Advanced LIGO Commissioning Overview

GRITTS Seminar, October 15, 2014

Daniel Sigg

History of Integrated Testing

- Integrated testing phases interleaved with installation
- Complementary division between LHO and LLO
 - Designed to address biggest areas of risk as soon as possible
 - > H1 focused on long arm cavities; L1 worked outward from the vertex

Current Timeline

G1401237-v1

Project locking milestone

L1 Locking Statistics

LIGO

Sensitivity Improvements

LIGO

Compare with Enhanced LIGO

L1 Noise Budget & Range

Subsystem highlights

- Pre-Stabilized Laser (PSL) commissioned
- □ Input Mode Cleaner (IMC) has been fully commissioned
- □ All seismic isolators (SEI) work as designed and are fully automated
- All suspensions (SUS) work as designed and are fully automated
- □ Interferometer locking
 - Routine at LLO
 - Immanent at LHO
- Interferometer Automation
 - Significant progress

Commissioning Focus on the First Observational Run

□ Target sensitivity

- ➤ Binary neutron star coalescence range of 40–80 Mpc, each detector
- ➤ Important frequency band: 20–300 Hz
- ➤ Input laser power: 25 W

■ Nominal duration

> 3 months

□ Run start

> Some time in 2015, perhaps mid 2015

Run Planning

Electro-Static Charging & Actuation

 Each End Test Mass has electro-static actuation, via electrodes on the adjacent reaction mass

- 'static' charge will fluctuate and create nois
- Charge is not uniform; makes it hard to lower the bias for low noise
- □ Work in progress: source of charging not clear
 - Discharging procedure with ion-gun
 - But: recharging after a few hours/days
 - Ion pumps?
- Noise from ESD needs to be reduced: need factor of 3-5x for now
 - Via bias reduction, or lower noise signal path, or both

Laser intensity noise & coupling

□ Laser intensity stabilization is done in 2 stages

- Second stage detects a sample of the IMC transmitted light in vacuum, to reduce vibration related sensing noise
- Initial versions of the in-vacuum sensor had several design & assembly problems; essentially non-functional

Intensity noise coupling

Transfer function to OMC readout does not ...

- Increased RIN coupling is due to the carrier higher order modes creates at the dark port by the ITM lenses
- OMC matching plays a significant role, since it will convert higher order modes in input to TEM00 mode in output

Challenges of Lock Acquisition for Advanced LIGO

- Narrow locking range
- Low noise, weak actuators
- □ Advanced LIGO has
 5 length DOFs:
 the cavities are formed
 by the same optics,
 so the five DOFs are coupled

 Locking one cavity can contaminate the error signal used to lock another cavity

LIGO

End Station Servos

Common Mode Control

0170120171

MIGO

Differential Mode Control

G1401237-V1 21

LIGO

ull Lock Sequence

LIGO

Common Arm Offset Reduction

TRX

CARM offset	DARM signal	Actuation
10nm - 100pm	ALS DIFF	ETMX - ETMY
100pm - 0pm	AS45Q	ETMX - ETMY

TRY

Should be able to use AO from beginning

DRMI Length Control

	Error signal	Actuation
PRCL	REFL_27_I	PRM, PR2
MICH	REFL_135_Q	BS
SRCL	REFL_135_I	SRM, SR2

Exact Frequencies

Location	Freq. (MHz)	Deviation	Comment
Main Laser	0	$2\Delta f_{main}$	set by main laser VCO
Reference Cavity	316.8	fixed	frequency reference
Fiber	0	fixed	shifted back
X-arm laser	-78.92	Δf_x	down-shifted
Y-arm laser	78.92	Δf_y	up-shifted
Differential beat note	157.84	$\Delta f_y - \Delta f_x$	controlled to zero
Common beat note	-78.92	$2\Delta f_{main} - \Delta f_x$	offset from resonance

- □ All frequency measured ±1 Hz
- □ Ambiguous: 1 IR resonance for 2 GR resonances
- Depends somewhat on green alignment

Self-Amplified Lock

- Combine a "noisy" wide range sensor (ALS) with good narrow range sensor (REFL)
- Once cavity power builds up, REFL gain will dominate

In Conclusion

- Initial commissioning has progressed quickly
 - > The only significant delay was due to the green coating issue.
 - Arm Length Stabilization successfully decouples arm cavities from the interferometer for lock acquisition.
 - > Arm Length Stabilization noise well understood.
 - Advanced LIGO can be locked with Arm Length Stabilization!
- □ Next up: get H1 caught up with L1
 - > H1 will test some ideas for improving the locking scheme
 - ➤ H1 has the improved second stage detector for the laser intensity stabilization in place
 - > Full lock immanent
- □ L1 has reached the Advanced LIGO project milestone for integration: 2 hour lock

Suspension violin modes

- □ Test mass suspension violin modes, at 500 Hz, are excited several orders of magnitude above thermal
- We do not understand why they are vibrating so much
- Prevents us from engaging full whitening on the GW readout channels: excess ADC noise
- Need to actively damp the modes, using interferometer signal to feed back to the quad penultimate stages
 - Should be doable, but it is tricky: 16 very high Q modes in a narrow frequency range
 - Some progress recently on L1 with the DRMI

Glitches from digital-to-analog converters

- DAC transitions are accompanied by a step
 - Largest at the zero-crossing (all bits flip), next largest at 1/4 & 3/4 of full scale
 - DAC needs calibration after restart!
- Observed to create low frequency noise in the recycling cavity signals

Also an issue for ESD feedback, at ¾ range transition

Parametric Instabilities

Combination of high stored optical power and low mechanical loss could cause an instability

- □ Latest analysis (S Gras) suggests we are more prone to PI than we thought
 - MC simulation with distribution of RoC's and acoustic mode frequencies of test masses
- Start to look for risky modes even before they become unstable (UWA idea)

Seasonal variability of ground motion

LLO ground motion over 500 days

So far, commissioning has been during periods of low microseism

Impact of higher ground motion

- Arm Length Stabilization could suffer
 - Arm cavity finesse at 532 nm is much lower than desired:
 - ETMs have too large a transmission at 532 nm
 - Finesse: 5-10 (actual) vs. 100 (desired)
 - Makes the cavity locking point much more sensitive to alignment and alignment fluctuations
- Replacing the ETMs could be the best solution
 - > ETMs now coming out of LMA have the right 532 nm transmission
 - Downside would be a 2 month hit for replacement