by a fitting func-
tion to the local overlap surface surrounding the maxi-
mum point. If the infinitesimal region at the maximum
point well-represents the Gaussian likelihood surface of
the MCMC, these two methods are formally consistent
and both will give a good estimate of the MCMC prob-
ability density function. In this work, we apply the eFM
method to several nonspinning binary systems with the
same mass ranges as in RFFM. We compute the standard
deviations of mass parameters and compare with those
of FM (the result is summarized in Fig. 2). We find that
the divergent trend in fractional differences is consistent
with that of RFFM, and the error bounds in eFMs are
qualitatively in good agreement with their MCMC pre-
dictions. From our detailed numerical approach we con-
firm the origin of discrepancy of the FM discussed in [16],
and provide concrete examples showing an importance
of taking into account the template-dependent frequency
cutoff of the inspiral waveforms. We show that the eFM
method can overcome the limitation of the standard FM
by semi-anaytically differentiating the realistic overlap
surface which incorporates the template-dependent fre-
quency cutoff.

II. WAVEFORM MODEL AND CONTEXT

We use the TaylorF2 waveform that is implemented
in the LIGO Algorithm Library [18]. TaylorF2 model is
currently available up to 3.5 pN order in phase, but we
only consider 2 pN waveform for consistency with the
MCMC simulations in RFFM. The analytic function of
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TaylorF2 waveform is given by

h̃(f) = Af−7/6eiΨ(f), (1)

where the wave amplitude (A) consists of the binary
masses and five extrinsic parameters, i.e., the luminos-
ity distance of the binary, the sky position (RA, DEC),
the orbital inclination, and the wave polarization. For
simplicity, we assume an optimally located binary sys-
tem as in [17] and a fixed signal-to-noise ratio (SNR),
then all information of the waveform is determined by
the pN phase (Ψ) which consists of the chirp mass

(Mc = m
3/5
1 m

3/5
2 M−1/5), symmetric mass ratio (η =

m1m2M
−2), coalescence time (tc), and coalescence phase

(φc). Hence, we only consider these four parameters in
FM. Generally, since the extrinsic parameters are nearly
uncorrelated with the four parameters [15], removing the
extrinsic parameters from the 9×9 FM will not affect the
4× 4 covariance matrix consisting of {Mc, η, tc, φc}. The
low frequency limit for generation of waveform is fixed to
be 40 Hz for both signal and template. The maximum
frequency cutoff (fmax) is taken when the binary hits the
“innermost- stable-circular orbit (ISCO)”, that is defined
as a function of the total mass (M = m1 + m2) of the
system:

fmax = fISCO =
1

63/2πM
. (2)

The FM for a waveform h̃(λ) is defined by

Γij =

〈
∂h̃

∂λi

∣∣∣∣ ∂h̃∂λj
〉∣∣∣∣

λ=λ0

, (3)

where λ0 is the true value of each parameter and λi =
{Mc, η, φc, tc}. Since the pN phase of the TaylorF2 is an
analytic function of the parameters, the derivative can
be obtained analytically. The overlap between a signal
(h̃s) and a template (h̃t) is defined by

〈h̃s|h̃t〉 = 4Re

∫ ∞
0

h̃s(f)h̃∗t (f)

Sn(f)
df, (4)

where Sn(f) is a detector noise power spectrum, we adopt
a model for the initial LIGO noise power spectrum [19]
to provide concrete testbed results. Note that the inverse
Fourier transform will compute the overlap for all possi-
ble coalescence times at once [20]. In addition, by taking
the absolute value of the complex number we can maxi-
mize the overlap over all possible coalescence phases [20],
Here, as noted in [21], one should be confident that the
true maximum is never missed in the sufficiently small
tolerance level for the maximizing algorithm. To do this,
we apply a nearly continuous time shift by reducing a
step size when performing the inverse fast Fourier trans-
form. We found that, for dt ∼ 10−5 s, all numerical errors
in this work can be neglected.

The inconsistency between FM and MCMC was first
noted by [1], and robustly confirmed by RFFM from

plenty of simulations. The former [1] showed that allow-
ing the templates in MCMC to have η > 0.25 partially
reduced the discrepancy between the FM and MCMC for
symmetric mass systems. In RFFM, the authors also ex-
plored various possibilities but could not find a convinc-
ing explanation on the discrepancy. On the other hand,
another possibility caused by sharp frequency cutoff of
the inspiral waveform was shortly mentioned by [1], and
[22] briefly discussed the importance of this template-
dependent frequency cutoff in computing the difference
between two waveforms. Most recently, Mandel et al. [16]
performed in-depth study of this issue and clearly ex-
plained the origin of the discrepancy, that is mainly
caused by neglecting the template-dependent frequency
cutoff. Since the waveform is terminated at fISCO, the
accurate waveform (h̃′) should be given by

h̃′(f) = Af−7/6eiΨ(f)H(fISCO − f), (5)

where H is the Heaviside step function. In order to cal-
culate the full FM, Mandel et al. [16] included the pa-
rameter fISCO, which has been generally neglected in the
literature, by substituting Eq. (5) into Eq. (3). In this
case, however, as pointed out by the authors therein,
since the computation of the partial derivative must in-
clude the delta functions that are not square-integrable,
the full FM is ill-defined. Fortunately, for binaries with
M < 10M�, fISCO is sufficiently high such that it is out
of band and the H term can be neglected in computing
the FM. In summary, when using the inspiral-only wave-
forms, the standard FM is valid only when the binary
mass is less than 10M�.

III. LIKELIHOOD AND EFFECTIVE FISHER
MATRIX

In MCMC formalism, the posteriors can be obtained
without any singular behavior because the MCMC treats
the template-dependent frequency cutoff numerically. In
order to estimate the likelihood distributions of MCMC,
we investigate the overlap surface in detail. If we define
the normalized overlap by

P (h̃s, h̃t) =
〈h̃s|h̃t〉√
〈h̃s|h̃s〉〈h̃t|h̃t〉

, (6)

the log likelihood (lnL) of MCMC can be expressed
by [17],

lnL(λ) = −ρ2(1− P ), (7)

where ρ is the SNR. We assume a template ht and a sig-
nal hs with total masses Mt and Ms, and denote each
frequency cutoff by f tmax and fsmax. To test the depen-
dence of frequency cutoff, we briefly show two different
cases.
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FIG. 1: Comparison between two overlap surfaces with vari-
ous total masses. The contours indicate P = 0.995. PTI and
PTD correspond to the template-independent frequency cutoff
[Eq. (8)] and template-dependent frequency cutoff [ Eq. (9)],
respectively. The total mass is denoted in each plot and the
mass ratio (m2/m1) is 1/4 for all cases. Note that the dif-
ference between two overlap contours is more distinguishable
for more massive total masses.

(i) Template-independent frequency cutoff :
If we fix the frequency cutoff of the template to be
the same as fsmax independently of the total mass of
the template, the overlap in Eq. (6) becomes simply

PTI =
〈h̃s|h̃t〉|f

s
max

0√
〈h̃s|h̃s〉|f

s
max

0 〈h̃t|h̃t〉|f
s
max

0

, (8)

where “|ba” means the overlap integration should be
performed only in the frequency range from a to b.

(i) Template-dependent frequency cutoff :
In realistic overlap computations, such as in
MCMC, f tmax is not fixed but dependent on the
template mass, so generally f tmax 6= fsmax. In this
case the overlap should be

PTD =
〈h̃s|h̃t〉|min(ft

max,f
s
max)

0√
〈h̃s|h̃s〉|f

s
max

0 〈h̃t|h̃t〉|f
t
max

0

. (9)

where 〈h̃s|h̃s〉 is independent of the template, hence
always the same as that in PTI. If f tmax > fsmax,

then the numerator 〈h̃s|h̃t〉 is also the same but

〈h̃t|h̃t〉 in the denominator should be larger than
that in PTI, consequently PTD < PTI. On the
contrary, if f tmax < fsmax, then both 〈h̃s|h̃t〉 and

〈h̃t|h̃t〉 should be smaller but the numerator de-
creases more rapidly than the denominator, hence
again PTD < PTI.

There exists non vanishing difference between the two
overlaps (∆P = PTI − PTD) when f tmax 6= fsmax, which

turns out to be very important as the total mass in-
creases. To see a contribution rate of ∆P to the overlap
integration, we show the overlap contours for both PTI

and PTD with various total masses in Fig. 1. One can
see that the overlap contours are more broad for PTI,
and the difference between the two overlaps is more dis-
tinguishable for more massive total masses (see [16] for
more explanation).

The FM can be directly derived by the log likelihood
(lnL) [13, 17, 23], then from Eq. (7) we have

Γij = −∂
2 lnL(λ)

∂λi∂λj
= ρ2 ∂

2(1− P )

∂λi∂λj

∣∣∣∣
λ=λ0

. (10)

In this expression the overlap is not an analytic function,
hence we have to calculate the partial derivative numer-
ically. However, since the likelihood can be expressed
by a Gaussian distribution in the limit of high SNR, a
multivariate quadratic function best fits the local over-
lap surface. So if we find an analytic fitting function F
to the overlap P at the physically acceptable fitting re-
gions, the derivative can be analytically obtained. Using
this function, Cho et al. [17] defined the eFM by

Γeff = −∂
2F (λ)

∂λi∂λj

∣∣∣∣
λ=λ0

. (11)

In this work, we choose the fitting region as P > 0.995
(see Fig. 3 and Cho et al. [17] for details).

IV. RESULT

By applying the eFM method to the overlap PTD
1,

we explore various nonspinning binary models with the
component masses in 1M� ≤ m1,m2 ≤ 15M� and total
masses in M ≤ 20M� as in RFFM. For three different
values of the input mass ratio, m2/m1 = {1/10, 1/4, 1/2}
(i.e., η = {0.09, 0.16, 0.22}), we compare the eFM with
the FM in the same way as in RFFM, showing the frac-
tional differences between the FM and eFM standard de-
viations,

Λ ≡ σFM

σeFM
. (12)

Our results are summarized in Fig. 2. The FM and eFM
results are in good agreement with total masses below
10M� for both Mc and η. However, as the total mass
increases, the fractional differences also monotonically
increase, the FM overestimates the eFM standard de-
viations by a factor of 5 in Mc, and 8 in η at high masses

1 Mandel et al. [16] showed that the log likelihood has a sharp
peak at the origin, so is not differentiable. However, by choosing
a sufficiently large fitting scale (e.g., P > 0.995), the overall log
likelihood surface can be well approximated by a Gaussian, for
examples, see, [11, 17].
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FIG. 2: The fractional difference between the FM and eFM
standard deviations as a function of total mass. Note the sys-
tematic divergence at M > 10M� for both mass parameters.
This trend is consistent with results in RFFM, showing a good
agreement between the eFM and MCMC standard deviations
qualitatively.

(∼ 20M�). We find that the overall trend in this result is
consistent with that of RFFM (see, Fig. 1, therein), and
the eFM predictions are qualitatively in good agreement
with their MCMC results. Although we did not perform
a direct comparison between the eFM and MCMC, this
result indicates that the eFM can dramatically overcome
the limitations of the standard FM in high mass region
by exploring the realistic overlap surface (PTD) numeri-
cally. In this work, we only considered sufficiently asym-
metric binaries with m2/m1 ≤ 1/2, because in RFFM
the majority of their signals (i.e., 65 % over 200 simu-
lations) were selected with sufficiently asymmetric mass
ratio such that the 1−σ surface about the injected values
returned by the FM did not exceed the physical bound-
ary η = 0.25. While RFFM did not give any information
of η-dependence on the fractional difference Λ, our result
shows that the divergent trend of Λ is more pronounced
for more symmetric binaries. It would be interesting to
check this η-dependence using the MCMC simulations in
RFFM.

Finally, we briefly discuss the accuracy and limita-
tion of the eFM approach. If we neglect the effect of
template-dependent frequency cutoff, the eFM should
be consistent with the FM because both methods are
formally almost the same. We show a concrete exam-
ple in Fig. 3, where we calculate the eFM for both
cases of template-independent frequency cutoff (PTI) and
template-dependent frequency cutoff (PTD) using a bi-
nary with masses of 16M� and 4M�. First, the lower
thin lines are obtained by PTI. One can see that the Λ
approaches unity without any fluctuations independently
of the fitting region. This behavior indicates that the log
likelihood is well-shaped by a Gaussian and our fitting
function approximates the overlap surface accurately at
all fitting regions so that the FM and eFM agree for a
template-independent frequency cutoff. Second, the up-
per thick lines are obtained by PTD. In this case the
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FIG. 3: The fractional difference between the FM and eFM
standard deviations as a function of fitting region. We use
the binary with component masses of 16M� and 4M�. Pmin

indicates that the fitting region is P > Pmin. The upper thick
(lower thin) lines are obtained by PTD (PTI). The lower thin
lines approach unity without any fluctuations, indicating that
the FM and eFM agree for a template-independent frequency
cutoff. The upper thick lines increase with Pmin and tend to
fluctuate from Pmin = 0.998, beyond this the eFM is no more
valid for a template-dependent frequency cutoff.

sharpness of the log likelihood [16] becomes more pro-
nounced as Pmin approaches unity, so the quadratic fit-
ting function cannot well approximate the overlap surface
at a very small fitting region. In this work, the Λ tends
to fluctuate from Pmin = 0.998, beyond this the eFM is
no more valid for a template-dependent frequency cutoff.
(Note that the eFMs in Fig. 2 were obtained at a phys-
ically acceptable fitting region, Pmin = 0.995.) On the
other hand, one can find that the Λ explicitly increases
with Pmin. This implies that since the fitting region is
related with the SNR as 1 − Pmin ∼ 1/ρ2 in our eFM
approach [17], the effect of the template-dependent fre-
quency cutoff can be significant even for the low mass
systems if the SNR is sufficiently high (see [16] for more
explanation).

V. CONCLUSION

In this work, we demonstrated the inadequacy of the
standard FM for the frequency domain inspiral wave-
forms. In spite of the considerable computational ad-
vantages of inspiral-only waveforms [24], the FM is ac-
ceptable only at a range of M < 10M� for the initial
LIGO sensitivity, moreover this mass limit can be lower
for the Advanced LIGO because its sensitivity band will
be expanded more than the initial LIGO band in the
high frequency region [25]. Meanwhile, the eFM method
can overcome the limitation of the standard FM, hence
the inspiral-only waveforms are available for all mass
ranges. We applied the eFM to various nonspinning
binary models. By comparing our result with that of
RFFM, we found that the eFM is valid in all mass ranges
for estimating the parameter errors of MCMC. Recently,
O’Shaughnessy et al. [5, 6] showed a good agreement be-
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tween the eFM and MCMC using a time domain inspi-
ral waveform for a black hole-neutron star binary with
masses of 10M� and 1.4M�. It would be interesting to
investigate the consistency for more massive systems.
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