LIGO-G1500330

Status of Nano-layered Coating Developments

Shiuh Chao, Huang-Wei Pan, Ling-Chi Kuo

Riccardo DeSalvo & the INFN AdCOAT Team

National Tsing-Hua University, Taiwan (ROC) and LVC

Cal State University Los Angeles, Uni-Sannio, INFN, LVC and KAGRA

3/16/15 LVC collaboration meeting

Sub-Wavelength Nano-layers

Stratified composites, whose properties depend in a very simple way on the constituents' properties and the thickness ratio

Nano-layer Prototypes

Consist of nominally identical cascaded nano**doublets**, and are thus specified by (N, δ_H, δ_L) .

Can adjust refraction index by changing the nano-layer thickness ratio

Can adjust the super-layer optical thickness by adjusting the number of layers

Example of segmentation of a ¼ wavelength (gwl.) super-layer Equivalent TiO₂/SiO₂ subwavelength doublet based, QWL thick composites with n_{eff} = 2.09

-	N	$\delta_{TiO_2}[nm]$	$\delta_{SiO_2}[nm]$	N	$\delta_{TiO_2}[nm]$	$\delta_{SiO_2}[nm]$
:	1	78.0559	49.2168	14	5.57542	3.51549
	2	39.0279	24.6084	15	5.20373	3.28112
	3	26.0186	16.4056	16	4.87849	3.07605
	4	19.514	12.3042	17	4.59152	2.89511
	5	15.6112	9.84337	18	4.33644	2.73427
	6	13.0093	8.20281	19	4.1082	2.59036
	7	11.1508	7.03098	20	3.90279	2.46084
	8	9.75699	6.1521	21	3.71695	2.34366
	9	8.67288	5.46854	22	3.548	2.23713
	10	7.80559	4.92168	23	3.39373	2.13986
	11	7.09599	4.47426	24	3.25233	2.0507
	$1\overline{2}$	6.50466	4.1014	25	3.12224	1.96867
0330	13	6.0043	3.78591			Δ

3/16/15 LVC collaboration meeting

X-Ray Nano-layered Coatings

X-ray interference mirrors consisting of hundreds/thousands of nm scale layers, With sub - nm precision [see, e.g., Proc. 10th PXRMS Conf. (2008)], using

 Interleaved nm-scale "buffering" layers prevent to crystallization & maintain flatness
[E. Gullikson, Proc. 8th PXRMS (2006)]

 Ion assisted (modulated) magnetron sputtering [N. Ghafoor et al., Thin Sol. Films 516 (2008) 982]

Control of stress, crystallite size, and roughness [D.L. Windt, Proc. SPIE (2007) vol 6688]

Interleaved B₄C- Cr/Sc multilayer

See also [R. DeSalvo, LIGO-G080106] for discussion.

3/16/15 LVC collaboration meeting

Rugate Optical Filters

Rugates have been around since long. They use a *continuously varying* index distributions, to synthesize, e.g., a *dichroic response* [see, e.g., W. H. Southwell, Appl. Opt. 24 (1985) 457-460]

Mimic a continuous, periodically-changing refraction index function by a staircase of stacked, optically-thin homogeneous layers...

Requirements / Technological Challenges

relatively large thickness errors in the individual low/high index nanolayer thicknesses are Irrelevant.

IF each layer is sub-wavelength and total thickness ratio has the design value

Are there any other technological issues ?

Try and see ...

Doping Hinders Crystallization

• Silica doping contrasts crystallization [S. Pond, Appl. Optics, 28 (1989) 2800]

[[]P. Murray, LIGO G-1400275]

3/16/15 LVC collaboration meeting

SiO₂:: Ta₂O₅ / SiO₂ (35::65)

 TiO_2 :: Si_2O_2 / SiO_2 (35::65)

1.83

1.77

 2.5 ± 0.4

 1.7 ± 0.4

Thin(ner) Layers ..

... crystallize at high(er) annealing temperatures

Seminal work on *thin – layer Titania* films by Sankur & Gunning [J. Appl. Phys. 66 (1989) 4747]

"Thinner layers (< 250 Å) required higher temperatures [to crystallize]. 65 Å layer films exhibit diffraction only after annealing at 600°C."

"Grain size, as deduced from diffraction line broadening, was comparable to the layer thickness"

"Thicker layers remain in the Anatase phase and never transform into Rutile, even for prolonged (72 h) annealing at the highest temperature s (1100°C). Thinner layers (65 Å) convert into Rutile starting at 900°C"

"Below a certain critical thickness crystallization in pure TiO₂ films is inhibited"

[Gluck et al., J. Appl. Phys. 69 (1991) 3037]

[S. Chao et al., LIGO-G1300921]

Fraction of silica can be reduced, thus increasing n_{high}/n_{low} contrast => => For same reflectivity reduce number of layers / thermal noise 3/16/15 LVC collaboration meeting LIGO-G1500330

Hafnia-Alumina Nano-layers

Nanometer-layered Hafnia (12nm)/Alumina (3nm) composites do not crystallize upon annealing, up to temperatures of 800 °C

[M. Liu et al., Appl. Surf. Sci. 252 (2006) 6206].

"XRD analysis shows that the films remain amorphous up to an annealing temperature of 800 °C"

"FTIR indicates that no interface layer forms during annealing up to 800 °C"

Our own results shown later

Nano-layered vs. Doped

• Nano-layered are much easier modeling compared to doped [Pinto et al., LIGO-G100372]

The Cryo-Peak Puzzle

Mechanical loss measurements on single-layer Titania-doped-Tantala and Silica films show a mechanical loss peak at ~ 30K [Martin et al., CQG 25 (2008) 055005]

Mechanical loss measurements on *multilayer Titania-doped-Tantala coatings on Silicon* (annealed at 400 C~ 600 C) also show a cryo-peak at ~ 30K [Granata et al., Opt. Lett. 38, 5268 (2013)].

Mechanical loss measurements on *multi-layer Tantala/Silica coatings on Sapphire do not show such peak*, yielding almost temperature & annealing schedule independent losses

[Yamamoto et al., PRD-74 022002 (2006); Hirose et al., LIGO-P1400107] .

Cryo – Friendly Oxides...

[IMartin & Murray, GWADW 2014, preliminary]

... crystallize upon annealing (nee

(needed for optical properties)

3/16/15 LVC collaboration meeting

NTHU Deposition Facility

Kaufman-type ion beam sputterer in Class 100 clean compartment within Class 10000 clean room. [S. Chao et al, LIGO-G1101083, G1200489, G1300921]

Kaufman gun & neutralizer

Sputter target and rotator

Several witness samples are deposited together with a few cantilevers in each run for structural/optical characterization.

3/16/15 LVC collaboration meeting

Deposition Uniformity

[S. Chao et al., LIGO-G1300921]

NTHU Annealing Facility

[S. Chao et al., LIGO-G1300921]

NTHU quality factor control Cantilever Setup

[S. Chao, LIGO-G1200489]

Clamp/Exciter Design

Cantilever Design

NTHU XRD Facility

Model : X'Pert Pro (MRD) Company : PANalytical X-ray source : Cu (K α ; λ = 0.154 nm) Generator voltage : 45kV Tube current : 40mA Detector : Proportional Counter Beam size : 12 mm × 0.4 mm Sample size : 10mm X 10mm

Incidence angle(θ) : 0.5 ° Scan range (2 θ): 20 ° ~65 ° Scan step size : 0.02 ° Time per step : 0.5s

The INFN AdCOAT Project (2014-15)

Mission:

"Investigating, characterizing and comparing the properties (morphological, structural, optical and viscoelastic) of Silica::Titania and Silica::Hafnia mixtures, both nm-layered and co-sputtered, at ambient and cryogenic temperatures."

Working Groups: USannio (PI, nanolayer modeling and design); Genoa (structural/optical characterization); Perugia (dissipation modeling in glasses; viscoelastic parameter measurements); Rome (cryogenic GeNS based loss angle measurement setup).

1st Generation Prototypes

	Total thickness	Averaged thickness of TiO ₂ and SiO ₂ layer(nm)					
	(nm)	TiO ₂	SiO ₂				
single TiO2	121.9	121.9	0				
3 layer	119.8	40.9	40.7				
5 layer	119.2	26.2	20.3				
7 layer	120.0	20.6	12.5				
11 layer	119.3	13.7	7.4				
15 layer	112.4	9.8	4.8				
19 layer	112.6	7.4	4.3				

All prototypes QWL thick @ 1064nm, all with *n* = 2.065

Morphology (As Deposited)

[S. Chao et al., LIGO-G1200489]

Morphology of witness samples investigated using TEM and electron diffraction.

Interface profiles characterized via energy-dispersive X-ray diffraction (EDXRD)

XRD Spectra after Annealing

Threshold anneal temperature For crystallization

increases with : the number of layers decreasing the Titania layer thickness.

At 300C the Anatase peak gets smaller and broader as the nanolayer thickness decreases (and the nanolayer number Increases), signaling progressive crystallization frustation, until it disappears for N=19.

LIGO-G1500330

After anneal at 300°C 24hours

3/16/15 LVC collaboration meeting

Crystallization Sample	Before annealing	225 °C 24hr	250 ℃ 24hr	300 ℃ 24hr	350 ℃ 24hr
Single TiO ₂	No	No (explained)	Yes FWHM=0.37 °	Yes FWHM=0.37 °	
3 layer	No	Yes FWHM=0.37 °	Yes FWHM=0.40 °	Yes FWHM=0.35 °	
5 layer	No	No	Yes FWHM=0.50 °	Yes FWHM=0.44 °	
7 layer	No	No	Yes FWHM=0.53 °	Yes FWHM=0.50 °	
11 layer	No	No	Yes FWHM=0.81 °	Yes FWHM=0.65 °	
15 layer	No	No	No	Yes FWHM=0.93 °	
19 layer	No	No	No	No	Yes FWHM=1.32 °

Crystallite Size vs Nano-thickness

							\square				
		Thickness of TiO2 (nm)	Anatase		Anatase TiO	iO2 Peak (101)			Anatase TiO2 Peak (200)		
				20	eta_{exp} (degree)	β₅cosθ (degree)	<i>L/ k</i> (nm)	20	β _{exp} (degree)	β _s cosθ (degree)	<i>L/ k</i> (nm)
Single TiO2		121.9		25.344	0.356	0.160	55.162	48.088	0.392	0.180	49.087
3-layer		40.9		25.371	0.390	0.223	39.569	48.108	0.424	0.233	37.942
5-layer		26.2		25.351	0.428	0.282	31.330	48.096	0.476	0.305	28.916
7-layer		20.6		25.355	0.504	0.383	23.034	48.099	0.502	0.338	26.097
11-layer		13.7		25.330	0.668	0.574	15.366	48.094	0.666	0.524	16.854
15-layer		9.8		25.315	0.910	0.833	10.597	48.048	0.899	0.761	11.602
19-layer		7.4		25.416	1.140	1.068	8.258				
						•		-	-		

Crystallite sizes L/k of the nano-layers after anneal at 300C 24hr

TEM Before/After Annealing

TEM shows that no significant across-interface diffusion occurs during annealing

3/16/15 LVC collaboration meeting

Loss Angle Before/After Annealing

Different bars correspond to different re-clampings.

Lowest-average bar yields most trustable value.

Multiple measurements taken for each re-clamping, yielding error bars.

T _{ann}	μ	σ/μ			
A.D.	7.36 10 ⁻⁶	0.082			
250	5.64 10 ⁻⁶	0.074			
300	4.81 10 ⁻⁶	0.074			
substrate + film (19 layers)					

[preliminary results, S. Chao et al., LIGO-G1401055]

Puzzles?

Is there an optimal Ti thickness (or distributed stress) to reduce mechanical losses?

Is there a physical saturation effector simply because coating losses are already almost indistinguishable from Si substrate's

Need improved measuring system, make one free of re-clamping noise.

3/16/15 LVC collaboration meeting

[preliminary results , S. Chao , NTHU]

Nanolayer Loss Angle

[Pierro et al., LIGO-T060173]

TiO₂ Loss Angle in Nanolayer

... Use fiducial value of Silica loss angle (5 10^{-5}) to retrieve loss angle of *a*-Titania *in the nm-layered composite*

$$\phi_{nlc} = \frac{\left(\frac{Y_s}{Y_1} + \frac{Y_1}{Y_s}\right) z_1 \phi_1 + \left(\frac{Y_s}{Y_2} + \frac{Y_2}{Y_s}\right) (1 - z_1) \phi_2}{Y_s \left[\frac{z_1}{Y_1} + \frac{1 - z_1}{Y_2}\right] + Y_s^{-1} \left[\frac{z_1}{Y_1} + \frac{1 - z_1}{Y_2}\right]^{-1}}$$

Yields loss angle values ~ 10^{-4} for a-TiO₂, consistent with [Scott and MacCrone, Rev. Sci. Instr. 39 (1968) 821].

TiO₂ Loss Angle in Nanolayer

...yielding for our 19-layers nm-layered composite the following estimates for the loss angle as a function of the annealing temperature (with typical 10% uncertainties)

ϕ = 1.04 10 ⁻³	(as deposited)
ϕ = 0.43 10 ⁻³	(after annealing 24h @ 250°C)
ϕ = 0.13 10 ⁻³	(after annealing 24h @ 300°C)

...comparable to or better than Ti-doped Tantala !

Note: the effective refractive index of our nm-layered composite is (Drude formula):

$$n_{nl} = [z_1 n_1^2 + (1 - z_1) n_2^2] \approx 2.063 \ (@1064nm)$$

3/16/15 LVC collaboration meeting

AFM Characterization (AdCOAT)

AFM images of single Ti layer qwl.

AFM images of single silica layer qwl.

AFM Characterization (AdCOAT)

AFM (Dimension 3000)

AFM images of 1 QWL (5 layers) Ti/Si on silicon (e) as-deposited (f) as-annealed at 300°C,

AFM images of 1 QWL (19 layers) Ti/Si on silicon (g) as-deposited

(h) as-annealed at 300°C.

(M. Canepa, INFN Ge)

Ellipsometry-Optical Characterization (AdCOAT)

Optical Characterization (AdCOAT)

5 layer Titania/Silica nominal thickness 27.1 nm (Titania x3) ; 19.9 nm (Silica x2)

Un-annealed

Annealed (300° C)

Very good fit using EMT (BruggeMann and/or Drude formulas) Optical losses are below measurement sensitivity (1ppm)

> Ellipsometric spectroscopy (Woollam 2000, VASE) (M. Canepa, INFN Ge)

Optical Characterization (AdCOAT)

REFRACTION INDEX SINGLE SILICA LAYER ON SILICON

Visibly annealing relaxes deposited silica towards the molten silica glass state

> Ellipsometric spectroscopy (Woollam 2000, VASE) (*M. Canepa, INFN Ge*)

Characterization tools

We have good eyes to see !

GeNS Setup, T_{amb} & Cryo (AdCOAT)

GeNS (Gentle Nodal Suspension)

AdCOAT INFN Rome WG - is building a GeNS based setups for mechanical Q measurement at ambient and (soon) cryogenic temperatures.

1" Silicon disks being sent to Chao for coating Tamb measurements to start soon (June 2015).

(courtesy A. Rocchi, INFN U-Rome-Tor Vergata)

Si₃N₄ Substrates (AdCOAT)

AdCOAT INFN U-Perugia Group is setting up a new MM interferometer for high Q (Norcada) Si₃N₄ membrane characterization (naked first, then nanolayer-coated).

Designed for cryogenic operation.

Lightwave 126

Thorlabs BS-011 & BB1-E03

Vacuum: Pfeiffer TSH 071E

Pumping Station TSH 071 F Turbomolecular Drag Pump TMH 071 P Disphragm Pump MVP 015-2 0N/0FF mains switch diaphragm pump Display And Operating Unit DCU 001 Electronic Drive Unit TC 600

NF 2011-FC

Norcada QX10500CS

SR-844 Lock-In

DAC NI-SB 6221

Cryomech PT 405

(courtesy H. Vocca, INFN, U-Perugia)

3/16/15 LVC collaboration meeting

More on Si₃N₄ Substrates

UniSannio / NTHU / CSULA

Designed for cryogenic operation in NTHU and Sannio cryostats.

- Michelson readout
- Piezo excitation/resonance track
- Fiber light feeding

Si₃N₄ Substrates (AdCOAT)

Advantages / disadvantages of mechanical loss measurement on thin Silicon Nitride substrates

•Advantages:

- -Ultra-thin (~100nm), very low mechanical loss substrate
- -Coating losses by far dominating
- -Cheap modular substrate (e-microscope windows)

•Limitations:

- -High frequency operation
- -Membrane will bow under surface stress of deposited layer
 - + Directly measure surface tension variations during annealing
- -Probably limited to several nanolayers

•Possible problems:

-Low reflectivity from membrane, low contrast

Zwickl, B. M., et al. "High quality mechanical and optical properties of commercial 3/16 silicon nitride membranes." Applied Physics detters 92.10 (2008): 103125-103125.

10 mm

NTHU Cryo Upgrade (2014-15)

S. Chao at NTHU is upgrading his cantilever based Q measurement facility for cryogenic operation. New funding received from Taiwan National Research Council.

[S. Chao, LIGO-G1400806]

Design Optimization (AdCOAT)

Generalizing results in [Principe et al, ch 12 in Harry et al, "Thermal Noise in Precision Measurements," Cambridge Un. Press, 2012] to *nanolayer based coatings*

... comparison (on paper) to optimized TNI mirrors based on plain and Ti-doped Tantala...

Little chance of being able to prototype such animal in Chao's Lab...`

(courtesy M. Principe, INFN, U-Sannio)

New Coating Facility (AdCOAT)

AdCOAT Usannio WG – new funding from Regione Campania for new "big" Laboratory Facilities

MITEC 45 m² class 10000 reconfigurable clean room 9 m² class 100 room.

Optotech OAC-75F coater

New Coating Facility (AdCOAT)

Optotech OAC-75F

coater

3/16/15 LVC collaboration meeting

- 700 mm *\phi* dome
- 75 mm ϕ useful coating area
- Cryo pumping 90 kl/s
- Op. temp 30 to 300°K
- Multiple targets
- Ion gun 10 eV up to 300 eV
- Ar/O₂ atmosphere controls
- 6 MHz Quartz crystal (multiple) thickness control
- Shutters
- De-ionizing gun
- 2 replaceable wall liners
- Sander/cleaner

Make *thinner* layers (and hence more layers) to allow for *higher annealing temperatures*, and measure loss angle.

Practical thickness limit $\approx 2nm$, may allow $T_{ann} \approx 400 C$; Better (higher Q) substrates may be needed (Norcada's ?);

Complete optical characterization and investigate correlation with macroscopic strucural (TEM, AFM) features (Genoa).

> Need to characterize optical scattering losses of nanolaminates; Collaboration w. other LVC/KAGRA Groups sought.

Investigate behaviour of nm-layered composites at cryogenic temperatures Cryogenic ringdown measurement facilities are being implemented at NTHU, Rome (GeNS) and Perugia (Si₃N₄ membranes). **Upcoming upgrades**

We are getting

Better eyes to see, and

Better hands to do !

3/16/15 LVC collaboration meeting

Acknowledgements

This work has been sponsored in part by EU through the EU-FP-7 ELITES (IRSES) Project; Italian National Institute for Nuclear Physics (INFN) under the AdCOAT grant; National Science Council of Taiwan under NSC-1002221-E-007-099.