

Cryogenic Test Mass Work at Stanford

Brett Shapiro Stanford cryo people: Brian Lantz, Tim MacDonald, Dakota Madden-Fong (summer '13 and '14)

LIGO III cryo work distribution

- Caltech cryogenic reference cavities; direct thermal noise measurements
- Jena/Glasgow/Moscow mechanical loss
- MIT high emissivity coatings
- KAGRA 20 K sapphire suspensions
- INPE Brazil Cryogenic multi-nested pendulum
- Stanford optical coatings (Riccardo Bassiri's talk); cryogenic technology G1400926 - 26 Aug 2014 - Stanford

Adapted from Nicolas Smith-Lefebvre

LIGO III Cryosystem

Integrated Experiment Beginning

Stanford Heat Shield

Initial Cool Down Cold Link – 2 Designs

Pros and Cons of LN₂ pipe vs. Cu cable

Cu cable

Pros:

- No fluid to make noise
- No LN₂ pumping mechanism
- No risk of N₂ leaks

Cons:

- Low heat transfer
- Cryo refrigerator must be placed near feedthrough
- High bulk: stiffness, weight, etc
 - Q = K(A/L)ΔT
 - 1. Big L means big A
 - Can reduce A by making cold end less than LN₂ (77 K). E.g. Cryomech's PT407 can pull 25W at 55 K.
 - Minimize stiffness by using lots of this wires, but wire dia must be > electron m.f.p.
- Thermal conductivity decreases when wire dia becomes smaller than electron m.f.p.
- Hysteresis
 - Lots of small wires sliding past each other
- High difficulty in minimizing seismic shorting
 - Minimize using:
 - 1. Lots of thin wires
 - 2. Intermediate masses along length

LN₂ pipe

Pros:

- High heat transfer
- Low bulk
- Moderate difficulty in minimizing seismic shorting
- Length of pipe in vacuum not an issue for net heat transfer (longer pipes do require more pressure to push fluid)
- Vibrating cryorefrigerator can be placed further from vacuum feedthrough.

Cons:

- Complex LN₂ pumping mechanism
- Requires its own seismic isolation stage.
- Risk of leaking
- Fluid flow could contribute noise
 - Minimize by:
 - 1. Cooling the LN₂ so it doesn't boil
 - 2. Ensuring laminar flow

Cryogenic Cu Braids

Copper braid made from oxygen Free copper wire 0.071 mm dia - Price is for 50 metres		
Nominal area (mm²)	Typical Wire Size (mm)	Ex works Liverpool UK GBP
0.44	0.071	100.00
1.27	0.071	100.00
4	0.071	180.00
6	0.071	200.00
8	0.071	240.00
35	0.2	1,000.00
50	0.2	1,400.00

Oxygen Free round Copper braid

Copper Braid Products Ltd. - http://www.copperbraid.co.uk/oxygen_free.php

Test mass cool down

G1400926 - 26 Aug 2014 - Stanford

LN₂ Piping System

G1400926 - 26 Aug 2014 - Stanford

Test mass cool down

Steady state cooling with LN₂

G1400926 - 26 Aug 2014 - Stanford

Steady state cooling with LN₂

G1400926 - 26 Aug 2014 - Stanford

Steady state cooling with LN₂

G1400926 - 26 Aug 2014 - Stanford

Steady state cooling with a Cu cable

LIG)

G1400926 - 26 Aug 2014 - Stanford

Steady state heat through a Cu cable

LIG

G1400926 - 26 Aug 2014 - Stanford

Flow-Induced Vibration Experiment

Viton balls to for damping and horizontal isolation

Flow-Induced Vibration Experiment

VIRC

G1400926 - 26 Aug 2014 - Stanford

G1400926 - 26 Aug 2014 - Stanford

G1400926 - 26 Aug 2014 - Stanford

G1400926 - 26 Aug 2014 - Stanford

G1400926 - 26 Aug 2014 - Stanford

G1400926 - 26 Aug 2014 - Stanford

Flow-induced pressure measurement

Seismic noise on BSC-ISI Stage 2 Rz

G1400926 - 26 Aug 2014 - Stanford

Noise projected on BSC-ISI Stage 2 Rz

G1400926 - 26 Aug 2014 - Stanford

LN₂ pipes vs cu cables trade-offs

Backups

G1400926 - 26 Aug 2014 - Stanford

Future work

Next generation experiment using the Stanford ETF (experimental test facility)

- More realistic LIGO setup
- Measure temperature drifts on LIGO hardware, e.g. blade springs
- Measure seismic noise of nitrogen delivery and/or copper cables
- Test heat shield design
 - Black coatings
 - baffles
- Test a variety of cooling techniques
- System integration: how to make all this stuff work together
- Implement in stages
 - Cables/hoses first test seismic noise
 - Heat shield and suspended optic
 - Install cryogenic refrigerator
 - Cavity?
 - Anything we haven't thought of yet

Stage 2 to Test Plate TF

Water pipe pressure to vibration coherence

G1400926 - 26 Aug 2014 - Stanford

Other slides to add

- Pressure to velocity TF
 - Maybe use this to get around noise floor
- Summary slide?
- Conclusions?
- Update future work
- Backups:

How to get a LN2 Hose to ST2

Extra stage, A, in parallel with stage 1 carries hose. Stage A is actuated to follow stage 2 so the hose has does not short seismic isolation. Stage A sensor noise is set by the stage 2 isolation requirement (so it follows stage 2 and not the sensor noise).

In vacuum vibration measurement (not visible)

Suspension for mechanical isolation of pipe shaking

Eddy current damping for suspension

Other Problems To Solve

- Flexibility of liquid N₂ hoses or Cu cables
- Temperature/height control of blade springs
- Test mass temperature control
- Test mass temperature tolerance
- How to measure temperature?
 - Measure acoustic modes Young's modulus is temp. dependent
 - Measure test mass diameter combined with CTE data gives temperature
 - Infrared camera

LIGO

- Emissivity of optical coatings
- Lossiness of emissive coatings
- Good emissivity estimates/measurements of Si?
- Power absorption in Si and Si coatings (ppm, W, etc)?
- How noisy is flowing laminar liquid nitrogen: seismic, Newtonian?
- Optical coating thermal noise at 124 K
- How to actuate the test mass is the ESD out?
- Can we put viewports in the heat shield?

Heat shield mode 1 = 102 Hz

Can increase this frequency with a stiffening ring at the opening of the cylinder.

Heat shield mode 2 = 145 Hz

Can increase this frequency with a stiffening ring at the opening of the cylinder.

Steady state shield temperature

G1400926 - 26 Aug 2014 - Stanford

Influence of LN₂ pipe spacing

Liquid Nitrogen Pipe Spacing (log)

G1400926 - 26 Aug 2014 - Stanford

48

Radiation cool down with shield

Power (log)

Time (log)

Concept for a lower natural frequency

50