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Within the next few years, Advanced LIGO and Virgo should detect gravitational waves (GWs)
from binary neutron star and neutron star–black hole mergers. These sources are also predicted to
power a broad array of electromagnetic transients. Because the electromagnetic signatures can be
faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the grav-
itational wave observations. Markov chain Monte Carlo (MCMC) methods for gravitational-wave
parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-
MCMC sky localization algorithm that takes just seconds to produce probability sky maps that are
comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it
possible to search electromagnetic counterparts of compact binary mergers.

PACS numbers: 04.80.Nn, 04.30.Tv, 02.50.Tt

The Laser Interferometer GW Observatory (LIGO;
[1, 2]) has just begun taking data [3] in its ‘Advanced’
configuration. The two LIGO detectors will ultimately
increase their reach in volume within the local Universe
by three orders of magnitude as compared to their initial
configurations through 2010. They form the first parts of
a sensitive global GW detector network, soon to be aug-
mented by Advanced Virgo [4] and later by the Japanese
KAGRA facility [5, 6] and LIGO–India [7].

The most readily detectable sources of GWs include bi-
nary neutron star mergers, with 0.4–400 events per year
within the reach of Advanced LIGO at final design sen-
sitivity [8]. These binary systems are not only efficient
sources of GWs, but also potential sources of detectable
electromagnetic (EM) transients from the aftermath of
the tidal disruption of the neutron stars (NSs). Metzger
and Berger [9] argue that the most promising EM coun-
terparts are the hypothesized optical/infrared “kilono-
vae” powered by the radioactivate decay of r-process ele-
ments synthesized within the neutron-rich ejecta. These
are expected to be faint, red, and peak rapidly, reach-
ing an absolute magnitude of only MR ∼ −13 within a
week, though rising several magnitudes brighter in the
infrared [10].

Several mechanisms could make the kilonovae brighter,
bluer, and hence more readily detectable [11, 12], but
peak even earlier, within hours. If, as is widely believed
[13–16], binary neutron star (BNS) mergers are indeed
progenitors of short gamma-ray bursts (GRBs), then a
small (due to jet collimation) fraction of Advanced LIGO
events could also be accompanied by a bright optical af-
terglow, but this signature, likewise, would peak within
hours or faster.

Adding to the challenge of detecting a faint, short-lived
optical transient, there is an extreme mismatch between
the sky localization accuracy of GW detector networks,

∗ leo.singer@ligo.org
† larryp@caltech.edu

∼10–500 deg2 [17–27], and the fields of view (FOVs) of
1–8 m-class optical telescopes. Wide-field optical tran-
sient facilites such as BlackGEM (0.6 m/2.7 deg2), the
Zwicky Transient Facility (ZTF; 1.2 m/47 deg2) [28], the
Dark Energy Camera (DECam; 4 m/3 deg2), or the Large
Synoptic Survey Telescope (LSST; 8.4 m/9.6 deg2), oper-
ated in “target of opportunity” mode, may be able to tile
these large areas rapidly enough to find the one needle in
the haystack that is connected to the GW event. How-
ever, prompt and accurate GW position reconstructions
will be of the utmost importance for guiding the selection
of fields to observe.

The final science run of the initial LIGO and Virgo
instruments saw the first joint search for GW and elec-
tromagnetic emission from compact binaries. This in-
volved several advances in the GW data analysis [29],
including the first real-time matched-filter detection
pipeline (MBTA, Multi-Band Template Analysis; [30]),
a semi-coherent, ad hoc rapid triangulation code (Tim-
ing++), and the first version of a rigorous Bayesian
MCMC parameter estimation code (LALINFERENCE;
Aasi et al. 31)—all in service of the first search for X-ray
[32] and optical [33] counterparts of GW triggers, by a
consortium of facilities. Despite the technical achieve-
ments in the GW data analysis, there was an undesir-
able tradeoff between the speed as well as accuracy of the
rapid localization and the full parameter estimation: the
former could analyze a detection candidate in minutes,
whereas the latter took half a day; the latter decreased
the area on the sky by a factor of 1/20 over the former
but took 1000 times as long to run [26].

The success of EM follow-up of LIGO events will de-
pend critically on disseminating high quality sky local-
izations within a timescale of minutes to hours. To that
end, we have devised a rapid and accurate Bayesian sky
localization method that takes mere seconds to achieve
approximately the same accuracy as the full MCMC anal-
ysis. Our key insights are the following:

1. Nearly all of the information in the GW time series
that is informative for sky localization is encap-
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sulated within the matched-filter estimates of the
times, amplitudes, and phases on arrival at the de-
tectors. To infer the position and distance of a GW
event, we only have to consider three numbers per
detector rather than a densely sampled strain time
series per detector.

2. The matched-filter pipeline can be treated as a
measurement system in and of itself. Just like the
strain time series from the detectors, the resultant
times, amplitudes, and phases have a predictable
and quantifiable measurement uncertainty that can
be translated into a likelihood function suitable for
Bayesian inference.

3. The Fisher information matrix will provide clues as
to suitable forms of this likelihood function. Recent
GW parameter estimation literature has largely re-
jected the Fisher matrix,1 but this is mostly on the
grounds of the abuse of the related Cramér–Rao
lower bound (CRLB) outside its realm of valid-
ity (i.e., at low to moderate signal-to-noise ratio
(S/N)) [35–38]. However, we recognize that the
block structure of the Fisher matrix provides im-
portant insights, and is a useful quantity for check-
ing the validity of the aforementioned likelihood
function, quite independent of the CRLB.

4. The Fisher matrix teaches us that errors in sky
localization are semi-independent from errors in
masses. This implies that if we care only about
position reconstruction and not about jointly esti-
mating masses as well, then we can reduce the di-
mensionality of the parameter estimation problem
significantly. Moreover, this frees us of the need
to directly compute the expensive post-Newtonian
model waveforms, making the likelihood itself much
faster to evaluate.

5. Thanks to a simple likelihood function and a
well-characterized parameter space, we may dis-
pense with costly and parallelization-resistant
MCMC integration, and instead perform the
Bayesian marginalization with classic, determinis-
tic, very low order Gaussian quadrature.

6. The Bayesian inference scheme thus designed to op-
erate on the matched-filter detection pipeline out-
puts could be trivially generalized to operate on
the full GW time series within the same compu-
tational constraints. This would yield a fast and
coherent localization algorithm that is mathemati-
cally equivalent to the full MCMC parameter esti-
mation, restricted to extrinsic parameters (sky lo-
cation, binary orientation, and distance).

1 Though not entirely; see [34].

We call this algorithm BAYESian TriAngulation and
Rapid localization (BAYESTAR)23. It is as fast as Tim-
ing++, but nearly as accurate as the rigorous full pa-
rameter estimation. It is unique in that it bridges the
detection and parameter estimation of GW signals, two
tasks that have until now involved very different numer-
ical methods and time scales. Beginning with the first
Advanced LIGO observing run, BAYESTAR is provid-
ing localizations within minutes of the detection of any
BNS merger candidate, playing a key role in enabling
rapid follow-up observations.

This paper is organized as follows. In Section I, we de-
scribe the GW signal model and sketch the standard de-
tection algorithm, the matched filter bank. In Section II,
we describe Bayesian inference formalism and the pre-
vailing method for inferring the parameters of detected
candidates, MCMC sampling. In Section III, we propose
the BAYESTAR likelihood as a model for the uncertainty
in the matched-filter parameter estimates, and discuss
its relationship to and consistency with the likelihood for
the full GW data. In Section IV, we describe the in-
put to BAYESTAR supplied by the detection pipeline,
and the prior distribution on parameters. In Section V,
we explain the integration scheme by which the posterior
probability distribution is calculated for a given sky lo-
cation. In Section VI, we show a scheme whereby the sky
posterior is sampled on an adaptive HEALPix grid. In
Section VIII E, we report the running time of the algo-
rithm on the hardware available on the LIGO Data Grid.
Finally, in Section VIII, we quantify the sky localization
performance on a comprehensive set of simulated GW
events.

I. SIGNAL MODEL AND DETECTION

In the time domain (TD), the strain observed by a
single GW interferometer is

yi(t) = xi(t;θ) + ni(t). (1)

In the frequency domain (FD),

Yi(ω) =

∫ ∞
−∞

y(t)e−iωtdt = Xi(ω;θ) +Ni(ω), (2)

where Xi(ω;θ) is the GW signal given a parameter vec-
tor θ that describes the GW source, and Ni(ω) is that
detector’s Gaussian noise with one-sided power spectral

density (PSD) Si(ω) = E
[
|Ni(ω)|2

]
+ E

[
|Ni(−ω)|2

]
=

2 A pun on the Cylon battleships in the American television series
Battlestar Galactica. The defining characteristic of the Cylons is
that they repeatedly defeat humanity by using their superhuman
information-gathering ability to coordinate overwhelming forces.

3 We do not like to mention the final ‘L’ in the acronym, because
then it would be pronounced BAYESTARL, which sounds stupid.
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2E
[
|Ni(ω)|2

]
. We shall denote the combined observa-

tion from a network of detectors as Y(ω) ≡ {Yi(ω)}i.
Under the assumptions that the detector noise is Gaus-

sian and that the noise from different detectors are uncor-
related, the likelihood of the observation, y, conditioned
upon the parameters θ, is a product of Gaussian distri-
butions:

L(Y;θ) =
∏
i

p(Yi|θ)

∝ exp

[
−1

2

∑
i

∫ ∞
0

|Yi(ω)−Xi(ω;θ)|2
Si(ω)

dω

]
. (3)

A compact binary coalescence (CBC) source is speci-
fied by a vector of extrinsic parameters describing its po-
sition and orientation, and intrinsic parameters describ-
ing the physical properties of the binary components4:

θ =



α


right ascension


extrinsic
parameters,
θex

δ declination
r distance
t⊕ arrival time at geocenter
ι inclination angle
ψ polarization angle
φc coalescence phase
m1 first component’s mass


intrinsic
parameters,
θin.

m2 second component’s mass
S1 first component’s spin
S2 second component’s spin

(4)
Assuming a nonprecessing circular orbit, we can write

the GW signal received by any detector as a linear com-
bination of two basis waveforms, H0 and Hπ/2 [45]. H0

and Hπ/2 are approximately “in quadrature” in the same
sense as the cosine and sine functions, being orthogo-
nal and out of phase by π/2 at all frequencies. If H0

and Hπ/2 are Fourier transforms of real functions, then
H0(ω) = H∗0 (−ω) and Hπ/2(ω) = H∗π/2(−ω), and we can

write

Hπ/2(ω) = H0(ω) ·
{
−i if ω ≥ 0

i if ω < 0
. (5)

4 This list of parameters involves some simplifying assumptions.
Eccentricity is omitted: although it may play a major role in the
evolution and waveforms of rare close binaries formed by dynam-
ical capture [39–41], BNS systems formed by binary stellar evolu-
tion should almost always circularize due to tidal interaction [42]
and later GW emission [43] long before the inspiral enters LIGO’s
frequency range of ∼10–1000 kHz. Tidal deformabilities of the
NSs are omitted because the signal imprinted by the companions’
material properties is so small that it will only be detectable by
an Einstein Telescope-class GW observatory [44]. Furthermore,
in GW detection efforts, especially those focused on BNS sys-
tems, the component spins S1 and S2 are often assumed to be
nonprecessing and aligned with the system’s total angular mo-
mentum and condensed to a single scalar parameter χ, or even
neglected entirely: S1 = S2 = 0.

For brevity, we define H ≡ H0 and write all subsequent
equations in terms of the H basis vector alone. Then,
we can write the signal model in a way that isolates all
dependence on the extrinsic parameters, θex, into a few
coefficients, and all dependence on the intrinsic parame-
ters, θin, into the basis waveform, by taking the Fourier
transform of Equation (2.8) of [45]:

Xi(ω;θ) = e−iω(t⊕−di·n) r1,i
r
e2iφc[

1

2

(
1 + cos2 ι

)
<{ζ} − i (cos ι)={ζ}

]
H(ω;θin) (6)

for ω ≥ 0, where

ζ = e−2iψ (F+,i(α, δ, t⊕) + iF×,i(α, δ, t⊕)) . (7)

The quantities F+,i and F×,i are the dimensionless detec-

tor antenna factors, defined such that 0 ≤ F+,i
2+F×,i

2 ≤
1. They depend on the orientation of detector i as well
as the sky location and sidereal time of the event and are
presented in [46]. In a coordinate system with the x and
y axes aligned with the arms of a detector, the antenna
pattern is given in spherical polar coordinates as

F+ = −1

2
(1 + cos2 θ) cos 2φ, (8)

F× = − cos θ sin 2φ. (9)

The unit vector di represents the position of detector i in
units of light travel time.5 The vector n is the direction of
the source. The negative sign in the dot product −di ·n is
present because the direction of travel of the GW signal
is opposite to that of its sky location. The quantity r1,i
is a fiducial distance at which detector i would register
SNR=1 for an optimally oriented binary (face-on, and in
a direction perpendicular to the interferometer’s arms):

r1,i = 1/σi, σi
2 =

∫ ∞
0

|H(ω;θin)|2
Si(ω)

dω. (10)

More succinctly, we can write the signal received by
detector i in terms of observable extrinsic parameters
θi = (ρi, γi, τi), the amplitude ρi, phase γi, and time
delay τi on arrival at detector i:

Xi(ω;θi,θin)

= Xi(ω; ρi, γi, τi,θin) =
ρi
σi
ei(γi−ωτi)H(ω;θin). (11)

The prevailing technique for detection of GWs from
CBCs is to realize a maximum likelihood (ML) estima-
tor (MLE) from the likelihood in Equation (3) and the

5 When considering transient GW sources such as those that we
are concerned with in this thesis, the origin of the coordinate
system is usually taken to be the geocenter. For long-duration
signals such as those from statically deformed neutron stars, the
solar system barycenter is a more natural choice.
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signal model in Equation (11). Concretely, this results in
a bank of matched filters, or cross-correlations between
the incoming data stream and a collection of template
waveforms,

zi(τi;θin) =
1

σi(θin)

∫ ∞
0

H∗(ω;θin)Yi(ω)eiωτi

Si(ω)
dω. (12)

The ML point estimates of the signal parameters,

MLE(y) = {{θ̂i}i, θ̂in} = {{ρ̂i, γ̂i, τ̂i}i , θ̂in}, are given
by

θ̂in, {τ̂i}i = argmax
θin,{τ̂i}i

∑
i

|zi (τi;θin)|2 , (13)

ρ̂i =
∣∣∣zi (τ̂i; θ̂in)∣∣∣ , (14)

γ̂i = arg zi

(
τ̂i; θ̂in

)
. (15)

A detection candidate consists of {{ρ̂i, γ̂i, τ̂i}i , θ̂in}.
There are various ways to characterize the significance of
a detection candidate. In Gaussian noise, the maximum
likelihood for the network is obtained by maximizing the
network S/N, ρnet,

ρ̂net = max
θ

∑
i

|zi(θ)|2 =

√∑
i

ρ̂2i ; (16)

this, therefore, is the simplest useful candidate ranking
statistic.

A. Uncertainty and the Fisher matrix

We can predict the uncertainty in the detection
pipeline’s ML estimates using the CRLB. The CRLB
has been widely applied in GW data analysis to esti-
mate parameter estimation uncertainty [3, 17, 18, 47–
49]6. As we noted, there are significant caveats to the
CRLB at low or moderate S/N [35–38]. However, here
we will be concerned more with gaining intuition from the
block structure of the Fisher matrix than its numerical
value. Furthermore, the Fisher matrix in its own right—
independent of its suitability to describe the parameter
covariance—is a well-defined property of any likelihood
function, and we will exploit it as such in Section III.

We will momentarily consider the likelihood for a single

6 The Fisher matrix is also used in construction of CBC matched
filter banks. The common procedure is to place templates uni-
formly according to the determinant of the signal space met-
ric, which is the Fisher matrix. This is equivalent to uniformly
sampling the Jeffreys prior. In practice, this is done either by
constructing a hexagonal lattice [50] or sampling stochastically
[51–55].

detector:

L (Yi; ρi, γi, τi,θin)

∝ exp

[
−1

2

∫ ∞
0

|Yi(ω)−Xi (ω; ρi, γi, τi,θin)|2
Si(ω)

dω

]
,

(17)

with Xi(ω; ρi, γi, τi,θin) given by Equation (11).
The Fisher information matrix for a measurement y

described by the unknown parameter vector θ is the con-
ditional expectation value

Ijk = E

[(
∂ logL(Yi;θ)

∂θj

)(
∂ logL(Yi;θ)

∂θk

)∣∣∣∣θ] . (18)

The Fisher matrix describes how strongly the likeli-
hood depends, on average, on the parameters. Further-
more, it provides an estimate of the mean-square error

in the parameters. If θ̂ is an unbiased estimator of θ,

θ̃ = θ̂ − θ is the measurement error, and Σ = E [θ̃θ̃
T

] is
the covariance of the measurement error, then the CRLB
says that Σ ≥ I−1, in the sense that

(
Σ− I−1

)
is posi-

tive semi-definite.
Note that if logL is twice differentiable in terms of θ,

then the Fisher matrix can also be written in terms of
second derivatives as

Ijk = E

[
−∂

2 logL(Yi;θ)

∂θj∂θk

∣∣∣∣θ] . (19)

When (as in our assumptions) the likelihood is Gaus-
sian,7 Equation (18) simplifies to

Ijk =

∫ ∞
0

<
[(

∂Xi

∂θj

)∗(
∂Xi

∂θk

)]
1

Si(ω)
dω. (20)

This form is useful because it involves manipulating the
signal Xi(ω) rather than the entire observation Y (ω).
In terms of the kth S/N-weighted moment of angular
frequency,

ωki =

[∫ ∞
0

|h(ω)|2
Si(ω)

ωk dω

] [∫ ∞
0

|h(ω)|2
Si(ω)

dω

]−1
, (21)

the Fisher matrix for the signal in the ith detector is

Ii =

( Iθi,θi Iθi,θin

IT

θi,θin
ρi

2Iθin,θin

)
. (22)

The top-left block describes only the extrinsic parame-
ters, and is given by

Iθi,θi
=


ρi γi τi

ρi 1 0 0
γi 0 ρi

2 −ρi2ωi
τi 0 −ρi2ωi ρi

2ω2
i

. (23)

7 This assumes that the merger occurs at a frequency outside the
sensitive “bucket” of the detector’s noise PSD. There are addi-
tional terms if the GW spectrum drops to zero within the sen-
sitive bandwidth of the detector, as can be the case for neutron
star–black hole (NSBH) mergers; see [56].
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(This is equivalent to an expression given in [25].) The
bottom row and right column of Equation (22) describe
the intrinsic parameters and how they are coupled to the
extrinsic parameters. We show in Appendix A that we
need not consider the intrinsic parameters at all if we are
concerned only with sky localization.

For our likelihood, the CRLB implies that

cov

 ρ̃i
γ̃i
τ̃i

 ≥ I−1 =

 1 0 0

0 ρi
2ω2

i/ωrms,i
2 ρi

2ωi/ωrms,i
2

0 ρi
2ωi/ωrms,i

2 ρi
2/ωrms,i

2

 ,

(24)

where ωrms,i
2 = ω2

i − ωi2. This structure implies that
errors in S/N are uncorrelated with errors in time and
phase, and that there is a particular sum and difference
of the times and phases that are measured independently
(see Appendix B).

Reading off the ττ element of the covariance matrix
reproduces the timing accuracy in Equation (24) of [17],

std (τ̂i − τi) ≥
√

(I−1)ττ =
ρi

ωrms,i
. (25)

Fairhurst [17] goes on to frame the characteristic posi-
tion reconstruction accuracy of a GW detector network
in terms of time delay triangulation, with the above for-
mula describing the time of arrival uncertainty for each
detector. In Appendix C, we show how to extend this for-
malism to include the phases and amplitudes on arrival
as well.

II. BAYESIAN PROBABILITY AND
PARAMETER ESTIMATION

In the Bayesian framework, parameters are inferred
from the data by forming the posterior distribution,
p(θ|y), which describes the probability of the parameters
given the observations. Bayes’ rule relates the likelihood
p(y|θ) to the posterior p(θ|y),

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (26)

introducing the prior distribution p(θ) which encapsu-
lates previous information about the paramters (for ex-
ample, arising from earlier observations or from known
physical bounds on the parameters), and the evidence
p(y) which can be thought of as a normalization factor
or as describing the parsimoniousness of the model.

The choice of prior is determined by one’s astrophysical
assumptions. During LIGO’s sixth science run (S6) when
LIGO’s Bayesian CBC parameter estimation pipelines
were first deployed, the prior was taken to be isotropic
in sky location and binary orientation, and uniform in
volume, arrival time, and the component masses [31].

In Bayesian inference, although it is often easy to write
down the likelihood or even the full posterior in closed
form, usually one is interested in only a subset β of all
of the model’s parameters, the others λ being nuisance
parameters. In this case, we integrate away the nuisance
parameters, forming the marginal posterior

p(β|y) =

∫
p(y|β,λ)p(β,λ)

p(y)
dλ (27)

with θ = (β,λ). For instance, for the purpose of locating
a GW source on the sky, all parameters but (α, δ) are
nuisance parameters.

III. THE BAYESTAR LIKELIHOOD

For the purpose of rapid sky localization, we assume
that we do not have access to the GW data Y itself,
and that our only contact with it is through the ML

parameter estimates {{ρ̂i, γ̂i, τ̂i}i , θ̂in}. Although this is
a significant departure from conventional GW parameter
estimation techniques, we can still apply the full Bayesian
machinery of Equation (27) to compute a posterior dis-
tribution for the sky location.

The relevant likelihood is now the probability of the
ML estimates, conditioned upon the true parameter val-
ues, and marginalized over all possible GW observations:

p
(
{θ̂i}i, θ̂in

∣∣∣θ) ∝ ∫
Y|MLE(Y)={{θ̂i}i,θ̂in}

p(Y|θ) p(θ) dY. (28)

Although we may not be able to evaluate this equation
directly, with some educated guesses we can create a like-
lihood that has many properties in common with it. Any
valid approximate likelihood must have the same Fisher
matrix as shown in Equation (22). It must also have
the same limiting behavior: it should be periodic in the
phase error γ̃i and go to zero as τ̃i → ±∞, ρ̂i → 0, or
ρ̂i → ∞. Additionally, when τ̃i = 0, the distribution
of ρ̂2i should reduce to a noncentral χ2 distribution with
two degrees of freedom, centered about ρi

2, because the
complex matched filter time series zi(t) is Gaussian (un-
der the ideal assumption the GW strain time series is
Gaussian).

These conditions could be satisfied by realizing a mul-
tivariate Gaussian distribution with covariance matrix
Σ = Iᵀ, and then replacing individual quadratic terms
in the exponent of the form −θ̃2/2 with cos θ̃.

A more natural way is to plug the signal model from
Equation (11) evaluated at the ML parameter estimates
into the single-detector likelihood in Equation (17):
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p
(
θ̂i

∣∣∣θ) := p
(
Yi(ω) = Xi(ω; θ̂)

∣∣∣θ) ∝ exp

[
− 1

2

∫ ∞
0

∣∣∣∣∣ ρ̂i

σi(θ̂in)
ei(γ̂i−ωτ̂i)

H(ω; θ̂in)

Si(ω)
− ρi
σi(θin)

ei(γi−ωτi)
H(ω;θin)

Si(ω)

∣∣∣∣∣
2

dω

]
.

(29)

If we further assume that the intrinsic parameters are

equal to their ML estimates, θin = θ̂in, then this reduces

to what we call the autocorrelation likelihood,

p (ρ̂i, γ̂i, τ̂i|ρi, γi, τi) ∝ exp

[
−1

2
ρ̂2i −

1

2
ρi

2 + ρ̂iρi<
{
eiγ̃ia∗i (τ̃i)

}]
, (30)

with γ̃i = γ̂i − γi, τ̃i = τ̂i − τi, and the template’s auto-
correlation function ai(t;θin) defined as

ai(t;θin) :=
1

σi2(θin)

∫ ∞
0

∣∣∣H(ω; θ̂in)
∣∣∣2

Si(ω)
eiωt dω. (31)

Some example autocorrelation functions and correspond-
ing likelihoods are shown in Figure 1. To assemble the
joint likelihood for the whole network, we form the prod-
uct of the autocorrelation likelihoods from the individual
detectors:

p ({ρ̂i, γ̂i, τ̂i}i|{ρi, γi, τi}i)

∝ exp

[
−1

2

∑
i

ρ̂2i −
1

2

∑
i

ρi
2 +

∑
i

ρ̂iρi<
{
eiγ̃ia∗(τ̃i)

}]
.

(32)

In the following section, we discuss some key properties
of the autocorreltion likelihood.

A. Properties

First, the autocorrelation likelihood has the elegant
feature that if we were to replace the autocorrelation
function with the S/N time series for the best-matching

template, z(τ ; θ̂in), we would recover the likelihood for
the full GW time series, evaluated at the ML estimate of
the intrinsic parameters, viz.:

exp

[
−1

2

∑
i

ρi
2 +

∑
i

ρi<
{
e−iγiz∗i (τi)

}]
. (33)

(We have ommitted the term
∫
|Yi(ω)|2/S(ω)dω, which

takes the place of the earlier ρ̂2i term and is only im-
portant for normalization.) The numerical scheme that
we will develop is thus equally applicable for rapid,
coincidence-based localization, or as a fast extrinsic
marginalization step for the full parameter estimation.

Second, observe that at the true parameter values,

θ̂i = θi, the logarithms of Equation (30) and Equa-
tion (17) have the same Jacobian. This is because the

derivatives of the autocorrelation function are

a(n)(t) = inωn,

with ωn defined in Equation (21). For example, the first
few derivatives are

a(0) = 1, ȧ(0) = iω, ä(0) = −ω2.

Using Equation (19), we can compute the Fisher ma-
trix elements for the autocorrelation likelihood given by
Equation (30), with detector subscript suppressed:

Iρρ = 1,

Iργ = 0,

Iρτ = 0,

Iγγ = ρ2
∫ T

−T
|a(t)|2 w(t; ρ)dt, (34)

Iττ = −ρ2
∫ T

−T
< [a∗(t)ä(t)]w(t; ρ)dt, (35)

Iγτ = −ρ2
∫ T

−T
= [a∗(t)ȧ(t)]w(t; ρ)dt, (36)

where

w(t; ρ) =

exp

[
ρ2

4
|a(t)|2

](
I0

[
ρ2

4
|a(t)|2

]
+ I1

[
ρ2

4
|a(t)|2

])
2

∫ T

−T
exp

[
ρ2

4
|a(t′)|2

]
I0

[
ρ2

4
|a(t′)|2

]
dt′

.

(37)

The notation Ik denotes a modified Bessel function of
the first kind. Matrix elements that are not listed have
values that are implied by the symmetry of the Fisher
matrix. Note that the minus signs are correct but a little
confusing: despite them, Iγγ , Iττ ≥ 0 and Iγτ ≤ 0. The
time integration limits [−T, T ] correspond to a flat prior
on arrival time, or a time coincidence window between
detectors.

We can show that the weighting function w(t; ρ) ap-
proaches a Dirac delta function as ρ → ∞, so that
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FIG. 1. The autocorrelation likelihood for a (1.4, 1.4)M� binary as observed by four detector configurations: from top to
bottom, the final sensitivity achieved by the LIGO Hanford, LIGO Livingston, and Virgo detectors in their “initial” configura-
tion, and the final Advanced LIGO design sensitivity. The left panels show the noise amplitude spectral densities. The middle
panels show the absolute value of the autocorrelation function. The right panel shows the phase-marginalized autocorrelation
likelihood for S/N=1, 2, 4, and 8. In the right panel, the time scale is normalized by S/N so that one can see that as S/N
increases, a central parabola is approached (the logarithm of a Gaussian distribution with standard deviation given by the
Fisher matrix).

the Fisher matrix for the autocorrelation likelihood ap-
proaches the Fisher matrix for the full GW data, Equa-
tion (23), as ρ→∞. The Bessel functions asymptotically
approach:

I0(x), I1(x)→ ex√
2πx

as x→∞.

For large ρ, the exponents of eρ
2

dominate Equation (37)
and we can write:

w(t; ρ)→
exp

[
ρ2

2
|a(t)|2

]
∫ T

−T
exp

[
ρ2

2
|a(t′)|2

]
dt′

as ρ→∞.

The Taylor expansion of |a(t)|2 is

|a(t)|2 = 1 +
1

2

(
∂2

∂t2
|a(t)|2

∣∣∣∣∣
t=0

)
t2 +O(t4)

= 1− ωrms
2t2 +O(t4).

Substituting, we find that w(t; ρ) approaches a normal-
ized Gaussian distribution:

w(t; ρ) ≈
exp

[
−1

2
ρ2ωrms

2t2
]

∫ T

−T
exp

[
−1

2
ρ2ωrms

2(t′)2
]
dt′
.

And finally, because the Dirac delta function may be de-
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FIG. 2. CRLB on RMS timing uncertainty and phase error, using the likelihood for the full GW data (Equation 17; dashed
diagonal line) or the autocorrelation likelihood (Equation 30; solid lines) with a selection of arrival time priors.

fined as the limit of a Gaussian, w(t; ρ)→ δ(t) as ρ→∞.
We can now write the Fisher matrix for the autocor-

relation likelihood in a way that makes a comparison to
the full signal model explicit. Define:

Iγγ = ρ2 · Dγγ(ρ),

Iττ = ρ2ω2 · Dττ (ρ),

Iγτ = −ρ2ω · Dγτ (ρ).

Now, the Dij
8 contain the integrals from Equations (34,

35, 36) and encode the departure of the autocorrelation
likelihood from the likelihood of the full data at low S/N.
All of the Dij(ρ) are sigmoid-type functions that asymp-
totically approach 1 as ρ→∞ (see Figures 2 and 3). The
transition S/N ρcrit is largely the same for all three non-
trivial matrix elements, and is determined by the time
coincidence window T and the signal bandwidth ωrms.

In the limit of large S/N, our interpretation is that the
point estimates (ρ̂, γ̂, τ̂) contain all of the information
about the underlying extrinsic parameters.

On the other hand, in the low S/N limit, the diminish-
ing value of Dij(ρ) reflects the fact that some information
is lost when the full data x is discarded. Concretely, as
the prior interval T becomes large compared to 1/ρωrms,
the ML estimator becomes more and more prone to pick-
ing up spurious noise fluctuations far from the true sig-
nal. Clearly, when the coincidence window T is kept
small as possible, more information is retained in the

8 The Fish(er) factor.
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FIG. 3. Ratio between Fisher matrix elements (solid: Dγγ ,
dashed: Dγτ , dotted: Dττ ) for the autocorrelation likelihood
and the full GW data. Colors correspond to different arrival
time priors as in Figure 2.

ML point estimates. Put another way, if T is small, then
the transition S/N ρcrit is also small and fainter signals
become useful for parameter estimation. In this way, the
BAYESTAR likelihood exhibits the threshold effect that
is well-known in communication and radar applications
[57–59].

In the following sections, we describe our prior and our
numerical scheme to integrate over nuisance parameters,
which amounts to the BAYESTAR algorithm.
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IV. PRIOR AND PROBLEM SETUP

The detection pipeline supplies a candidate,

{{ρ̂i, γ̂i, τ̂i}i , θ̂in}, and discretely sampled noise PSDs,
Si(ωj), for all detectors. We compute the GW signal for
a source with intrinsic parameters equal to the detection

pipeline’s estimate, H(ω; θ̂in). Then we find the S/N=1
horizon distance r1,i for each detector by numerically
integrating Equation (10).

We have no explicit prior on the intrinsic parameters;

in our analysis they are fixed at their ML estimates, θ̂in.9

The arrival time prior is connected to the origin of the
detector coordinate system. Given the Earth-fixed coor-
dinates of the detectors ni and the arrival times τi, we
compute their averages weighted by the timing uncer-
tainty formula:

〈n〉 =

∑
i

ni

(ρ̂iωrms,i)
2∑

i

1

(ρ̂iωrms,i)
2

, 〈τ̂〉 =

∑
i

τ̂i

(ρ̂iωrms,i)
2∑

i

1

(ρ̂iωrms,i)
2

.

Then, we subtract these means:

ni ← ni − 〈n〉, τ̂i ← τ̂i − 〈τ̂〉.

In these coordinates, now relative to the weighted detec-
tor array barycenter, the arrival time prior is uniform in
−T ≤ t ≤ T , with T = max

i
|ni|/c+ 5 ms.

The distance prior is a user-selected power of distance,

p(r) ∝
{
rm if rmin < r < rmax

0 otherwise,

where m = 2 for a prior that is uniform in volume, and
m = −1 for a prior that is uniform in the logarithm of the
distance. If a distance prior is not specified, the default is
uniform in volume out to the maximum SNR=4 horizon
distance:

m = 2, rmin = 0, rmax =
1

4
max
i
r1,i.

Finally, the prior is uniform in −1 ≤ cos ι ≤ 1 and
0 ≤ ψ < π.

We compute the autocorrelation function for each de-
tector from t = 0 to t = T at intervals of ∆t = 1/fs,
where fs is the smallest power of two that is greater than
or equal to the Nyquist rate. Because BNS signals typ-
ically terminate at about 1500 Hz, a typical value for

9 As noted in footnote 6, the detection template bank is typically
designed to uniformly sample the Jeffreys prior on the intrin-
sic parameters. Due to the equivalence of marginalization and
maximization with respect to a parameter under a Gaussian dis-
tribution, fixing the intrinsic parameters at their ML estimates
is roughly equivalent to selecting the Jeffreys prior.

∆t is (4096 Hz)−1. We use a pruned fast Fourier trans-
form (FFT) because for BNS systems, the GW signal re-
mains in LIGO’s sensitive band for ∼100–1000 s, whereas
T ∼ 10 ms.10

V. MARGINAL POSTERIOR

The marginal posterior as a function of sky location is

f(α, δ) ∝
∫ π

0

∫ 1

−1

∫ T

−T

∫ rmax

rmin

∫ 2π

0

exp

[
−1

2

∑
i

ρi
2 +

∑
i

ρ̂iρi<
{
eiγ̃ia∗(τ̃i)

}]
rmdφc dr dt⊕ d cos ι dψ. (38)

To marginalize over the coalescence phase, we can
write γ̃i = γ̃′i + 2φc. Then integrating over φc and sup-
pressing normalization factors, we get

f(α, δ)→
∫ π

0

∫ 1

−1

∫ T

−T

∫ rmax

rmin

exp

[
−1

2

∑
i

ρi
2

]
I0

[∣∣∣∣∣∑
i

ρ̂iρie
iγ̃ia∗i (τ̃i)

∣∣∣∣∣
]

rmdr dt⊕ d cos ι dψ. (39)

In the above equation, we need not distinguish between
γ̃i and γ̃′i because the likelihood is now invariant under
arbitrary phase shifts of all of the detectors’ signals.

A. Integral over angles and time

The integrand is periodic in ψ, so simple New-
ton–Cotes quadrature over ψ exhibits extremely rapid
convergence (see Figure 4). We therefore sample the pos-
terior on a regular grid of 10 points from 0 to π.

The integral over cos ι converges just as rapidly with
Gauss–Legendre quadrature (see Figure 4), so we use a
10-point Gauss–Legendre rule for integration over cos ι.

We sample t⊕ regularly from −T to T at intervals of
∆t. This is typically ∼ 2(10 ms)(4096 Hz) ≈ 80 samples.
We use Catmull–Rom cubic splines to interpolate the real
and imaginary parts of the autocorrelation functions be-
tween samples.

B. Integral over distance

The distance integral is now performed differently from
what we initially described in [60, 61]; the method de-

10 See http://www.fftw.org/pruned.html for a discussion of meth-
ods for computing the pruned FFT, the first K samples of an
FFT of length N .

http://www.fftw.org/pruned.html
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FIG. 4. Relative error in BAYESTAR integration scheme as a function of the number of Gaussian quadrature nodes. The two
panels describe (a) the integral over the polarization angle ψ and (b) the integral over inclination angle ι.

scribed in the present work is about an order of magni-
tude faster. We define ρi = ωi/r in order to absorb all
of the distance-independent terms in the amplitudes into
ωi, and then define

p2 =
1

2

∑
i

ωi
2 (40)

b =

∣∣∣∣∣∑
i

ρ̂iωie
iγ̃ia∗i (τ̃i)

∣∣∣∣∣ . (41)

The innermost integral over distance r may then be writ-
ten as

F =

∫ rmax

rmin

exp

[
−p

2

r2

]
I0

[
b

r

]
rmdr

=

∫ rmax

rmin

exp

[
−p

2

r2
+
b

r

]
I0

[
b

r

]
rmdr (42)

or, completing the square,

F = exp

[
p2

r02

] ∫ rmax

rmin

exp

[
−
(
p

r
− p

r0

)2
]
I0

[
2p2

rr0

]
rmdr

(43)

= exp

[
p2

r02

]
G , (44)

where

r0 = 2p2/b (45)

I0(x) = exp(−|x|)I0(x). (46)

The coefficients p2 and b are nonnegative and indepen-
dent of distance. p has a maximum value of

pmax =

√
1

2

∑
i

(r1,i
r

)2
. (47)

xmin x0 xmax

ymin

x0

ymax

I

II

III

FIG. 5. Partition of the parameter space of the distance in-
tegral into three regions for (bi)cubic interpolation.

The symbol I0 denotes an exponentially scaled Bessel
function. In the limit of large argument, I0(|x|) ∼
exp(|x|)/

√
2π|x| [62, 63]11. The scaled Bessel function

is useful for evaluation on a computer because it has a
relatively small range (0, 1] and varies slowly in propor-
tion to x1/2.

11 http://dlmf.nist.gov/10.40.E1

http://dlmf.nist.gov/10.40.E1
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1. Parameter grid

This integral is not particularly amenable to low-order
Gaussian quadrature. However, luckily G is a very well-
behaved function of p and r0, so we evaluate it using a
lookup table and bicubic interpolation. The lookup table
is produced in logarithmic coordinates

x = log p, y = log r0. (48)

As shown in Figure 5, the function basically consists of a
plateau region in the upper-left half of the plane delim-
ited by the lines y = x and x = log p0, with

p0 =
1

2

{
rmax if m ≥ 0

rmin if m < 0.
(49)

We tabulate G on a 400× 400 regular grid spanning the
range

x0 = log min(p0, pmax) (50)

xmin = x0 − (1 +
√

2)α (51)

xmax = log pmax (52)

ymin = 2x0 −
√

2α− xmax (53)

ymax = x0 + α (54)

where α = 4 is a constant parameter that determines the
extent of the grid.

2. Lookup table construction

The lookup table for G is populated as follows. If we
neglect both the Bessel function and the rm prior, then
the approximate likelihood exp(−(p/r − p/r0)2) is max-
imized when r = r0. The likelihood takes on a factor η
(say, η = 0.01) of its maximum value when

r = r± =

(
1

r0
∓
√− log η

p

)−1
. (55)

We have now identified up to five breakpoints that par-
tition the distance integrand into up to four intervals with
quantitatively distinct behavior. These intervals are de-
picted in Figure 6 with distance increasing from left to
right. There is a left-hand or small distance tail in which
the integrand is small and monotonically increasing, a
left- and right-hand side of the maximum likelihood peak,
and a right-hand tail in which the integrand is small and
monotonically decreasing. These breakpoints are:

rbreak = {r ∈


rmin

r−
r0
r+
rmax

 : rmin ≤ r ≤ rmax}. (56)

FIG. 6. Illustration of initial subdivisions for distance inte-
gration scheme. Distance increases from left to right. In the
color version, the left-hand tail, the left- and right-hand sides
of the maximum likelihood peak, and the right-hand tail, are
colored cyan, red, green, and blue, respectively.

We use these breakpoints as initial subdivisions in an
adaptive Gaussian quadrature algorithm12. This func-
tion estimates the integral over each subdivision and each
interval’s contribution to the total error, then subdivides
the interval whose error contribution is largest. Sub-
divisions continue until a fixed total fractional error is
reached. In this way, most integrand evaluations are ex-
pended on the most important distance interval, whether
that happens to be the tails (when the posterior is dom-
inated by the prior) or the peak (when the posterior is
dominated by the observations).

3. Interpolation

The interpolant is evaluated slightly differently de-
pending on which of the three regions marked I, II, and
III in Figure 5 contains the point of interest. In region
I, we use bicubic interpolation of log G in x and y. In
region II, we use univariate cubic interpolation of log G
in x, with the sample points taken from the horizontal

12 for instance, GNU Scientific Library (GSL)’s
gsl integrate qagp function, http://www.

gnu.org/software/gsl/manual/html_node/

QAGP-adaptive-integration-with-known-singular-points.

html

http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
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FIG. 7. Relative error in BAYESTAR distance integral inter-
polation scheme as a function of the size of the grid.

boundary between regions I and II. In region III, we use
univariate cubic interpolation of log G in u = (x − y)/2,
with the sample points taken from the downward diag-
onal boundary between regions I and III. Finally, the
distance integral F is obtained by multiplying the inter-
polated value of G by exp

(
p2/r0

2
)
. For a 400×400 grid,

the entire lookup table scheme is accurate to a relative
error of about 10−5 in F (see Figure 7).

VI. ADAPTIVE HEALPIX SAMPLING

We have explained how we evaluate the marginal pos-
terior at a given sky location. Now we must specify where
we choose to evaluate it.

Our sampling of the sky relies completely on the Hier-
archical Equal Area isoLatitude Pixelization (HEALPix,
[64]), a special data structure designed for all-sky maps.
HEALPix divides the sky into equal-area pixels. There
is a hierarchy of HEALPix resolutions. A HEALPix res-
olution may be designated by its order N . The N = 0th
order or base tiling has 12 pixels. At every successive
order, each tile is subdivided into four new tiles. A reso-
lution may also be referred to by the number of subdivi-
sions along each side of the base tiles, Nside = 2N . There
are Npix = 12Nside

2 pixels at any given resolution. The
HEALPix projection uniquely specifies the coordinates of
the center of each pixel by providing a mapping from the
resolution and pixel index (Nside, ipix) to right ascension
and declination (α, δ).

The BAYESTAR adaptive sampling process works as
follows. We begin by evaluating the posterior probability
density at the center of each of the Npix,0 = 3072 pixels of
an Nside,0 = 16 HEALPix grid. At this resolution, each
pixel has an area of 13.4 deg2. We then rank the pixels
by contained probability (assuming constant probability
density within a pixel), and subdivide the most proba-

ble Npix,0/4 pixels into Npix,0 new daughter pixels. We
then evaluate the posterior again at the centers of the
new daughter pixels, sort again, and repeat seven times.
After the last iteration, we have evaluated the posterior
probability density a total of 8Npix,0 times. On most sub-
division steps, we descend one level deeper in HEALPix
resolution. This process is illustrated in Figure 8.

The resulting map is a tree structure that describes
a mesh of pixels with different resolutions. An example
BAYESTAR subdivision is shown in Figure 9. To convert
this mesh into a FITS image, we traverse the tree and
flatten it into the highest resolution represented. The
highest possible resolution is Nside = 211, with an area of
≈ 10−3 deg2 per pixel.13

VII. PARALLELIZATION

MCMC and similar stochastic schemes are typically
very resistant to parallelization. However, BAYESTAR
is completely deterministic and easily parallelizable be-
cause each pixel can be evaluated independently from
all of the others. BAYESTAR consists of nine compu-
tationally intensive loops: the generation of the distance
integral lookup table and the eight loops over pixels in
the adaptive HEALPix sampling step. The iterations
of each loop are distributed across multiple cores using
OpenMP14 compiler directives. In Section VIII E, we will
show that BAYESTAR’s run time is almost perfectly pro-
portional to the number of cores, demonstrating that the
serial sections (the sorts between the adaptation steps)
are a negligible contribution to the overall wall clock
time.

VIII. CASE STUDY

We have completed our description of the BAYESTAR
algorithm. In [27], the authors presented a compre-
hensive and astrophysically realistic sample of simulated
BNS mergers. We focused on the first two planned Ad-
vanced LIGO and Virgo observing runs as desribed in
[3]. That work presented a catalog of 500 sky local-
izations from BAYESTAR and LALINFERENCE, and
dealt with the quantitave position reconstruction accu-
racy as well as the qualitative sky morphologies. In the
present work, we will use the same data set, but instead
focus on demonstrating the correctness and performance
of the BAYESTAR algorithm.

13 Although the resulting sky map contains Npix ≈ 5 × 106 pixels,
at most ≈ 2 × 104 pixels have distinct values. For the pur-
pose of delivery to observers, therefore, the output is always
gzip-compressed with a ratio of ≈ 250 : 1.

14 http://openmp.org/
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1. Evaluate localization on
base tesselation of N pixels 2. Sort by probability and select top N/4 pixels

3. Subdivide & replace with
N new daughter pixels

5. Subdivide & replace with
N new daughter pixels

4. Sort by probability and
select top N/4 pixels

6. Sort by probability and
select top N/4 pixels

Repeat

FIG. 8. Illustration of the BAYESTAR adaptive HEALPix sampling scheme.

10°

FIG. 9. An example multi-resultion HEALPix mesh arising
from the BAYESTAR sampling scheme (plotted in a cylindri-
cal projection). This is event 18951 from [27].

A. Observing scenarios

To review the assumptions made in [27], the two sce-
narios are:

2015 The first Advanced LIGO observing run, or
“O1”, scheduled to start in September 2015 and con-
tinue for three months. There are only two detectors par-
ticipating in this run: LIGO Hanford (“H”) and LIGO
Livingston (“L”). Both detectors are expected to op-
erate with a direction-averaged BNS merger range of
40–80 Mpc (though ongoing Advanced LIGO commis-

sioning suggests that the higher end of this range will
be achieved). As a result of having only two detectors,
most localizations are long, thin arcs a few degrees wide
and tens to hundreds of degrees long. The median 90%
credible area is about 600 deg2.

2016 The second observing run, “O1”, with the two
between Advanced LIGO detectors, upgraded to a BNS
range of 80–120 Mpc, operated jointly with the newly
commissioned Advanced Virgo detector (“V”), operat-
ing at a range of 20–60 Mpc. The run is envisioned
as lasting for six months in 2016–2017. The detec-
tors are assumed to have random and independent 80%
duty cycles. Consequently, all three detectors (“HLV”)
are in science mode about half of the time, with the
remaining time divided roughly equally between each
of the possible pairs (“HL”, “HV”, or “LV”) and one
or fewer detectors (at least two GW facilities are re-
quired for a detection). Virgo’s range is assumed to be
somewhat less than LIGO’s because its commissioning
timetable is about a year behind. Although the simu-
lated signals are generally too weak in Virgo to trigger
the matched-filter pipeline and contribute to detection,
even these sub-threshold signals aid in position recon-
struction with LALINFERENCE by lifting degeneracies.
As a result, the median 90% credible area decreases to
about 200 deg2.

All simulated sources have component masses dis-
tributed uniformly between 1.2 and 1.6M� and ran-
domly oriented spins with dimensionless magnitudes χ =
c|S|/Gm2 between -0.05 and +0.05. Sky positions and
binary orientations are random and isotropic. Distances
are drawn uniformly from DL

3, reflecting a uniform
source population (neglecting cosmological effects, which
are small within the Advanced LIGO BNS range).
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B. Detection and localization

The simulated waveforms were deposited in Gaussian
noise that has been filtered to have the PSDs consis-
tent with [3]. They were detected using the real-time
matched-filter pipeline, GSTLAL INSPIRAL [65]. Can-
didates with estimated false alarm rates (FARs) less than
10−2 yr−1 were considered to be “detections.” Because
using Gaussian noise results in lower FARs than would
be calculated in realistically glitchy detector noise, we
imposed an additional detection threshold on the net-
work S/N, ρ̂ ≥ 12, which has been found to corre-
spond to a comparable FAR in the initial LIGO runs.15

Localizations for the “detections” were generated with
BAYESTAR as well as the functionally equivalent and in-
terchangeable LALINFERENCE MCMC, LALINFER-
ENCE NEST, and LALINFERENCE BAMBI samplers
(collectively referred to as LALINFERENCE).

C. Areas

We measured sky localization areas for each event as
follows. First, we ranked the HEALPix pixels by de-
scending posterior probability. Then, we computed the
cumulative sum of the pixels in that order. Finally, we
searched for the index of the pixel whose cumulative sum
was equal to a given value: for example, 0.9 if we are
interested in the 90% credible area. That pixel index
times the area per pixel is the area of the smallest region
of the specified credible level. This area can be thought
of measuring the precision of the sky localization: it is a
measure of the scale of the posterior distribution.

We can construct a second measure, called the searched
area, as the smallest such constructed area that contains
the true location of the source. A telescope with a FOV
that is small compared to the characteristic scale of the
posterior would intercept the true location of the source
after covering the searched area. This measure is mainly
useful because it measures the accuracy of the sky local-
ization independently of the precision. In other words, it
treats the sky map as merely a ranking statistic.

Histograms of the 90% credible area and the searched
area are shown in Figure 10, broken down by observing
scenario (2015 or 2016) and detector network (HL, HV,
LV, or HLV). Note that there are no stastically significant
differences in areas between BAYESTAR and LALIN-
FERENCE, with the exception in the 2016/HLV configu-
ration, for which some LALINFERENCE sky maps span
about an order of magnitude less area than BAYESTAR.
If we consider only events for which all three detec-
tors contained a signal that was loud enough to trigger
the matched-filter pipeline, the difference becomes much

15 See [61] for an analysis of the effect of glitchy noise on detection
and parameter estimation.

smaller and insignificant within 95% error bars. This is
because if the signal is too weak to trigger the detec-
tion pipeline in one of the detectors, then BAYESTAR
receives no information about that detector. This issue
does not occur in the two-detector configurations (HL,
HV, or LV) because two or more triggers are required to
report a detection candidate.

This is a significant issue for the 2016 configuration, be-
cause the most accurate localizations are possible when
all three detectors are operating. However, there may
be a simple remedy. As we noted in Section III A,
the BAYESTAR likelihood can be modified to use, in-
stead of the times, phases, and amplitudes on arrival,
the full complex matched-filter time series from all de-
tectors. The detection pipeline, GSTLAL INSPIRAL,
would have to be modifed to save and transmit a small
interval of the complex S/N time series (perhaps a few
tens of milliseconds) around the time of each detec-
tion candidate. In addition to supplying the missing
information for sub-threshold signals, this would make
BAYESTAR mathematically equivalent to the LALIN-
FERENCE analysis, but with the intrinsic parameters
fixed to their maximum-likelihood values. This idea will
be pursued in future work.

D. Self consistency

As we observed above, the area of a given credible
region describes the precision of the sky localization,
whereas the searched area describes the accuracy. How-
ever, self consistency requires that the two are related.
For example, we should find that on average 90% of
events have their true locations contained within their
respective 90% credible regions. More generally, if we
make a cumulative histogram of the credible levels corre-
sponding to the searched areas of all of the events, then
we should obtain a diagonal line (with small deviations
due to finite sample size). This test, popularized for GW
data analysis by [26], is a necessary but not sufficient
condition for the validity of any Bayesian parameter es-
timation scheme.

It is already well established that LALINFERENCE
localizations satisfy the P–P plot test when deployed
with accurate templates and reasonable priors. We found
at first that BAYESTAR’s P–P plots tended to sag below
the diagonal, indicating that though the accuracy (i.e.,
searched area) was comparable to LALINFERENCE, the
precision was overstated, with confidence intervals that
were only about 70% of the correct area. This was rec-
tified by pre-scaling the S/Ns from GSTLAL INSPIRAL
by a factor of 0.83 prior to running BAYESTAR. This
correction factor suggests that, for example, an S/N 10
trigger from GSTLAL INSPIRAL has the effective in-
formation content of an S/N 8.3 signal. The missing
information may be due to losses from the discreteness
of the template bank, from the singular value decompo-
sition (SVD), from mismatch between the matched-filter



15

2015
HL 50%

100%

2016
HL 50%

100%

2016
HV 50%

100%

2016
LV 50%

100%

100 101 102 103 104

area of 90% confidence region (deg2)

2016
HLV

100 101 102 103 104

searched area (deg2)

50%

100%

FIG. 10. Cumulative histograms of sky area, broken down by observing run and detector network. The plots in the left column
show the 90% credible area and the plots in the right column show the searched area. From top bottom, the rows refer to the
following observing scenarios/network configurations: 2015/HL, 2016/HL, 2016/HV, 2016/LV, 2016/HLV. The shaded regions
represent the 95% confidence bounds. The magenta lines are represent BAYESTAR and the blue lines LALINFERENCE.
Where relevant, dotted lines show all events in the given network configuratoin and solid lines show only events for which the
matched-filter pipeline triggered on all operating detectors. Note that statistically significant differences in areas between the
BAYESTAR and LALINFERENCE localizations occur only for events that were below the detection threshold in one or more
detectors.
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templates and the simulated signals, from the small but
nonzero correlations between masses and intrinsic param-
eters, or from elsewhere within the detection pipeline.
The correction is hard-coded into the rapid localization.
With it, the P–P plots are diagonalized without nega-
tively affecting the searched area (see Figure 11).

E. Run time

Since BAYESTAR is designed as one of the final
steps in the real-time BNS search, it is important
to characterize how long it takes to calculate a sky
map. We compiled BAYESTAR with the Intel C Com-
piler (icc) at the highest architecture-specific optimiza-
tion setting (-ipo -O3 -xhost). We timed it un-
der Scientific Linux 6.1 on a Supermicro SuperServer
6028TP-HTTR system with dual 8-core Intel Xeon
E5-2630 v3 CPUs clocked at 2.40 GHz, capable of ex-
ecuting 32 threads simultaneously (with hyperthread-
ing). In Figure 12, we show how long it took to cal-
culate a localization with BAYESTAR as the number of
OpenMP threads was varied from 1 to 32. This is a vi-
olin plot, a smoothed vertical histogram. The magenta
regions show run times for a two-detector network (HL)
modeled on the first scheduled Advanced LIGO observ-
ing run in 2015, and the blue regions show run times
for a three-detector network (HLV) based on the second
planned observing run in 2016. These are the two ob-
serving scenarios that are discussed in [27].

Several features are apparent. First, at any number of
threads, the two configurations have similar run times,
although the 2016 events contain a subpopulation of out-
liers that take about 2.5 times as long as the 2015 events.
These are probably due to taking one of the more ex-
pensive code branches in the distance integral interpo-
lation. Second, the run times decrease proportionally
to the number of threads. Based on experiences run-
ning BAYESTAR on the 32-core (64 threads with hyper-
threading) cluster login machine, we expect the almost
ideal parallel speedup to continue on machines with even
more processors.

With just one thread, the BAYESTAR analysis takes
76–356 s, already orders of magnitude faster than the full
parameter estimation. With 32 threads, BAYESTAR
takes just 4–13 s. In practice, BAYESTAR’s data
handling (reading the detectors’ PSDs, communicating
with the GW candidate database, writing FITS files)
take an additional 15 s or so, though this overhead
could be reduced by parallelizing many of these steps.
The overall latency is comparable to the other stages
(data aggregation, trigger generation, alert distribution)
in the real-time BNS analysis; therefore any signifi-
cant further speedup would require significant changes
through Advanced LIGO computing and infrastruc-
ture. The 32-thread configuration is representative of
how BAYESTAR might be deployed in early Advanced

LIGO.16 For comparison, sky localization with LALIN-
FERENCE takes about 100 hours [61].

Note that this benchmark shows BAYESTAR to be
an order of magnitude faster than what was reported in
[60, 61] due to the changes in the distance integration
scheme that we noted in Section V B.

IX. FUTURE WORK

One immediately pressing direction for future work is
to address the issue of sub-threshold signals, as this will
be a major issue when Advanced Virgo comes online in
2016–2017. Using the full S/N time series in place of the
autocorrelation function seems like a promising avenue;
implementing this requires some infrastructure changes
to both the matched filter pipeline and BAYESTAR.
Along these lines, we also refer the reader to [66] for
a similar, non-MCMC approach to rapid exploration of
the full parameter space.

A more open-ended question is how to account for spin
precession. The simulations in [27] and in this paper fea-
tured extremely modest spins of χ ≤ 0.05, consistent
with the fastest known pulsars in binaries [67, 68]. The
signals were detected using a template bank that lacked
spins entirely. Farr et al. (in preparation) show that us-
ing nonspinning BNS templates for parameter estimation
has negligible impact on sky localization. However, if one
or both companions are spinning as fast as a millisecond
pulsar, χ ∼ 0.4 [69], or even near breakup, χ ∼ 0.7,
then the orbital plane may precess; in this case, spins
can no longer be neglected for detection [68] and may
also be important for parameter estimation. Since spin-
ning BNS searches are still an active area of development,
BAYESTAR’s sky localization accuracy in this regime
should be reexamined in the future.

Although the response time of BAYESTAR has been
driven by the anticipated timescales for kilonova and af-
terglow emission, a recurring question is whether there is
any detectable EM signal in the seconds before, during,
and after the merger itself. Since the GW inspiral signal
is in principal detectable for up to hundreds of seconds
before merger, one could imagine positioning rapidly
slewing instruments to search for any prompt emission.
This concept was explored by the authors [65], and will
be revisted in further detail in both Sathyaprakash et al.
(in preparation) and Chu et al. (in preparation).

On the topic of very low-latency localization, we also
recommend Chen & Holz (in preparation), who propose
a rapid localization scheme that is similar to ours, but
even faster because it makes some additional compro-
mises: their likelihood is strictly Gaussian, so one more

16 BAYESTAR has been successfully ported to the Intel’s Many
Integrated Core (MIC) architecture and has been tested in a 500
thread configuration on a system with dual Intel Xeon Phi 5110P
coprocessors.



17

0.0 0.2 0.4 0.6 0.8 1.0
searched posterior mass

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fr
ac

tio
n

of
in

je
ct

io
ns

target 95%
confidence band

BAYESTAR

LALINFERENCE

0.0 0.2 0.4 0.6 0.8 1.0
searched posterior mass

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fr
ac

tio
n

of
in

je
ct

io
ns

target 95%
confidence band

BAYESTAR

LALINFERENCE

FIG. 11. P–P plots for BAYESTAR and LALINFERENCE localizations in the 2015 and 2016 configurations. The gray lozenge
around the diagonal is a target 95% confidence band derived from a binomial distribution.
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FIG. 12. Violin plot of BAYESTAR run times as the number
of OpenMP threads is varied from 1 to 32. The 2015 scenario
is shown in red and the 2016 scenario in blue.

marginalization integral (the integral over arrival time)
can be performed analytically.

X. CONCLUSION

We have presented a novel, fast, accurate, Bayesian
algorithm for inferring the sky locations of compact bi-

nary merger sources that may soon be detected by ad-
vanced ground-based GW detectors. For BNS systems
with small spins, we have shown that BAYESTAR pro-
duces sky maps that are as accurate as the full MCMC
parameter estimation code, but can do so within ∼10
seconds after a detection. Still faster response times
should be possible in the future (if warranted) by de-
ploying BAYESTAR on machines with more cores, or by
distributing BAYESTAR across multiple computers.

Following a BNS merger, the signal will be detected
by the matched-filter pipeline within tens of seconds;
an alert containing the time and estimated significance
of the event can be distributed almost immediately (al-
though a human validation stage that may be present
at the beginning of the first observing run may intro-
duce some additional latency). The localization from
BAYESTAR will be available tens of seconds to a minute
later. Finally, the refined localiation and the detailed es-
timates of masses and spins from LALINFERENCE will
be distributed hours to days later.

Relevant timescales for possible EM counterparts to
GW signals include seconds (the prompt GRB signa-
ture), hundreds of seconds (extended emission and X-ray
plateaus that are observed for some short GRBs), min-
utes to hours (X-ray and optical afterglow), hours to days
(the kilonova or the blue flashes associated with unbound
ejecta or disk winds), and days to years (the radio after-
glow). For the first time, we are able to provide accurate
localizations before the peak of any of these EM signa-
tures (except for the short GRB or any pre-merger sig-
nal). Even for components like the kilonova that should
peak within hours to days, the availability of the localiza-
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tions within seconds might provide a window of several
hours to obtain tiled images of the area before the EM
emission begins. These could be used as reference images,
crucial at optical wavelengths for establishing the rapid
rise and quickly distinguishing from slower background
transients.
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Appendix A: Independence of intrinsic and extrinsic
errors

If all of the detectors have the same noise PSDs up
to multiplicative factors, c1S1(ω) = c2S2(ω) = · · · =
cnSn(ω) ≡ S(ω), then we can show that the errors in the
intrinsic parameters (masses) are not correlated with sky
position errors. This is because we can change variables
from amplitudes, phases, and times to amplitude ratios,
phase differences, and time differences. With N detec-
tors, we can form a single average amplitude, time, and
phase, plus N − 1 linearly independent differences. The
averages are correlated with the intrinsic parameters, but

17 https://ligo-vcs.phys.uwm.edu/cgit/lalsuite/tree/

lalinference
18 http://www.lsc-group.phys.uwm.edu/daswg/projects/

lalsuite.html
19 http://www.astropy.org
20 http://healpix.sourceforge.net

neither are correlated with the differences. Since only the
differences inform sky location, this gives us license to ne-
glect uncertainty in masses when we are computing sky
resolution.

This is easiest to see if we make the temporary change
of variables ρ → ς = log ρ. This allows us to factor
out the S/N dependence from the single-detector Fisher
matrix. The extrinsic part becomes

Iθi,θi =


ςi γi τi

ςi ρi
2 0 0

γi 0 ρi
2 −ρi2ωi

τi 0 −ρi2ωi ρi
2ω2

i

 (A1)

= ρi
2

 1 0 0
0 1 −ωi
0 −ωi ω2

i

 .

Due to our assumption that the detectors’ PSDs are pro-
portional to each other, the noise moments are the same

for all detectors, ωki ≡ ωk. Then we can write the single-
detector Fisher matrix as

Ii = ρi
2

(
A B

B
T

C

)
, (A2)

with the top-left block A comprising the extrinsic param-
eters and the bottom-right block C the intrinsic param-
eters.

Information is additive, so the Fisher matrix for the
whole detector network is

Inet =



ρ1
2A 0 · · · 0 ρ1

2B

0 ρ2
2A

... ρ1
2B

...
. . . 0

...
0 0 · · · ρN

2A ρN
2B

ρ1
2B

T

ρ2
2B

T · · · ρN 2B
T

ρnet
2C

 . (A3)

Now we introduce the change of variables that sacrifices
the Nth detector’s extrinsic parameters for the network
averages,

ςN → ς =
(∑

i ρi
2ςi
)
/ρnet

2,
γN → γ =

(∑
i ρi

2γi
)
/ρnet

2,
τN → τ =

(∑
i ρi

2τi
)
/ρnet

2,
(A4)

and replaces the first N − 1 detectors’ extrinsic parame-
ters with differences,

ςi → δςi = ςi − ς
γi → δγi = γi − γ
τi → δτi = τi − τ

 for i = 1, . . . , N − 1. (A5)

The Jacobian matrix that describes this change of vari-

https://ligo-vcs.phys.uwm.edu/cgit/lalsuite/tree/lalinference
https://ligo-vcs.phys.uwm.edu/cgit/lalsuite/tree/lalinference
http://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
http://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
http://www.astropy.org
http://healpix.sourceforge.net
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ables is

J =



1 0 · · · 0 1 0
0 1 0 1 0
...

. . .
...

...
0 0 · · · 1 1 0
−ρ12

ρN 2
−ρ22

ρN 2 · · · −ρN−1
2

ρN 2 1 0

0 0 · · · 0 0 1


. (A6)

The transformed network Fisher matrix is block diagonal,

Inet → J
TInetJ =



ρ1
2(1 + 1

ρ14 )A ρ1
2ρ2

2

ρN 2 A · · · ρ1
2ρN−1

2

ρN 2 A 0 0
ρ1

2ρ2
2

ρN 2 A ρ2
2(1 + 1

ρ14 )A ρ2
2ρN−1

2

ρN 2 A 0 0
...

. . .
...

...
...

ρ1
2ρN−1

2

ρN 2 A ρ2
2ρN−1

2

ρN 2 A · · · ρN−12(1 + 1
ρ14 )A 0 0

0 0 · · · 0 ρnet
2A ρnet

2B

0 0 · · · 0 ρnet
2B

T

ρnet
2C


. (A7)

The top-left block contains N − 1 relative amplitudes,
phases, and times on arrival, all potentially correlated
with each other. The bottom-right block contains the
average amplitudes, phases, and times, as well as the
masses. The averages and the masses are correlated with
each other, but are not correlated with the differences.
Because only the differences are informative for sky lo-
calization, we drop the intrinsic parameters from the rest
of the Fisher matrix calculations in this appendix.

Appendix B: Interpretation of phase and time errors

The Fisher matrix in Equation (23) is block diagonal,
which implies that estimation errors in the signal ampli-
tude ρ are uncorrelated with the phase γ and time τ . A
sequence of two changes of variables lends some physical
interpretation to the nature of the coupled estimation
errors in γ and τ .

First, we put the phase and time on the same footing

by measuring the time in units of 1/
√
ω2 with a change

of variables from τ to γτ =
√
ω2τ :

I ′ =


ρi γi γτ,i

ρi 1 0 0
γi 0 ρi

2 −ρi2 ωi√
ω2

i

γτ,i 0 −ρi2 ωi√
ω2

i

ρi
2

. (B1)

The second change of variables, from γ and γτ to γ± =
1√
2
(γ ± γτ ), diagonalizes the Fisher matrix:

I ′′ =



ρi γ+,i γ−,i
ρi 1 0 0

γ+,i 0

(
1− ωi√

ω2
i

)
ρi

2 0

γ−,i 0 0

(
1 + ωi√

ω2
i

)
ρi

2

.
(B2)

Thus, in the appopriate time units, the sum and differ-
ence of the phase and time of the signal are measured
independently.

Appendix C: Position resolution

Finally, we will calculate the position resolution of a
network of GW detectors. We could launch directly into
computing derivatives of the full signal model from Equa-
tion (6) with respect to all of the parameters, but this
would result in a very complicated expression. Fortu-
nately, we can take two shortcuts. First, since we showed
in Section A that the intrinsic parameters are correlated
only with an overall nuisance average arrival time, am-
plitude, and phase, we need not consider the derivatives
with respect to mass at all. Second, we can reuse the
extrinsic part of the single detector Fisher matrix from
Equation (23) by computing the much simpler Jacobian
matrix to transform from the time, amplitude, and phase
on arrival, to the parameters of interest.

We begin by transforming the single-detector Fisher
matrix from a polar to a rectangular representation of the
complex amplitude given in Equations (14, 13), ρi, γi →
<[zi] = ρi cos γi,=[zi] = ρi sin γi:

Ii =


<[zi] =[zi] τi

<[zi] 1 0 ωibi
=[zi] 0 1 −ωibi
τi ωibi −ωibi ρi

2ω2
i

. (C1)

Consider a source in a “standard” orientation with the
direction of propagation along the +z axis, such that
the GW polarization tensor may be written in Cartesian
coordinates as

H =
1

r
e2iφc

 1
2 (1 + cos2 ι) i cos ι 0

i cos ι − 1
2 (1 + cos2 ι) 0

0 0 0

 . (C2)
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Now introduce a rotation matrix R that actively trans-
forms this source to the Earth-relative polar coordinates

θ, φ, and gives the source a polarization angle ψ (adopt-
ing temporarily the notation cθ = cos θ, sθ = sin θ):

R = Rz(φ)Ry(θ)Rz(ψ)Ry(π) =

 cφ −sφ 0
sφ −cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 cψ −sψ 0
sψ −cψ 0
0 0 1

 −1 0 0
0 1 0
0 0 −1

 . (C3)

(The rightmost rotation reverses the propagation direc-
tion so that the wave is traveling from the sky position
θ, φ.) With the (symmetric) detector response tensor Di,
we can write the received amplitude and arrival time as

zi = r1,i Tr
[
DiRH R

T
]
, (C4)

τi = t⊕ + di
T

Rk. (C5)

Equivalently, we can absorb the rotation R and the hori-
zon distance r1,i into the polarization tensor, detector
response tensors, and positions,

H → H ′ = Rz(ψ)Ry(π)H Ry(π)
T

Rz(ψ)
T

, (C6)

Di → D′i = r1,iRy(θ)
T

Rz(φ)
T

DiRz(φ)Ry(θ), (C7)

di → d′i = Ry(θ)
T

Rz(φ)
T

di, (C8)

k→ k′ = (0, 0,−1). (C9)

Now the model becomes

H ′ =

 h+ h× 0
h× −h+ 0
0 0 0

 , (C10)

zi = Tr [D′iH
′] = h+(D′00 −D′11) + 2h×D

′
01, (C11)

τi = t⊕ + (d′i) · k, (C12)

where

h+ =
1

r
e2iφc

[
1

2
(1 + cos2 ι) cos 2ψ + i cos ι sin 2ψ

]
,

(C13)

h× =
1

r
e2iφc

[
1

2
(1 + cos2 ι) sin 2ψ − i cos ι cos 2ψ

]
.

(C14)

We insert an infinitesimal rotation δR to perturb the
source’s orientation from the true value:

zi = Tr
[
D′i(δR)H ′(δR)

T
]
, (C15)

τi = t⊕ + (d′i)
T

(δR)k′. (C16)

We only need a first order expression for δR, because we
will be taking products of first derivatives of it21:

δR =

 1 0 δθ
0 1 δφ
−δθ −δφ 1

 . (C17)

We construct a Jacobian matrix Ji to transform from
the single-detector observables (<[zi],=[zi], τi) to the po-
sition perturbations, polarization components, and geo-
centered arrival time
(δθ, δφ,<[h+],=[h+],<[h×],=[h×], t⊕):

21 Caution: the angles δθ and δφ represent displacements in two
orthogonal directions, but are not necessarily simply related to

θ and φ.
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Ji
T

=



<[zi] =[zi] τi
δθ −2<[h+]D′02 − 2<[h×]D′12 −2=[h+]D′02 − 2=[h×]D′12 −d′0
δφ −2<[h×]D′02 + 2<[h+]D′12 −2=[h×]D′02 + 2=[h+]D′12 −d′1
<[h+] D′00 −D′11 0 0
=[h+] 0 D′00 −D′11 0
<[h×] 2D′01 0 0
=[h×] 0 2D′01 0
t⊕ 0 0 1


. (C18)

We transform and sum the information from each detec-
tor,

Inet =
∑
i

Ji
TIiJi. (C19)

1. Marginalization over nuisance parameters

To extract an area from the Fisher matrix, we must
first marginalize or discard the nuisance parameters.
Note that marginalizing parameters of a multivariate
Gaussian distribution amounts to simply dropping the
relevant entries in the mean vector and covariance ma-
trix. Since the information is the inverse of the covariance
matrix, we need to invert the Fisher matrix, drop all but
the first two rows and columns, and then invert again.

This procedure has a shortcut called the Schur com-
plement (see, for example, Press et al. 71). Consider a
partitioned square matrix M and its inverse:

M =

(
A B
C D

)
, M−1 =

(
Ã B̃

C̃ D̃

)
. (C20)

If A and B are square matrices, then the upper-left block
of the inverse can be written as

Ã−1 = A−BD−1C. (C21)

If we partition the Inet similarly, the A block consists
of the first two rows and columns and D is the lower
right block that describes all other parameters. Because
the Fisher matrix is symmetric, the off-diagonal blocks

satisfy C = B
T

. Then the Schur complement

Imarg = A−BD−1BT

(C22)

gives us the information matrix marginalized over all pa-
rameters but δθ and δφ.

2. Spatial interpretation

How do we extract the dimensions of the localization
from the Fisher matrix? If there are N ≤ 2 detectors,
then the Fisher matrix must be degenerate, because there
are 3N measurements and 7 parameters:



δθ
δφ
<[h+]
=[h+]
<[h×]
=[h×]
t⊕


= 7 parameters ←→

 <[zi]
=[zi]
τi

×N = 3N observables.

Therefore, for N = 2 detectors, the marginalized Fisher
matrix Imarg is singular. Its only nonzero eigenvalue λ
describes the width of an annulus on the sky. The width
of the annulus that contains probability p is given by

Lp = 2
√

2 erf−1(p)/
√
λ. (C23)

The prefactor 2
√

2/ erf−1(p) is the central interval of a
normal distribution that contains a probability p, and is
≈ 3.3 for p = 0.9. Caution: for two-detector networks,
priors play an important role in practical parameter es-
timation and areas can be much smaller than one would

predict from the Fisher matrix.

For N ≥ 3 detectors, the parameters are
over-constrained by the data and the Fisher matrix de-
scribes the dimensions of an ellipse. Within a circle of
radius r centered on the origin, the enclosed probability
p is

p =

∫ 2π

0

∫ r

0

1

2π
e−s

2/2s ds dφ = 1− e−r2/2. (C24)

Therefore the radius r of the circle that contains a prob-
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ability p is

r =
√
−2 ln(1− p). (C25)

Suppose that the eigenvalues of the Fisher matrix are
λ1 and λ2. This describes a 1σ uncertainty ellipse that

has major and minor radii λ1
−1/2, λ2

−1/2, and area
A1σ = π/

√
λ1λ2 = π/

√
det I. Then the area of an el-

lipse containing probability p is

Ap = −2π ln(1− p)/
√

det I, (C26)

or, more memorably for the 90th percentile, A0.9 =
2π ln(10)/

√
det I.

3. Outline of calculation

Using the above derivation, we arrive at a prediction
for the sky resolution of a GW detector network. We
took some shortcuts that allowed us to avoid directly
evaluating the complicated derivatives of the signal itself
with respect to sky location. As a result, the expressions
involved in each step are simple enough to be manually
entered into a computer program. However, because the

procedure involves several steps, we outline it once again
below.

1. Compute, for each detector, the horizon distance
r1,i, the angular frequency moments ωi and ω2

i,
and (h+, h×) from Equations (C13, C14). (These
can be reused for multiple source positions as long
as the masses and the detector noise PSDs are the
same.)

2. For a given φ, θ, ψ, compute the complex received
amplitude zi from Equations (C10, C11), the ex-
trinsic Fisher matrix from Equation (23), and the
Jacobian from Equation (C18).

3. Sum the information from all detectors using Equa-
tion C19.

4. Compute the marginalized Fisher matrix from the
Schur complement using Equation (C22).

5. If there are two detectors, find the width Lp of
the ring describing the pth quantile using Equa-
tion (C23). If there are three or more detectors,
find the area Ap of the pth quantile using Equa-
tion (C26).

6. (Optionally, convert from (ste)radians to (square)
degrees.)

See code listing in Appendix A.6 of [60].
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