Building the aLIGO Noise Budget

Christopher Wipf, LIGO-Caltech for the aLIGO NoiseBudget team

{Adam Mullavey, Alexa Staley, Anamaria Effler, Denis Martynov, Jeffrey Kissel, Keiko Kokeyama, Kiwamu Izumi, Nicolas Smith-Lefebvre, Rana Adhikari, Yuta Michimura, ...}

LVC Meeting Stanford, August 2014 LIGO-G1401000

Overview

- Goals: design-based noise budget control model first
- Modeling: building up to DRFPMI new toolbox for Simulink
- Status update: latest plots validation
- Summary

How We Use Noise Budgets

- Flexible modeling to explore the design parameter space
- Deal with fundamental noise limits only
- Establish sensitivity goals

- Mix of measurements and modeling; design is fixed
- Catalog all relevant noise terms in order to explain the observed noise

Frequency [Hz]

Triage mechanism

10

200

How We Use Noise Budgets

- Flexible modeling to explore the design parameter space
- Deal with fundamenta noise limits only
- Establish sensitivity goals

Design-Based Noise Budget

- Flexible modeling; design is still a moving target
- Catalog all relevant noises
- Build and combine NBs for subsystems, intermediate configurations

Realistic Noise Budget

- Mix of measurements and modeling; design is fixed
- Catalog all relevant noise terms in order to explain the observed noise
- Triage mechanism

How We Make Noise Budgets

Identify noise curves needed for the NB plot. For each curve do the following:

Make the noise source's spectrum (model or measure)

Implement a transfer function to calibrate the noise as a strain (model or measure)

- If you make a simple change to the system, which calibration TFs need to change?
- How do you check consistency vs. a measured open loop gain or other TF?
- How do you reuse all this work for another noise budget or other commissioning task?

How We Make Noise Budgets

Build a good control model first!

Locate each point in the model where noise couples. This determines calibration TFs.

Make spectra and project through the model

LIGO NOISEBUDGET MODEL

LIGO NOISEBUDGET MODEL

Building Blocks

- Optickle/Lentickle
- LISO/Elektrotickle
- GWINC
- State-space suspension models

Simulink Noise Budget Toolbox

- "FlexTF" pluggable frequency responses
 - Replace any block with a numerical TF (no need to fit time-domain models)
- "LiveParts" constants, matrices, and filters
 - Parameters automatically sync from the digital control system at specific GPS time
- Drill-down hierarchical plots
 - Organize noise curves to highlight what matters while keeping full detail

Simulink Noise Budget Toolbox

- Optickle-Simulink bridge
 - Input: Optickle model
 - Output: auto-generated
 Simulink block
 - Includes all TFs and quantum noises
 - Contributed by Nicolas Smith-Lefebvre
- Filter module GUI
 - Visualize and edit filter states as in MEDM
 - contributed by Matt Evans

Noise Budget Status Update

- Runs at both sites
- Runs remotely, with some hand-holding (grabbing filter files from DAQ SVN)
- 126 noise terms calibrated to displacement
- 436 live parameters loaded from digital system
- Still early days plenty of commissioning and SimCommissioning left to do

Model Validation

DARM open loop gain (LLO alog 13789) [unexplained gain factor 0.3]

DARM — Top Level

Assessment / What's Next

Feature	Rating	Ways to Upgrade
Quantum noise	ОК	Optickle model
Actuator noise	ОК	SUS model; use measured DAC noise
Sensor noise	ОК	Optickle model
Local damping noise	Start	Live update damping filters
Intensity noise	Start	Better modeling or use measured
Seismic noise	ОК	Add sensor noise of GS13s
Thermal noise	Good	Distribute GWINC thermal noise onto all optics
Squeeze film damping	Start	Wrong for ITMs
Frequency noise	Start	Auxiliary DOF (IMC)
SUS model	ОК	Check ESD; quads/triples inconsistent style
Auxiliary DOFs + ASC	Start	General modeling and validation
Optickle model	ОК	Check sensor light levels; live update DARM offset
LSC analog/digital	Good	CM servo modeling
Validation	Start	TF measurements to localize errors

Summary

New noise budgets for Advanced LIGO: design-based, and centered on the control model Successful ALS, DRMI models built — and they still nensity live on as part of the aLIGO model Noise budget toolkit for Simulink https://svn.ligo.caltech.edu/svn/aligonoisebudget Models and measurements starting to match up Exciting days ahead!