

Kalman filter based state estimation of the thermal state of a reference cavity

Mentor-Dr. Aidan F. Brooks, Co-mentor-Dr. Mattew Abernathy, Dr. Vivien Raymond

By-Reetika Dudi

Contents of the talk

- Background of the problem
- Motivation
- Thermal laws
- Cryogenic Cavity
- Our model of the cavity
- Kalman filter
- Results
- Conclusion

LIGO

- LIGO?-Laser interferometer Gravitational Wave observatory.
- Reference Cavity-Pre stabilized lasers are used to give frequency and intensity stabilized light to the interferometer.

Motivation

- Reference cavities are dependent on temperature
- Thermal gradients in test masses are dependent on-
- > Thermal Compensation system
- > Heat flow
- > Self absorption of interferometer power
- Thermal gradients cause thermal lenses which disrupt control systems.
- We need to know the thermal state to control the thermal gradients

LIGO

Modelling of thermal effects

- Built 1D finite element models of an optic such as silica glass rod in-
- 1. MATLAB
- 2. COMSOL
- 3. Analytically, and compare them.
- Built 2D axisymmetric models of a glass cylinder.
- Built state space formalism based Kalman filter models.

$$X_k = F_K * X_{k-1} + B * U_{k-1}$$

Where X_k is state matrix at step k, F_K is propogation matrix and $B * U_{k-1}$ is input matrix.

Models will be useful in studying and estimating the state of LIGO test masses.

Remainder of Thermal laws

Conduction

$$P_{con} = -kA \frac{dT}{dz}$$

k=Thermal conductivity of the material dT=Temperature gradient A=cross section area dz=distance between two elements q=heat flux density

• Radiation/absorption

$$P_{rad} = \in \sigma AT^4$$

∈=emissivity of material σ=Stefan Boltzmann's Constant A=Surface area T=temperature of the material

Convection

Ignored

❖ We have to **linearize** these equations in order to solve.

Cryogenic cavity!

LIGO

Cryogenic cavity

Model assumptions:

- Conduction through plastic is neglected
- West cavity is neglected
- Top and bottom alum blocks exchange energy through conduction process only.
- Assuming emissivity is equal to 1, initially.
- Inputs are ambient temperature and power of the heater.

* We make these assumptions to make the problem simple.

State Vector Elements

Temperature of each element is our state vector.

$$X_k = T_3$$

$$T_4$$

Inputs(external influences)

Two types of inputs-

- Controlled input-heater
- Monitored Input-ambient temperature.

Ambient Temperature

Measurements

Temperature sensors give outputs.

LIGO Jui state space model of the cavity

Building models

- Linearized the equations for various state
- Built Kalman filter formalism based on state space model.
- Parameter estimation(Future work).

Pure simulation

State space model of pure simulation

Kalman filter

Schematic diagram of Kalman filter

Kalman filter

- Kalman filter estimates the next state of the system with least variance
- 1. By weighting the inputs.
- 2. By weighting the outputs (measurements).
- Applying Kalman filter formalism to our model to get more precise state estimation

Results and comparison

Estimation of unknown variables

Conclusion

- Produced State space model of the reference cavity.
- Applied Kalman filter model using real data.
- Identified that parameters need to be updated in our model(Future work)

Thank you!