

Brief Introduction to Advanced LIGO Suspensions

Brett Shapiro LAAC Session 24 August 2014

My experience

2001-2005 Undergrad: Penn State Engineering Science

2005-2012 PhD: MIT Mechanical Engineering

 Worked on the controls, modeling, assembly, and testing of the prototype quadruple pendulums at the LASTI facility.

2012-now postdoc: Stanford University

- Still some involvement in the suspensions group
- Mostly working on cryogenic technologies for 3rd generation LIGO observatories

BSCs – core optics

hydraulic external preactive isolation isolator (HEPI) (one platform (2 stages stage of isolation) of isolation)

quadruple pendulum (four stages of isolation) with 24 Aug 2014 - Stanford - G1400964

SR2, HAM4 – LHO 11 Feb 2014

HAM Small Triple Suspension (HSTS)

SD

Purpose

- PRM, PR2, SRM, SR2
- MC1, MC2, MC3

Location

• HAM 2, 3, 4, 5, (8, 9, 10, 11)

Control

- Local damping at M1
- Global LSC & ASC at all 3

Sensors/Actuators

- 🔵 BOSEMs at M1
- AOSEMs at M2 and M3
- Optical levers and interferometric signals on M3

Naming: L1:SUS-PRM_M1...

- Documentation
- Final design review T0900435
- Controls arrangement E1100109

Optical Sensor ElectroMagnet (OSEM)

Birmingham OSEM (BOSEM)

24 Aug 2014 - Stanford - G14 BOSEM Schematic

Advanced LIGO OSEM (AOSEM)

- modified iLIGO OSEM

Magnet Types (M0900034) • BOSEM – 10 X 10 mm, NdFeB , SmCo 10 X 5 mm, NdFeB, SmCo • AOSEM – 2 X 3 mm, SmCo 2 X 6 mm, SmCo 2 X 0.5 mm, SmCo

Quadruple Suspension (Quad)

Purpose

- Input Test Mass (ITM, TCP)
- End Test Mass (ETM, ERM) Location
- H1 BSC 1, 3, 9, 10
- H2 BSC 7, 8, 5, 6
- L1 BSC 1, 3, 4, 5

Control

- Local damping at MO, RO
- Global LSC & ASC at all 4

Sensors/Actuators

- BOSEMs at M0, R0, L1
- AOSEMs at L2
- Opt. levs. and interf. sigs. at L3
- Electrostatic drive (ESD) at L3 Documentation
- Final design review T1000286
- Controls arrang. E1000617

H1ITMX LHO alog 12211 10 June 2014

De-install for silica fiber installation

24 Aug 2014 - Stanford - G1400964 H1 ITMX – 30 July 2014 - LHO alog 13044

12.1

Damping filters in practice

Cavity control

Resources on control techniques

- Damping
 - Loop shaping and modal damping P1200009
 http://scitation.aip.org/content/aip/journal/rsi/83/4/10.1063/1.4704459?ver=pdfcov
 - Modal damping P1200057
 - Global damping P1400085, G1200774
- Cavity control (aka hierarchical control)
 - G1200632
 - T1000242
 - Using a blended actuator technique, using experience from the SEI group's sensor blending: G1200692

Back Ups

Five Suspension Designs

LIGO

014 - Stanford - G1400964

LIGO Output Mode Cleaner Double (OMCS)

Location

• HAM 6, (12)

Control

 Local – damping at M1 (true for all SUS's)

Sensors/Actuators

• BOSEMs at top mass

Top mass naming convention

• L1:SUS-OMC_M1... site subsystem unit stage 2 3 3.4 2

(LF) RT M1 M2 ntics

In use during S6

Documentation

- Final design review T0900060
- HAM SUS controls arrangement E1100109

Local coordinates

TransMon Double

LIGO

LIGO HAM Large Triple Suspension (HLTS)

Purpose

• PR3, SR3

Location

• HAM 2, 5, (8, 11)

Control

- Local damping at M1
- Global LSC & ASC at all 3 Sensors/Actuators
- BOSEMs at M1
- AOSEMs at M2 and M3
- Optical levers and interferometric signals on M3 Naming: L1:SUS-SR3_M1...

Documentation

- Final design review T1000012
- Controls arrangement E1100109

Ligo Beamsplitter/Folding Mirror (BSFM)

Purpose

• BS, (FMX and FMY)

Location

- Beamsplitter BSC 2, (4)
- (Fold Mirror BSC 6, 8)

Control

- Local damping at M1
- Global LSC & ASC at M2

Sensors/Actuators

- O BOSEMs at M1 and M2
- Optical levers and interferometric signals on M3

Naming: L1:SUS-FMX_M1...

Documentation

- Final design review T080218
- Controls arrangement E1100108

24 Aug 2014 - Stanford - G1400964

Global Cavity Control (LSC)

LIGO

Parallel Control of Cavity Length

- With parallel feedback, changing one loop requires changing the others to account for changes in gain and stability.
- The stability of all stages are coupled

Hierarchical Control of Cavity Length

Quad MEDM Overview Screen

24 Aug 2014 -

Quadruple Suspension ESD

LIGO

The electrostatic drive (ESD) acts directly on the test ITM and ETM test masses.

- ± 400 V (ΔV 800 V) ≈ 100 µN
- Each quadrant has an independent control channel • Common bias channel over all quadrants

Quadruple Suspension ESD

 $F = \alpha \Delta V^2$

 α = coupling coefficient, depends on geometry

ΔV = differential voltage across traces

Linearization occurs in the control!

Cartoon diagram illustrating the working principle of the ESD. The upper rectangle represents the test mass containing two polarized molecules; the lower rectangle represents the reaction mass bearing two electrodes. Surface plot shows electrical potential with electric field lines shown in cyan (John Miller PhD thesis, P1000032).

Quadruple Suspension (Quad)

Pulling a fiber at MIT 7 May 2010

Newly welded monolithic quad at MIT 11 May 2010

aLIGO Noise Budget

