
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

===============================
LIGO SCIENTIFIC COLLABORATION

Technical Note LIGO-T1400587-v1- 2014/09/16

Deriving a MATLAB model for the

quad fiber violin modes

Brett Shapiro

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100

Fax (509) 372-8137 Fax (225) 686-7189
E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.org/

http://www.ligo.org/

LIGO-T1400587-v1-

1 Introduction

This note derives a state space model for the fused silica fiber violin modes for a single fiber
vibrating along the axis of the interferometer (longitudinal DOF). It then shows how to
connect this model to an existing quadruple suspension state space model. This is for use
with the MATLAB model.

It is hoped that the derivations throughout this document are complete and sufficient to
understand how the fiber dynamics have been modeled. For brevity, some algebraic steps
have been left out, but the information is complete enough that the reader could check these
if they wished.

Section 2 lists the notation this document uses, Section 3 derives the state space matrices for
the fiber one by one, and Section 4 shows how to connect this fiber model to the suspension.
Section 5 lists the MATLAB commands for building a quad model with violin modes.

2 Notation

• Bold capital letters denote matrices: M .

• Bold lower case letters denote column vectors: x.

• Non-bold letters, lower case or upper case, denote scalars: m, L.

3 Derivation of the fiber state space dynamic equations

It is assumed the fiber vibrates along the x axis defined in Fig. 1. In MATLAB it is
convenient to model this fiber in a state space form. This form requires breaking the model
into discrete states. There are two choices here illustrated in Fig. 1, a spatial discretization
or a modal discretization. The modal discretization is convenient because each mode is
decoupled from the others and because the frequency of each mode can be represented
exactly with Eq. (11). The modal format also minimizes the number of states required
because each mode only requires two, one for displacement and one for velocity. The spacial
discretization is convenient because the deflections of the fiber endpoints can be represented
exactly. However, the mode frequency will have error, converging to zero as the number of
states goes to infinite.

We choose to follow the modal format of the state space equations (1) and (2).

[
q̇
q̈

]
2N×1

= A2N×2N

[
q
q̇

]
+B2N×2

[
u0
uL

]
(1)

f2×1 = C2×2N

[
q
q̇

]
+D2×2

[
u0
uL

]
(2)

q represents the modal displacements of the fiber. It is an N by 1 column vector, where
N is the user chosen number of modes to include in the model. u0 and uL are the fiber

page 1

LIGO-T1400587-v1-

d3
C.M.

PUM

d4
C.M.

Test mass

d3
C.M.

PUM

d4
C.M.

Test mass

Discrete
point masses

Modes
x

z

spatial discretization modal discretization

L

Figure 1: Two models for a silica fiber between the penultimate mass (PUM) and test mass.
The fiber is of length L between the orange endpoints. Left: spatially discretized fiber model.
The fiber is modeled as a set of N equal point masses spaced evenly along the length of the
fiber, under tension T . Right: modally discretized fiber model. The fiber is modeled as a
set of N vibrational modes, under tension T .

endpoint displacements in the x direction at the PUM and test mass respectively. f is the
2 by 1 column vector of reaction forces (along x) that the fiber exerts on suspension at its
endpoints. The following derivation will proceed to solve for the A, B, C, and D matrices.

3.1 A matrix and mode frequencies and shapes

We begin by modeling the fiber as a taut continuous string in the spatial coordinate system

ρü− T ∂
2u

∂x2
= g[u0, gL] (3)

where ρ is the mass per unit length of the fiber, T is the tension of the fiber and u = u[t, z]
is the transverse deflection of the fiber along the x axis. g is the function that transforms
the endpoint deflections u0 and uL to forces on the fiber. We will consider these endpoint
deflections in Section 3.2.

page 2

LIGO-T1400587-v1-

For the homogeneous equation

ρü− T ∂
2u

∂x2
= 0 (4)

Assume a given vibrational mode has a solution of

u[t, z] = a sin (ωt) sin (λz) (5)

where ω is the mode frequency in units of rad/s, λ is the spacial mode frequency (inverse of
the wavelength) in units of rad/m, and a is the amplitude of the mode in m.

The boundary conditions are
u[t, 0] = u[t, L] = 0 (6)

Plugging the second boundary condition into the assumed solution solves for λ

sin (λL) = 0 (7)

λ =
nπ

L
, n = 1, 2, 3, ...etc (8)

We can now relate the mode frequency ω to λ by plugging the solution into the equation of
motion (4). This gives us

− ρω2a sin (ωt) sin (λz) + Tλ2a sin (ωt) sin (λz) = 0 (9)

Simplifying by canceling common terms

− ρω2 + Tλ2 = 0 (10)

ω = λ

√
T

ρ
=
nπ

L

√
T

ρ
(11)

Since there are infinite vibrational modes, the full solution will be a sum of all the modes.

u[t, z] =
∞∑
n=1

an sin (ωnt) sin (λnz) (12)

Here an is the amplitude of mode n, and sin (λnz) is the mode shape of mode n. Or to
simplify the notation,

u[t, z] =
∞∑
n=1

qn sin (λnz) (13)

where
qn = an sin (ωnt) (14)

qn is the displacement of mode n, and the mode shape sin (λnz) can be thought of as the
transformation from mode n to the spatial coordinates of the fiber. Since each mode of
vibration is independent, we can write the equation of motion for each mode as if it were a
single DOF oscillator.

mm,nq̈n + km,nqn = 0 (15)

page 3

LIGO-T1400587-v1-

where mm,n is the modal mass for mode n, km,n is the modal stiffness. We can derive the
A matrix from this equation. For this matrix, we do not need to know the modal mass or
stiffness because we can simply divide out the modal mass, resulting in

q̈n + ω2
nqn = 0 (16)

where

ωn =

√
km,n

mm,n

(17)

which has already been defined in Eq. (11).

We can then write the A matrix as

A2N×2N =

[
0N×N IN×N
−Ω2 0N×N

]
(18)

where Ω2 is the N by N diagonal matrix listing ω2
1 through ω2

N .

3.2 B matirx for accepting endpoint displacements as inputs to the fiber

Since the fiber endpoint displacements are along the x axis, we must transform them from
this spatial coordinate to the modal coordinates. To this end, it is convenient to return to
the spatial coordinates and discretize Eq. (3) with the left side of Fig. 1 in mind. For good
agreement with the modal form, we start out considering the limits where N →∞, but we’ll
see eventually that once in the modal form N does not need to be infinitely large.

In the discrete spacial form, Eq. (3) becomes

Mü+Ku = Ke

[
u0
uL

]
(19)

The mass matrix M is diagonal with each diagonal element representing a point of mass m
along the fiber length.

M = mIN×N (20)

where

m =
ρL

N
(21)

The stiffness matrix K is a symmetric matrix where k represents the stiffness between
adjacent point masses. This matrix can be derived by inspection of Fig. 1 by displacing
each mass by 1 unit in turn and observing the forces requires to hold that configuration
(think f = Ku, where u is all zeros except for a single element). For example, a unit
displacement on mass 1 (at the top) requires 2k of force. The force required to hold the
mass below in its zero position is −k, the reaction force exerted on mass 1. The third mass
and those below require no force because the second has not moved. This gives you column
1. Repeat for columns 2 to N .

K = k


2 −1 0 0 ...
−1 2 −1 0 ...
0 −1 2 −1 ...
0 0 −1 2 ...
...


N×N

(22)

page 4

LIGO-T1400587-v1-

where

k = N
T

L
(23)

The endpoint stiffness matrix Ke is derived in a similar way by displacing the endpoints and
observing the forces exerted on the point masses.

Ke = k


1 0
0 ...
... 0
0 1


N×2

(24)

The conversion to the modal form is then realized through the transformation

u = Φq̂ (25)

where q̂ is the modal deflection of the spatially discretized fiber and Φ is the matrix of
eigenvectors or mode shapes.

Φ =
[
φ1 φ2 φ3 ... φN

]
N×N (26)

Note, as N →∞ then q̂ → q and each eigenvector φn → sin(λnz).

Plugging Eq. (25) into Eq. (19) we get

MΦ¨̂q +KΦq̂ = Ke

[
u0
uL

]
(27)

Then multiply on the left by the matrix transpose of the eigenvectors

ΦTMΦ¨̂q + ΦTKΦq̂ = ΦTKe

[
u0
uL

]
(28)

The notation is then simplified to modal form

Mm
¨̂q +Kmq̂ = ΦTKe

[
u0
uL

]
(29)

where Mm is the diagonal matrix of modal masses and Km is the diagonal matrix of modal
stiffnesses,

Mm = ΦTMΦ (30)

Km = ΦTKΦ (31)

To work towards a state space form that is compatible with the A matrix from Section 3.1,
we multiply on the left by M−1

m .

¨̂q + Ω̂2q̂ = M−1
m ΦTKe

[
u0
uL

]
(32)

where,
Ω̂2 = M−1

m Km (33)

page 5

LIGO-T1400587-v1-

is a diagonal matrix with the squared mode frequencies (in rad/s) of this spatially discretized

system. Note, as N →∞ then Ω̂2 → Ω2.

Next we derive the matrix product M−1
m ΦTKe. For Mm, it turns out that all modal masses

are the same. In the limit of a continuous system, the modal mass mn is given by

mm =

∫ L

0

ρ sin2 (λnz)dz (34)

mm =
ρ

2

∫ L

0

[
1− cos

(
2nπ

L
z

)]
dz (35)

mm =
1

2
ρL− 1

2
ρL

∫ L

0

cos

(
2nπ

L
z

)
dz (36)

The integrand in the second term is harmonic, so the integral goes to zero. Thus,

mm =
1

2
ρL (37)

Note, if you derive the modal mass from the discrete equation Mm = ΦTMΦ, you will see
that you get a value equal to 1

N
ρL, smaller by a factor of 0.5N (hint ΦTΦ = I). However, for

N larger than just a few, Km is also too small by the same factor (MATLAB observations).
All we need is to scale both sides of (19) by 0.5N to make it consistent with the continuous
string results. This has no impact on our derivation, so we ignore it moving forward.

The problem with Φ is that we do not know exactly what it is because it depends on whatever
value was chosen for N . However, since Ke is only nonzero in the top left and bottom right
corners, we only need to approximate the first and last elements for each eigenvector.

Recall that for large N , φn is a good approximation for the true mode shape sin (λnz). The
first element in eigenvector n represents the displacement of first (top) point mass for mode
n. Therefore,

φ1,n ≈ sin (λn
L

N
) ≈ nπ

L

L

N
(38)

Similarly, for the last (bottom) point mass of the fiber,

φN,n ≈ (−1)n−1
nπ

L

L

N
(39)

The alternating minus sign is there because the even numbered modes displace the last point
mass in the negative x direction (see the right side of Fig. 1).

If we then multiply Eq. (38) by k = N T
L

from Eq. (23), we get

φ1,nk ≈ T
nπ

L
(40)

Similarly for Eq. (39),

φN,nk ≈ (−1)n−1T
nπ

L
(41)

page 6

LIGO-T1400587-v1-

Note that N cancels out. This fact, and that the modal mass is independent of N means
that N does not need to be a large value to produce a good B matrix. It need only be large
enough to contain the modes of interest.

The full matrix product is then,

M−1
m ΦTKe = T

2π

ρL2


1 1
2 −2
3 3
4 −4
... ...
N (−1)N−1N


N×2

(42)

where N now refers to the desired number of modes rather than the number of discrete point
masses, since it need not be arbitrarily large.

The B matrix is then

B2N×2 =

[
0N×2

M−1
m ΦTKe

]
(43)

3.3 C matrix and the fiber reaction forces on the suspension

The A matrix gives us the fiber dynamics, and the B matrix receives the displacement
inputs from the endpoints. The final piece we need to fully couple the fiber system to a
suspension is the reaction forces of the fiber endpoints, where it will pull on the PUM and
test mass. We use the C matrix to compute these.

The reaction force of the fiber at an endpoint in the x direction is equal to the fiber tension
T times the slope of the fiber. For the top endpoint reaction force for mode n, fn,0

fn,0 = Tqn
∂u

∂z
sin (λnz)|z=0 (44)

fn,0 = Tqnλn cos (λnz)|z=0 (45)

fn,0 =
nπ

L
Tqn (46)

Similarly, for the mode n bottom force fn,L

fn,L = −Tqn
∂u

∂z
sin (λnz)|z=L (47)

The minus sign is so odd modes pull the endpoints in the same direction and even modes
pull in opposite directions.

fn,L = (−1)n−1
nπ

L
Tqn (48)

page 7

LIGO-T1400587-v1-

Therefore the C is

C2×2N =
π

L
T

[
1 2 3 ... N
1 −2 3 ... (−1)n−1N

02×N

]
(49)

3.4 D matrix and the subtraction of DC reaction forces on the suspension

The fiber model now has all the pieces required to attach it to another system: its own
internal dynamics (A), inputs (B), and outputs (C).

However, this fiber model is intended to attach to an existing quadruple suspension model.
This model already computes some of the fiber forces. If it did not, then the test mass would
not be connected to the PUM. Thus, to not double count these forces, we must subtract
them off from this new model, using the D matrix.

The existing suspension model does not contain any dynamic behavior of the fibers (thus
this note). So the only overlap between this new fiber model and the existing suspension
that must be subtracted is the static reaction forces the fiber exerts on the suspension.

The calculation of these static forces is straight forward. We start with the state space form
in Eq. (1) and set all time derivatives to zero.

[
0N×1
0N×1

]
= A

[
q

0N×1

]
+B

[
u0
uL

]
(50)

We then solve for q. [
q

0N×1

]
= −A−1B

[
u0
uL

]
(51)

Multiplying q through the C matrix gives us the static forces. We need to subtract the
forces however, so we employ −C giving us D,

D2×2 = CA−1B (52)

This completes the derivation of the fiber state space system.

4 Connecting the fiber to the suspension

Now that the fiber model has its own state space system, it must be connected to the
suspension. This is done through a transformation of the fiber model inputs and outputs.
For the inputs, we convert the suspension displacements to fiber endpoint displacements. For
the outputs, we convert the fiber endpoint forces to forces and torques on the suspension.

Consider pitch and yaw of the PUM and test mass. Fig. 1 shows us that there is a lever
arm of d3 between the PUM center of mass and the top endpoint. Similarly, the test mass
has a lever arm of d4. Denoting a positive pitch as counterclockwise rotation in Fig. 1, we

page 8

LIGO-T1400587-v1-

can transform suspension pitch and x displacements into endpoint displacements,

[
u0
uL

]
=

[
1 −d3 0 0
0 0 1 d4

]
x3
θ3
x4
θ4

 (53)

where x3 and θ3 are the x and pitch displacements of the PUM respectively, and x4 and θ4
are the x and pitch displacements of the test mass respectively.

The fiber endpoint reaction forces f1 and f2 are then transformed to forces and torques on
the suspension, 

F3

τ3
F4

τ4

 =


1 0
−d3 0

0 1
0 d4

[f1f2
]

(54)

where F3 and τ3 are the force and torque on the PUM respectively, and F4 and τ4 are the
force and torque on the test mass respectively.

5 Building the model with violin modes in MATLAB

The relevant scripts, as of the writing of this doc, live in the svn at

...SusSVN/sus/trunk/QUAD/Common/MatlabTools/QuadModel Production

The MATLAB script that includes all features for the quad model is

generate QUAD Model Production.m

To call a model that includes violin modes, the command is

quadModel = generate QUAD Model Production(freq vec,‘fiber’,svnDir,0,0,[],0,[],1,3)

The first input specifies the vector of frequencies over which to evaluate the frequency re-
sponse. The second specifies that the model is a fiber model. The model must include fibers
to compute fiber violin modes. The third input specifies the SVN directory, which is simply
the directory listed above. The fourth through eighth inputs represent other features, in-
cluding damping which are set off here. The second to last input specifies that violin modes
are requested here. To add modes, this input is either 1 or ‘true’. The final input is optional.
It specifies the desired number of modes, starting from the fundamental mode. If left empty,
the default is two. The example here is a request for 3.

The function adds violin modes by calling

makequad with modal fibers.m

One can call this function directly as well.

quadModel = makequad with modal fibers

With no inputs this function compiles a model with the default 2 violin modes. One can
specify a different number of modes with an optional input.

page 9

	Introduction
	Notation
	Derivation of the fiber state space dynamic equations
	A matrix and mode frequencies and shapes
	B matirx for accepting endpoint displacements as inputs to the fiber
	C matrix and the fiber reaction forces on the suspension
	D matrix and the subtraction of DC reaction forces on the suspension

	Connecting the fiber to the suspension
	Building the model with violin modes in MATLAB

