

Mirror profile and intracavity field profile

Hiro Yamamoto LIGO/Caltech

- Introduction
- Mirror spatial frequency and arm loss
- Point scattering and intracavity field
- Spiral patterns on ETMs at L1 and H1
 - » Imbalanced noise by spiral patterns
 - » Direct measurement of the cone scattering by spiral pattern
- Polishing vs coating for the future
- Summary, question to be answered

$$E_{ref} = E_{ref}^{0} \exp(i\omega t - ikz) \cdot \exp(2ikf(x, y))$$

$$= E_{ref}^{0} \exp(i\omega t - ikz)(1 - 2(kf)^{2}) + E_{ref}^{0} \exp(i\omega t - ikz)i2kf$$

$$f(x,y) = \sum_{nx,ny} a_{nx,ny} \sin(n_{x}\omega_{x}x + n_{y}\omega_{y}y + \varphi_{nx,ny})$$

$$dF$$

$$dF$$

* Periodical aberration scatters to a fixed angle

$$\theta \sim n \sqrt{\omega_x^2 + \omega_y^2} / k \sim n \cdot \lambda / a, \quad dx = L_{cav} \cdot \theta \sim L_{cav} \cdot \lambda / a$$

Cavity field
$$I_{loss}$$

 $dF^{-} dx + c dF^{+} dF^{+} e flected field field f(x,y)$

Mirror surface aberration

* Small size aberration scatters back spherically $loss = (1 - (mirror size / cavity length)^2) \cdot dW$

Hiro Yamamoto LVC Pasadena March 17, 2015

LIGO-G1500262

Measured mirror profile and intracavity field

Mirror profile	Spatial resolution	Field angle	Cause and effect in cavity
Phase map	> 1mm	< 2 x 10 ⁻⁴ rad, < 1m at 4km	Intracavity fields and near the edge of mirror, cavity modea
PSD, RMS, BRDF	1µm ~ a few mm by PMM, + phase map	~ large angle	Characterization of continuous structure, field scattered out to large angle
Integrating sphere	fraction of mm	> 5 degree	Total scattering to almost all angle, effects of non contiguous (point) structures captured. Near backward is covered by others.

COC mirror data (characteristics of mirror) + appr. Maxwell eq. with rigorous boundary cond. ⇒ IFO observable

Hiro Yamamoto LVC Pasadena March 17, 2015

Raw data of mirror profiles

(3) Surface after polishing measured by

0.25mm x 0.25mm square near center. RMS = 0.099nm, PV=0.768nm

PMM(phase measuring microscope)

with magnification of 50.

n -3.15

(2) Surface after multilayer coating by ison spattering Aperture160mm RMS = 0.563nm, PV=4.436nm

(4) Reflectance measured by an integrating sphere with the scattering angle larger than 1°. The size of the laser is 0.3mm, with spacing 1mm.

RMS using all data points is 98ppm. RMS is 20ppm after excluding 15 points with reflectance > 1000ppm4.

aLIGO cavity scattering loss by wavelength

LIGO-G1500262

Hiro Yamamoto LVC Pasadena March 17, 2015

5

field PSD(θ) \neq mirror PSD(f), const BRDF \Rightarrow wrong loss

Point source : dF \Rightarrow const BRDF $\Rightarrow 2\pi$ dS / λ^2 x true scattering **PSD to dF :** $|dF[x,y,z]|^2 = \frac{32\pi^2}{w^2\lambda^4L^2} \left| \int \int \Delta [f_u, f_v] \delta \left[f_u - \frac{x}{\lambda L}, \varepsilon \right] \delta \left[f_v - \frac{y}{\lambda L}, \varepsilon \right] df_u df_v \right|^2$

> Δ : 2D amplitude spectral density, $\epsilon \sim 1/a$ few cm Hiro Yamamoto LVC Pasadena March 17, 2015

LIGO-G1500262

Single propagation vs cavity field Airy ring outside of mirror

aLIGO simulation :

single propagation vs

resonating field around cavity

iLIGO data by Valera

7

0.35

Small anomaly induces widespread tiny disturbance

$$dW(loss) = \sum_{anomalies} \left(\frac{4\pi\sigma_a}{\lambda}\right)^2 S_a \cdot P_a$$

Disturbance of fields by a point anomaly propagates out spherically
Intracavity field is affected entirely, not partially
Disturbance induced by a point anomaly is widespread weakly
Difficult to measure the effect, except for using the total loss measurement

LMA coating on ETMs

This is about the installed ETMs at L1 and H1

 State of the art coating is presented in the talk by Laurent Pinard of LMA

Periodical structure on a mirror induces reflected field into a cone with a fixed angle

Signature at L1 ITM baffle PDs

Different backscattering noise?

			L1		H1		
	ETM14	ETM11	ETM07	ETM09	ETM08	ETM12	
power (45cm~70cm)	2.4	1.5	6.3	4.3	7.7	5.2	
round trip loss	74	73	80	78	80	80	Small, but into a
НОМ	226	283	208	288	227	312	fixed direction

LIGO-G1500262

For the future ... Polishing, not bad

aLIGO ITM/ETM Polished map PSD

Round trip loss and HOM in a symmetric FP cavity

Hiro Yamamoto LVC Pasadena March 17, 2015

LIGO-G1500262

14

Coating uniformity some improvement wanted

LIGO-G1500262

Hiro Yamamoto LVC Pasadena March 17, 2015

Coating limits larger beam size configuration

- Larger optics can accommodate larger beam size
- Polishing is good enough for that (solid lines)
- Polishing uniformity can limit that (two dashed lines)

Hiro Yamamoto LVC Pasadena March 17, 2015

LIGO Missing loss of 40ppm needs to be well understood to discuss future IFO loss

Phasemap and Caltech/LMA scattering loss measurements

total round trip loss

• alog13414 ETMY scattering

- » Total : 36ppm
- » Point scattering : 18ppm
- alog13769 Best round trip loss
 85ppm
 - » Extra 30-40ppm, where???
- COC data + Model
 - » Round trip loss error < 14ppm
 - » Integrated scattering
 - 7.5ppm by LMA
 - 9.3ppm by Caltech
 - » Zygo rms \Rightarrow loss(<1mm) < 1ppm
 - » PSD ⇒ loss(<5mm) < 1ppm

ETM09Hiro Yamamoto LVC Pasadena March 17, 2015