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Abstract. Gravitational waves are important messengers that carry information

about the multi-dimensional fluid dynamics in the central engines of core-collapse

supernovae. So far, most simulations use the so-called quadrupole formalism to extract

the waves from the matter dynamics, but recent results suggest that significant emission

may also occur at higher than quadrupole order. Comparing the relative sizes of

the first- and second-order terms would yield a quantitative measure of how well the

quadrupole moment represents the gravitational waves. In this report, I derive the

octupole order terms and express them in a manner suitable for simulation. These

correction terms were added to the simulations, and initial testing has been performed

on an excited Tolman-Oppenheimer-Volkoff star. We discuss future work needed for

conclusive assessment of their significance.

1. Introduction

The physics community is very interested in observing gravitational waves because we

hope that these waves will give us a new way of investigating astrophysical bodies.

Different parts of the electromagnetic spectrum give us different information about

the universe. Each time we have opened up an additional portion of that spectrum

for observation, we have gained new insight into astrophysics. Gravitational radiation

is a previously unexplored spectrum that astronomers can use to probe the cosmos.

For example, gravitational waves are expected to yield information about the internal

dynamics of sources (like supernovae) that light may not communicate. Another

advantage of this new spectrum over light is that gravitational waves interact very

weakly with the matter between the source and the detector meaning that little

information is lost in transit. In addition to increasing our understanding of celestial

bodies, gravitational waves provide tests of general relativity. Einstein’s theory predicts

the existence and behavior of gravitational waves and thus their detection would test

his theory. Although there are numerous candidate sources for gravitational waves, this

project is concerned with the waves produced by supernovae.
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Sometimes when stars reach the end of their lives they explode. If the explosion is

particularly bright, it is called a supernova. The exact mechanism of these explosions

is not fully understood. Since physicists cannot create supernovae in laboratories,

they create computer simulations of them to examine their behavior. Supernovae are

especially interesting because of they incorporate a wide variety of physical processes

including nuclear, electromagnetic, and gravitational interactions. For example, nuclear

physics plays an important role in the neutron stars created by supernovae; the evolution

of supernovae is greatly influenced by internal electromagnetic forces; and supernovae

undergo strong gravitational interactions and are predicted to produce gravitational

waves. Computer simulations indicate that when a supernova occurs it provides a

brief source of gravitational waves strong enough that they may be detected by distant

gravitational wave observatories. Observations of the gravitational radiation produced

by supernovae may give new understanding of exploding stars, although there have

never been any direct observations yet.

Current simulations calculate the gravitational wave emissions from supernovae

using the quadrupole formalism [1]. The quadrupole formalism consists of taking

a multipole expansion of the object observers use to measure distance and time

(called the metric perturbation). This expansion is similar to the Taylor series

f(x + ε) = f(x) + εf ′(x) + 1
2
ε2f ′′(x) + ... where the function f is analogous to the

metric perturbation and ε is a small parameter that, in our case, is analogous to the

length of the source divided by the distance between the source and the observer. In

the quadrupole approximation, the gravitational waves are calculated based on the first

term in the multipole expansion. Since the quadrupole moment is the first term in the

multipole expansion, the quadrupole moment is called a first-order approximation for

the gravitational waves.

The purpose of this SURF is to investigate the contribution to the gravitational

waves from the second-order multipole moments. These moments are called the

mass octupole and current quadrupole moments. These second-order corrections are

of interest because they provide a quantitative measure of how well the quadrupole

moment represents the gravitational radiation. Small correction terms indicate that the

gravitational waves are dominated by the contributions from the quadrupole moment.

However, if the correction terms are large compared to the first order approximations,

then the application of the quadrupole formalism to supernovae may need to be

reevaluated.

This report is organized as follows. In Section 2, I describe how to extract the

quadrupole and octupole order gravitational wave signal from a matter source. In

Section 3, the multipole moments obtained in the previous section are cast in a form

appropriate for simulation. Section 4 describes the implementation of the octupole order

moment in a test simulation.
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2. Gravitational waves beyond the linear approximation

The purpose of this section is to review the relaxed Einstein equations and obtain the

multipole moments of the gravitational radiation without assuming a flat spacetime

background. We begin by defining the metric perturbation hµν as

hµν = ηµν −
√
−ggµν , (1)

where g is the determinant of gµν . Unlike in linearized gravity where the background

spacetime is flat, we do not require that |hµν | � 1. Gravity plays an important role

in the physics governing stellar evolution, in particular supernovae are self-gravitating

sources with strong internal gravity compared to the gravity in the waves. For this

reason, we do not require that a flat background spacetime or that |hµν | � 1. The

Einstein equations are equivalent to the following two conditions called the relaxed

Einstein equations [2]

∂µh
µν = 0 , (2)

�hµν = −16π[(−g)T µν + tµν ] . (3)

Here � = ηµν∂µ∂ν is the flat spacetime d’Alembertian, T µν is the energy-momentum

tensor from Einstein’s equation, and

tµν = (−g)tµνLL +
1

16π

[
(∂βh

µα)(∂αh
νβ) + (∂α∂βh

µν)hαβ
]
, (4)

where tµνLL is the Landau-Lifschitz pseudotensor. (For a definition and description of

tµνLL see [2] page 118 and [3] page 466.) The relaxed Einstein equations (2) and (3) are

mathematically equivalent to Einstein’s equation; we rearranged the terms in Einstein’s

equation but no approximations were made. For convenience we define the effective

energy-momentum tensor T µνeff = (−g)T µν + tµν . Differentiating (3) with respect to xµ

and applying ∂µh
µν = 0, we see that T µνeff is conserved

∂µT
µν
eff = ∂µ[(−g)T µν + tµν ] = 0 . (5)

This conservation equation will be useful later when simplifying expressions for the

multipole moments.

It will also be useful to know the relative sizes of the components of T µνeff (see

[3] Exercise 20.5). The energy-momentum tensor from Einstein’s equation, T µν ,

represents the matter distribution while tµν represents the energy-momentum from the

gravitational field. Since gravitational fields are massless, their mass-like components

tµ0 should be much smaller than the mass-like components from T µ0. Hence, we will

take tµ0 � T µ0. We will take T ij and tij to be of the same order of magnitude, for which

we provide the following heuristic argument [4].

Consider a spinning dumbbell, that is, two large weights connected by a rod in the

middle. Furthermore, let tµν be the energy-momentum tensor of the rod and let T µν be

the energy-momentum of the weights. The mass of the rod is much less than the mass

of the weights so t00 � T 00 as we argued above. The momentum of the rod is very small
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compared to the momentum of the weights again because the rod is far less massive than

the weights. In other words, t0j � T 0j as we argued in the previous paragraph. (Note

that the total momentum of the dumbbell would be zero, but the inequality holds for any

small piece of the dumbbell.) Finally, we claim that the pressure and shear components

of the rod and weights are roughly comparable, that is, we claim tij ∼ T ij. Consider

the point where the rod contacts the weight. The reason the dumbbell doesn’t break

is that the pressure from the rod on the weight at the contact point must balance the

pressure from the weight on the rod, i.e. tij and T ij are of the same order of magnitude.

The exact motion of the dumbbell is irrelevant to the argument as is the shape of the

object. The important feature is that we have a set of heavy objects (the weights in

the example above) connected or supported by a set of light objects (the rods). This

analogy carries over to the stars we wish to simulate where the matter of the star plays

the role of the weights and gravity plays the part of the rods holding the matter together.

There is a small caveat in applying this argument to a supernova, namely that the star

is exploding. However, we will assume that the motion is not too rapid so that tij and

T ij are still comparable in size. Since the evolution equation (3) for tij is non-linear, we

want to avoid calculating it. The point of these heuristic arguments is that if we can

re-express hµν in terms of T 0µ
eff then we can take T 0µ

eff = (−g)T 0µ and avoid calculating

tµν . In this sense, we use t00 � T 00 and t0j � T 0j but we never explicitly use how tij

and T ij are related in size except that we suspect that we cannot ignore tij in favor of

T ij.

We can solve the wave equation (3) for hµν using a Green’s function. The solution

is the non-linear integral equation

hµν(t,x) = 4

∫
d3x′

1

|x− x′|
T µνeff (t− |x− x′|,x′) , (6)

where x is the position of the observer. The radiative parts of hµν can be obtained by

taking the transverse-traceless (TT) projection of hµν . Only the spatial components hij

of hµν contribute to radiation so we only need to consider the case where (µ, ν) = (i, j).

We obtain the multipole moments by expanding |x−x′| and |x−x′|−1 in power series in

terms of x′/x� 1 and taking a Taylor series of T µνeff . After performing these expansions

(see the Appendix), the two largest contributions to hTTµν are

hijTT =
4

x
[Sij + nk∂tS

ijk]TTt−x , (7)

where n = x̂, the subscript t− x means that the energy-momentum tensors need to be

evaluated at the retarded time t− x, and the tensors Sij and Sijk are defined as

Sij =

∫
d3x′ T ijeff , and Sijk =

∫
d3x′ x′kT ijeff . (8)

The term Sij represents the mass quadrupole moment while Sijk represents the

combination of the mass octupole and current quadrupole moments. We will also refer

to Sijk as the second order moment and the octupole moment. Computing Sij and Sijk

as they are written above involves calculating the tij components of T ijeff . We prefer to
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avoid calculating tij because the expression for tij is complicated but more importantly

the inclusion of tij makes (6) a non-linear equation.

3. Multipole moments suitable for simulation

In this section, we derive expressions for Sij and Sijk that do not involve tij. Since

these expressions make no reference to tij, they are appropriate to include in computer

simulations. The general method for eliminating tij from the multipole moments is to

apply energy-momentum conservation ∂µT
µν
eff = 0 and then integrate by parts.

Before re-expressing Sij we should rewrite the conservation of energy-momentum.

Applying tµ0 � T µ0 to the conservation of energy-momentum equation 0 = ∂µT
µj =

∂nT
nj + ∂tT

0j we obtain

∂nT
nj
eff + ∂t(−gT 0j) = 0 . (9)

Using the previous equation, we can convert Sij into a more useful form as follows:

Sij =

∫
d3x′ T ijeff

=

∫
d3x′ T ijeff +

∫
d3x′ x′i

[
∂nT

nj
eff + ∂t(−gT 0j)

]
=

∫
d3x′

[
T ijeff + x′i∂nT

nj
eff

]
+ ∂t

∫
d3x′ (−g)T 0jx′i

=

∫
d3x′ ∂n(x′iT njeff ) + ∂t

∫
d3x′ (−g)T 0jx′i .

(10)

In the last line, the integral over ∂n(x′iT njeff ) can be converted to a surface integral

over x′iT njeff = x′i(−gT nj + tnj). We will now show that the surface integral vanishes.

Since the source is isolated, T ij is zero outside the source so it does not contribute to

the surface integral. However, the surface integral of x′itnj contains terms involving

hnj and x′i, both of which are generally non-zero outside the source. Far from the

source, however, the metric is nearly given by the Newtonian line element ds2 =

−(1 + 2Φ)dt2 + (1 − 2Φ)δijdx
idxj so that hµν is of order Φδµν . If the mass of the

source is M and the distance to the source is R then hµν ∼ Φ ∼ M/R. According to

(4), we know that tij is of order (∂αh
µν)(∂βh

σρ) ∼ M2/R4. Finally the surface integral

of x′itnj contains a factor of R2 from the surface area, a factor of R from x′i, and a

factor of M2/R4 from tnj so the surface integral goes like M2/R which vanishes for

large radii. Another way to conclude that the surface integral vanishes is to put the

surface of integration so far from the source that disturbances to the background metric

due to the presence of the star will never reasonably reach the integration surface in the

life of the star or in the time it takes the gravitational waves to reach the observer. For

example, putting the integration surface at a radius equal to the distance light travels

in the age of the universe should guarantee that the surface integral is zero. Whatever

justification we choose to use, we will assume that the surface integral in (10) goes to
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zero leaving us with

Sij = ∂t

∫
d3x′ (−g)T 0j . (11)

To reformulate the mass octupole and current quadrupole moment we perform a

similar procedure. Consider

Sijk =

∫
d3x′ T ijeffx

′k

=
1

2

∫
d3x′ (T ijeffx

′k + T ikeffx
′j + T ijeffx

′k + T jkeffx
′i − T ikeffx′j − T

jk
effx

′i)

=
1

2

∫
d3x′ (Tmieff∂m(x′jx′k) + Tmjeff∂m(x′ix′k)− Tmkeff∂m(x′ix′j))

= −1

2

∫
d3x′ ([∂mT

mi
eff ]x

′jx′k + [∂mT
mj
eff ]x

′ix′k − [∂mT
mk
effx

′ix′j)

=
1

2

∫
d3x′ (∂tT

0i
effx

′jx′k + ∂tT
0j
effx

′ix′k − ∂tT 0k
effx

′ix′j).

(12)

On the fourth line we integrated by parts and dropped the boundary terms. On the last

line we used conservation of the energy-momentum tensor in the form ∂tT
0j
eff = −∂mTmjeff .

Using the fact that t0i � T 0i we have

Sijk =
1

2
∂t

∫
d3x′ (−g)(T 0ix′jx′k + T 0jx′ix′k − T 0kx′ix′j). (13)

Combining (7), (11), and (13) we get

hijTT =
4

x

[
∂t

∫
d3x′ (−g)T 0jx′i

+ nk
1

2
∂2t

∫
d3x′ (−g)(T 0ix′jx′k + T 0jx′ix′k − T 0kx′ix′j)

]TT
t−x

.

(14)

Since hij involves only integrals over the matter source T ij, this formulation of the metric

perturbation is appropriate to include in computer simulations. Since the quadrupole

moment was already implemented in the simulation, I only added the octupole moment

(13) to the code. In order to actually implement the octupole-order moment, we must

perform the TT projection and choose an energy-momentum tensor.

In order to facilitate taking the TT projection of the octupole moment let us define

Qij = nk

∫
d3x′ (−g)(T 0ix′jx′k + T 0jx′ix′k − T 0kx′ix′j) (15)

so that the octupole moment contribution to hijTT is 2x−1∂2t [Q
ij]TTt−x. If the source is

at the origin of a spherical coordinate system and the observer is located at (x, θ, φ)

where θ is the angle down from the z-axis, then the contribution to h+ and h× from the
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octupole-order moment are given in terms of Qij by

h+ =
1

x
∂2t [Q

11(cos2 θ cos2 φ− sin2 φ)

+Q12 sin 2φ(1 + cos2 θ)

−Q13 sin 2θ cosφ

+Q22(cos2 θ sin2 φ− cos2 φ)

−Q23 sin 2θ sinφ

+Q33 sin2 θ]

(16)

and

h× =
1

x
∂2t [−Q11 cos θ sin 2φ

+ 2Q12 cos θ cos 2φ

+ 2Q13 sin θ sinφ

+Q22 cos θ sin 2φ

− 2Q23 sin θ cosφ]

(17)

where nk = (sin θ cosφ, sin θ sinφ, cos θ).

Lastly, we need to specify the energy-momentum tensor T µν of the source. Following

[1], [5], and [6] we treat the star as a fluid and set

T µν = ρhuµuν + Pgµν (18)

where h = 1+ε+P/ρ is the specific enthalpy, ε is the specific internal energy of the fluid,

P is the pressure of the fluid, ρ is the rest mass density of the fluid, and uµ is the four

velocity. Since matter sources generate more gravity than pressures or energy densities

we may rewrite the energy-momentum tensor neglecting P and ε. Again following [1],

[5], and [6] we set g = −1 and choose

T µν =
√
γWρuµuν (19)

where uµ = (1,
√
γ11v1,

√
γ22v2,

√
γ33v3), γij is the three-metric, γ is the determinant

of the three-metric, vi is the three-velocity, and W is the Lorentz factor (1− v2)−1/2.

4. Excited TOV star test simulation

The simulations performed by the Ott group use a collection of in-house and open-source

code based on the EinsteinToolkit [7]. After including the octupole order correction

in the simulation code, I ran the update simulation on a simple test case. However,

as we will see shortly, the test gave relatively little information about the octupole

contribution. The test consisted of simulating a Tolman-Oppenheimer-Volkoff (TOV)

star where the star’s density was perturbed slightly in the shape of a l = 2, m = 0

spherical harmonic. The simulation was originally developed by the Ott group in [8].

Gravitational wave extraction was performed using the Regge-Wheeler-Zerilli-Moncrief

curvature method, the quadrupole moment, and the octupole moment. Figure 1 shows



Higher-order gravitational wave emission in core-collapse supernovae 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

400

200

0

200

400

600
W

av
es

tr
ai

n 
h

+
R

 (c
m

)
Excited TOV equitorial h+ gravitational wave signal

Quadrupole moment
Curvature method

Figure 1. Plot of the gravitational wave emission h+ at the equator of the perturbed

TOV star. The vertical axis is h+R where R is the distance to the observer. The large

gravitational wave signal predicted by the Regge-Wheeler-Zerilli-Moncrief curvature

method at early times is due to initial numerical instabilities and is unphysical. There

appears to be a scaling factor difference between the two extraction methods that may

be due to the choice of velocity variable in the quadrupole moment.

the plus polarization of the gravitational wave signal as a function of time at the equator

of the perturbed TOV star. The graph shows good agreement between the curvature

method and the quadrupole moment except at early times where the curvature method

predicts an unphysically large gravitational wave signal due to numerical errors in

the initial conditions. At later times, the two methods appear to differ by roughly

a proportionality constant which may be due to the choice of four velocity variable

present in the implementation of the quadrupole moment.

While this simulation did test the differences between the quadrupole and Regge-

Wheeler-Zerilli-Moncrief extraction methods, it did not yield much information about

the octupole moment. Because the density perturbation is a l = 2, m = 0 (quadrupolar)

spherical harmonic, the octupole moment is suppressed. While h+R was of order 102cm

for the quadrupole moment (where R is the distance to the observer), h+R for the

octupole moment was noisy and never exceeded 10−2cm. Clearly, the implementation

of the octupole moment needs to be tested on a less symmetric setup.
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5. Conclusion and further work

In this report we derived an expression (7) for the metric perturbation correct to octupole

order. Then we re-expressed the quadrupole and octupole moments in forms more

suitable for simulation, see equation (14). The octupole moment was implemented in

the Ott group simulations. The quadrupole moment was then compared to the Regge-

Wheeler-Zerilli-Moncrief extraction method in the simple case of an excited TOV star.

However, the test simulation did not yield much information about the octupole moment

as the symmetry of the simulation suppressed that moment. The implementation of the

octupole moment can be tested on other less symmetric TOV stars. After testing the

octupole moment, we may move on to more computationally expensive simulations like

core collapse supernovae.
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Appendix

In this appendix we wish to extract the two leading terms in the multipolar expansion

of hij. We begin with (6) which we repeat here for convenience:

hij(t,x) = 4

∫
d3x′

1

|x− x′|
T ijeff (t− |x− x′|,x′) (A.1)

We may expand |x−x′| and |x−x′|−1 in terms x′/x which is small because the size

of the source is much smaller than the distance between the source and the observer.

Since we want hij correct to two terms, we should expand |x − x′| and |x − x′|−1 to

order x′2/x2. To perform these expansions, we recall that

|x− x′|2 = x2 − 2x · x′ + x′2 = x2

[
1− 2x̂ · x̂′

(
x′

x

)
+O

(
x′

x

)2
]
. (A.2)

To second order the binomial approximations are (1+ε)±1/2 = 1± 1
2
ε+O(ε2). Applying

the binomial approximations with ε = −2x̂ · x̂′(x′/x) we get

|x− x′| = x− x x̂ · x̂′
(
x′

x

)
+ x O

(
x′

x

)2

(A.3)

and

1

|x− x′|
=

1

x
+

1

x
x̂ · x̂′

(
x′

x

)
+

1

x
O
(
x′

x

)2

. (A.4)
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We may now expand |x− x′|−1T ijeff (t− |x− x′|) to order x′2/x2 as

1

|x− x′|
T ijeff (t− |x− x′|) =

{
1

x
+

1

x
x̂ · x̂′

(
x′

x

)
+

1

x
O
(
x′

x

)2
}

× T ijeff

(
t− x+ xx̂ · x̂′

(
x′

x

)
+ xO

(
x′

x

)2
)
.

(A.5)

We Taylor expand of T ijeff around t − x to order x′2/x2 where the small parameter in

the expansion is xx̂ · x̂′
(
x′

x

)
+ xO

(
x′

x

)2
to get

1

|x− x′|
T ijeff (t− |x− x′|) =

{
1

x
+

1

x
x̂ · x̂′

(
x′

x

)
+

1

x
O
(
x′

x

)2
}

×
{
T ijeff (tr) +

(
xx̂ · x̂′

(
x′

x

)
+ xO

(
x′

x

)2
)
∂tT

ij
eff (tr)

+O

(
xx̂ · x̂′

(
x′

x

)
+ xO

(
x′

x

)2
)2}

=
1

x
T ijeff (tr) +

(
x′

x

)[
1

x
x̂ · x̂′T ijeff +

1

x
xx̂ · x̂′∂tT ijeff (tr)

]
+O

(
x′

x

)2

=
1

x
T ijeff (tr) + x̂ · x̂′ 1

x

(
x′

x

)[
T ijeff (tr) + x∂tT

ij
eff (tr)

]
+O

(
x′

x

)2

(A.6)

where tr = t−x. We know that ∂tT
ij
eff is of order T ijeff/∆t where ∆t is the time it takes

for light to cross the source. Hence, c∆t = ∆t is of order x′ so that x∂tT
ij
eff ∼ x/x′T ijeff .

Since x/x′ � 1 we conclude that

1

|x− x′|
T ijeff (t− |x− x′|) =

1

x
T ijeff (tr) + x̂ · x̂′ 1

x

(
x′

x

)
x∂tT

ij
eff (tr) +O

(
x′

x

)2

(A.7)

Inserting this into the expression for hTTij we obtain

hijTT = 4

∫
d3x′

[
1

x
T ijeff (tr) + x̂ · x̂′ 1

x

(
x′

x

)
x∂tT

ij
eff (tr) +O

(
x′

x

)2
]TT

(A.8)

which is equivalent to (7). The first term in the integral represents the mass quadrupole

moment while the second term in the integral represents the contributions from the

mass octupole and current quadrupole moments.
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