The AEI 10m Prototype Facility

Tobin Fricke

AEI Hannover for the 10m Prototype team

August 25, 2014

LIGO-G1400991

What is it?

An Experiment

A suspended in-vacuum Fabry-Perot Michelson interferometer designed to reach the **Standard Quantum Limit** at 200 Hz with 100g mirrors.

A Facility

A **general-purpose environment** for experiments requiring ultra-low-displacement noise, highly stabilized laser light, high vacuum, controlled displacements, up to ~ 11 m beams.

Examples: coating thermal noise measurements, GRACE-like spacecraft testing.

Vacuum system

Volume: 100 m³ - Luxuriously large tanks!

Best pressure ~1e-7 mbar

aLIGO CDS

all-digital controls!

very flexible.

P Active

₩ Active

□ Bar

est done (Measurements 1 / Averages 100)

Gerrit Kühn and Michael Born

- - X

3628

3813

Advanced LIGO 35W Laser

- Coupled into vacuum by photonic crystal fiber
- In-vacuum pre-mode-cleaner (PMC)
- We'll use 8 Watts for initial experiments

Seismic Isolation

AEI SAS

Soft passive plant...

- 1 stage vertical, 1 stage horizontal
- 100 mHz horizontal resonance
- 270 mHz vertical resonance
- 400 mHz tilt resonance

...but with the usual complement of sensors and actuators

- 6X inertial sensors: monolithic accelerometers (Horiz); geophones (Vert)
- 6X displacement sensors: LVDTs
- feed-forward from ground motion (STS2 seismometer)
- 6X voice-coil actuators

Poster by Gerald Bergmann

Seismic Isolation

Poster by Gerald Bergmann

Vertical passive table performance

In-vacuum table inertial motion is compared with ground motion. The predicted motion is calculated using only one fitted parameter, the center of percussion plateau. Geophone noise

dominates below 0.07 Hz and above 30 Hz.

Low frequency active control

Vertical blending at 0.01 and 0.30 Hz Horizontal blending at 0.04 and 0.15 Hz

U.G frequencies: Vertical: ~5-15 Hz Horizontal: ~0.5-2 Hz

Suspension Platform Interferometer (SPI) - design

Idea: link the table platforms via sensing and feedback

Mach-Zender for high dynamic range.

Uses **LISA phasemeter** and monolithic construction.

Achieved sensing noise: 10 nm/√Hz below 10 mHz 10 pm/√Hz above 1 Hz + frequency noise?

> Poster by Sina Köhlenbeck

Suspension Platform Interferometer (SPI) - photo

Suspension Platform Interferometer (SPI) - plot

Frequency Reference Cavity (RefCav)

Triangular cavity, F=3000, L=21m

Uses heavier mirrors (850g) to reduce radiation pressure noise

Triple suspensions

 $G = 10^6 \text{ at } 100 \text{ Hz}$

LIGO TTFSS

Fine alignment/locking when we get back to Hannover!

Poster by Manuela Hanke

Thermal Noise Interferometer

Two-mirror short suspended cavity with tunable cavity length.

Goal: investigate new coatings, scaling of thermal noise with spot size, homogeneity, etc.

Status: cavity locked for the first time three weeks ago (with feedback to laser)

Poster by Tobias Westphal ("Fu")

Monolithic Suspensions

- Three pendulum stages
- Two vertical blade-spring stages
- Lower stage all glass for lower thermal noise

Builds on experience from GEO and aLIGO.

60 mm X 0.3 mm !

First two production builds almost ready for installation.

Tunable configuration

Class. Quantum Grav. 29 (2012) 075003

C Gräf et al

Christian Gräf, CQG 29 (2012) 075003

Single Arm Test

- Single, impedance-matched cavity
- Tunable stability
- Goal: Learn to cope with marginal stability
- then: move to full FP-Michelson

Tobias Westphal Gerald Bergmann Sina Köhlenbeck Manuela Hanke Vaishali Adya Patrick Oppermann

Tobin Fricke Group leaders Harald Lück Ken Strain

Conor Mow-Lowry

Undergrads
Phillip Koch
Robin Kirchhoff
Johannes Lehmann
Michael Winter
Robin Hothan
REU students

Many others! Gerrit Kühn Benno Wilke AEI Staff Visitors

Maybe you??

Where are we?

Capabilities

Big vacuum system, fast pumps, fast turn-around time 35W laser source Three in-vacuum large seismic isolation tables (2 installed)

Intra-table stabilization / control with SPI Iodine-stabilized laser frequency reference Full Advanced-LIGO CDS system Frequency reference cavity (L=~20m, F=3000)

Outstanding mechanical & electronics support Local expertise

Intensity stabilization (target: RIN 10^(-9)/rtHz)

