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1 Revision History

• v7 adds the section on direct longitudinal coupling to the UIM; changes the roll to
DARM coupling from 5e-5 to 3e-6 m/rad; adds a list of references at the end; and adds
this section on the revision history.

• v6 corrects more references to n3 that describe it as the full wire spacing rather than
half the wire spacing between the PUM prisms. Also, the Latex source files are added
here.

• v5 corrects a typo in the Notation section. n3 was described as the distance between
the wire prisms on the PUM, but it is actually half the distance, i.e. it is the distance
from the prism tip to the center of mass. In v2 the definition in the Notation section
is correct, but the description in section 3.1 still refers to the diameter.

• v4 adds viscous damping thermal noise plots for considering eddy current damping.
It also replaces the gwinc curve with a predicted suspension thermal noise curve from
Alan Cumming.

• v3 adds a thermal noise curve to Figure 8, to help the design process. Also the gwinc
curve in the other figures is updated with the latest Mark Barton thermal noise, and
set to 25 W input power rather than 125 W.

• v2 adds some trend plots showing the damping factor and Qs as a function of damper
mass ratio.

2 Introduction

Due to the regular problems posed to the interferometer by the ringing up of the quadruple
suspensions’ highest frequency bounce and roll modes, this note explores the possibility of
damping them with tuned mass dampers (TMDs). This note simulates the damping and
thermal noise performance of TMDs applied to the springs tips in the upper-intermediate-
mass (UIM). See Fig. 1.

Section 3 gives a list of variables used in Section 4. The design of the TMDs in Section
4 follows class notes appended to this document in Appendix A. These notes are from a
Mechanical Engineering class at MIT in the fall of 2006. They are an excerpt from an
unfinished text book the professor was writing at the time called ‘Advanced Structural
Dynamics’. I haven’t been able to find a published version of the book.

The results of the simulations are given in Section 5 and discussed in Section 6. You can
read these sections without the details of Sections 3 and 4.

The simulations apply models for each damper (4 total) to the full quad model since each
damper will be influenced by both bounce and roll. This also permits us to explore asym-
metric designs, such as putting just a bounce damper on one spring and a roll damper on
the other.
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UIM spring tips where TMDs go 

Figure 1: Left: A SolidWorks sketch of the quadruple pendulum. Right: a blow up of
the UIM, highlighting the blade spring tips where the dampers are being considered to go.
Reference D0901346.

The MATLAB code for these simulations is on the SVN at
.../SusSVN/sus/trunk/QUAD/Common/MatlabTools/QuadModel Production/

TMD BounceAndRollModes fullquad.m

The quad model parameter file referenced in this document is in the same directory. The
filename is quadopt fiber.m.
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3 Notation

I will follow the notation in Appendix A and the quad model parameter file as closely as
possible. The list below summarizes the variables used in Section 4.

• Ω is the undamped bounce or roll frequency in rad/s.

• ω0 is the frequency of the damper alone, in rad/s.

• µb is the mass ratio of the bounce damper.

• µr is the mass ratio of the roll damper.

• mb is the bounce damper mass on each spring tip.

• mr is the roll damper mass on each spring tip.

• k is the damper stiffness.

• c is the damper viscous damping coefficient.

• d is the damper structural damping factor.

• M2 is the mass of the quad’s penultimate mass (PUM), following the model’s notation.

• I2x is the roll inertia of the PUM, following the model’s notation.

• n3 is half the horizontal distance between the wire prisms on the PUM.

• Mr is the effective roll mass of the quadruple suspension.

• x is the variable for the position of the damper mass.

• xg is the variable for the position of the damper’s ‘ground’ (the spring tip).

4 Tuned Mass Damper Design

This section presents the equations for damper mass, resonant frequency, stiffness, and damp-
ing. It then presents the state space matrices for the damper model. Finally, it discusses
how the thermal noise is calculated.

4.1 Damper Mass

The mass of each bounce damper is given by

mb = 0.5µbM2 (1)

The 0.5 is because we have two of them, one on each spring. M2 is probably not the
theoretically correct mass value to use. Likely the modal mass of the bounce mode is more
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correct. However, since the PUM and test mass are the same weight, the modal mass is also
the same.

The mass of each roll damper is
mr = 0.5µrMr (2)

Mr = I2x/n
2
3 (3)

As for the bounce damper, it is probably more correct to reference the modal mass rather
than the inertia of the PUM. However, since the PUM and test mass are the same, this
works out OK.

Note that the effective roll mass, Mr, is obtained by dividing the PUM inertia I2x by n2
3, the

square of half the wire spacing at the PUM, not the the UIM spring tips. The wire is slightly
angled, so the wire spacing is not the same in both places (though it is close). I believe it
is better to use the PUM because for small roll rotations the vertical displacement of the
spring tip is the same as that of the PUM wire prism. Thus, we can think of the dampers
as being located at the tips of the PUM prisms.

4.2 Damper Frequency and Stiffness

The resonant frequency of an ideal damper (on its own) is not exactly the frequency of the
mode to be damped. As given by Eq. (A10), the frequencies are scaled by the mass ratio

ω0 =
Ω

1 + µ
(4)

Likely, the mass ratios in this case will be so small that we would do just as well targeting
the actual bounce and roll frequencies.

Given the damper frequency and mass, the stiffness is straight forward.

k = mω2
0 (5)

4.3 Damper Lossiness

There are two types of lossiness we must consider. Appendix A assumes viscous or velocity
damping (dashpots). This is a good model for eddy current damping. However, a better
model for the damping inherent in many materials is structural damping, where the loss is
expressed as an imaginary term in the damper stiffness. Fortunately, we can use Appendix
A for structural as well as viscous by making the loss terms equal at the resonant frequency.

For viscous damping the equation of motion of the damper by itself is

mẍ+ cẋ+ kx = cẋg + kxg (6)

where x is the displacement of the damper mass, and xg is the displacement of the damper’s
‘ground’. c is the viscous damping coefficient.
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In the frequency domain, this becomes

−mω2x+ icωx+ kx = icωxg + kxg (7)

where ω is an arbitrary frequency in rad/s.

For structural damping, in the frequency domain, this is

−mω2x+ k(1 + id)x = k(1 + id)xg (8)

Where, d is the loss factor on the stiffness. This loss is assumed to be frequency independent.
Rearranging terms to compare with viscous damping

−mω2x+ ikdx+ ks = k(1 + id)xg (9)

If the loss terms on the left of Eqs. (7) and (9) are equal at resonance ω = ω0, then

d =
ω0

k
c (10)

Eq. (A12) gives an approximation of the ideal viscous damping coefficient, c, where ideal
means the most damping for a given mass ratio.

c = 2mΩ

√
3µ

8(1 + µ)3
[N/(m/s)] (11)

Therefore, the structural damping constant d is

d = 2
m

k
ω0Ω

√
3µ

8(1 + µ)3
= 2

Ω

ω0

√
3µ

8(1 + µ)3
(12)

Since equation A12 is an approximation, I found it necessary to multiply by a correction
factor. For mass ratios of 10−5, this turns out to be 1.16. For 10−4 it is 1.14. By 10−2, unity
works well (it is insensitive to the correction at that point).

Note, the damping values c and d can be normalized to a damping ratio ζ for easier com-
parison (when the damper is by itself), where ζ = 1 is critical damping. ζ is also inversely
related to the Q factor.

ζ =
1

2mΩ
c =

1

2
d =

1

2Q
(13)
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4.4 Damper State Space Model

State space models of the dampers are needed in order to connect them to the quad state
space model. There are two states in each damper model, the vertical displacement x and
velocity xg of the damper mass.

This subsection builds the state space matrices for both the viscous and the structural
damping cases.

Note, structural damping is not quite linear and so the state space will have non-complimentary
pair poles. This results in an unstable system. This is fine for thermal noise calculations,
but one must use the equivalent viscous case for all controls simulations.

The A matrix for each structural damper is

ASD =

[
0 1

−k(1 + id)/m 0

]
(14)

The A matrix for each viscous damper is

AV D =

[
0 1

−k/m −c/m

]
(15)

The remaining state space matrices depend on which spring the damper is located, since a
roll of the quad will move the damper either up or down depending on where it is. I follow
the sign convention that positive roll points down the beam tube axis.

For the left spring tip, as seen from behind the quad, the structural damper B matrix is

BSD,L =

[
0 0 0 0

k(1 + id)/m n3k(1 + id)/m 0 0

]
(16)

where the first two columns correspond to vertical and roll displacements respectively of the
PUM, and the second to vertical and roll velocities. The bottom row corresponds to the
acceleration imposed on the damper mass.

For the right spring tip, as seen from behind the quad, the structural damper B matrix is

BSD,R =

[
0 0 0 0

k(1 + id)/m −n3k(1 + id)/m 0 0

]
(17)

For the viscous damping case, these B matrices are

BV D,L =

[
0 0 0 0

k/m n3k/m c/m n3c/m

]
(18)

BV D,R =

[
0 0 0 0

k/m −n3k/m c/m −n3c/m

]
(19)
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For the left spring tip, as seen from behind the quad, the structural damper C matrix is

CSD,L =

[
k(1 + id) 0
n3k(1 + id) 0

]
(20)

where the first row corresponds to the vertical reaction force on the PUM and the second a
roll reaction torque. The first column corresponds to the vertical displacement of the damper
mass, the second to its velocity.

For the right spring tip, as seen from behind the quad, the structural damper C matrix is

CSD,R =

[
k(1 + id) 0
−n3k(1 + id) 0

]
(21)

For the viscous damping case, the C matrices are

CV D,L =

[
k c
n3k n3c

]
(22)

CV D,R =

[
k c
−n3k −n3c

]
(23)

For the left spring tip, as seen from behind the quad, the structural damper D matrix is

DSD,L =

[
−k(1 + id) −n3k(1 + id) 0 0
−n3k(1 + id) −n2

3k(1 + id) 0 0

]
(24)

where, like the C matrix, the first row corresponds to the vertical reaction force on the PUM
and the second the roll reaction torque. Like the B matrix, the first two columns correspond
to vertical and roll displacements respectively of the PUM, and the second to vertical and
roll velocities.

For the right spring tip, as seen from behind the quad, the structural damper D matrix is

DSD,R =

[
−k(1 + id) n3k(1 + id) 0 0
n3k(1 + id) −n2

3k(1 + id) 0 0

]
(25)

For the viscous damping case, the D matrices are

DV D,L =

[
−k −n3k −c −n3c
−n3k −n2

3k −n3c −n2
3c

]
(26)

DV D,R =

[
−k n3k −c n3c
n3k −n2

3k n3c −n2
3c

]
(27)

It is easy to confuse the meaning of the D matrix, since it is not often used. Here it can be
interpreted as the reaction forces you get on the quad when the spring tip the damper sits
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on displaces. The C matrix on the other hand is the reaction forces you get on the quad
when the damper mass displaces. E.g. the simple spring equation says the spring force is
F = k(x− xg). The C matrix represents the kx part. The D matrix represents −kxg.

The models of the dampers are then plugged into the quad model using the append and
connect commands. See the MATLAB code for the details.

4.5 Thermal Noise Modeling

The thermal noise calculations follow the fluctuation dissipation theorem given by Equation
7.12 at the bottom of page 110 in Peter Saulson’s book Fundamentals of Interferometric
Gravitational Wave Detectors. I rewrite here in Eq. (28).

DARM thermal noise =
coupling factor

πf

√
KBT |<(Y (f))| (28)

where, f is the frequency in Hz, KB is Boltzmann’s constant, T is the temperature in Kelvin,
< is the real number operator, and Y (f) is the complex valued transfer function from a force
on the test mass to a velocity of the test mass.

For vertical motion, the transfer function Y is along the vertical degree of freedom. The
coupling factor is assumed to be 0.001, which is the expected coupling from vertical motion
to DARM. For roll motion, the transfer function Y is along the roll degree of freedom. The
coupling factor is assumed to be 3× 10−6, which was estimated in LHO alog 19649.
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=19649

5 Results

This section considers dampers of different sizes and tuning errors. Subsection 5.1 considers
bounce dampers with mass ratios of 10−5. Subsection 5.2 considers bounce dampers with
mass ratios of 2.5× 10−4.

As mentioned in the previous section, the roll coupling to DARM was estimated in LHO
alog 19649. This value is 3× 10−6. I also assume the damper loss is frequency independent.

The vertical thermal noise curves for the undamped suspension are set to reproduce Figure
10 of ‘Design and development of the advanced LIGO monolithic fused silica suspension’
2012 Class. Quantum Grav. 29 035003, A. Cumming et al. The resulting loss factor yields a
Q of 4 million. The undamped loss factor for roll was guessed as the same value as vertical.
The Qs were recently measured at LHO as 600,000 for bounce and 450,000 for roll.
Bounce Q: https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=18823
Roll Q: https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=18848
However, these are most likely dominated by losses higher up the chain. The Q of 4 million
is assumed to represent the loss coming from just the fibers.

In all cases, the thermal noise curves shown are for an individual suspension. If all 4 test
mass suspensions are given dampers you must multiply by 2.
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5.1 Small Dampers - mass ratio of 10−5

This subsection considers dampers with mass ratios of 10−5. This yields bounce dampers
of 0.2 grams on each spring and roll dampers of 0.09 grams on each spring. The structural
damping loss factor of the damper stiffness is about 1/225 = 0.0045.

Fig. 2 shows the thermal noise for the ideal case where the dampers are perfectly tuned. The
Qs are close to the minimum possible value of about 460 for both bounce and roll. The solid
lines are for the damped noise seen by DARM. The dashed line is the undamped noise. The
green line shows the structural damping case, the magenta line viscous damping. The black
line is the overall undamped suspension thermal noise predicted by Glasgow in T1500278
(data from the Cumming et al CQQ paper above). Note, the bounce mode in the Glasgow
curve is slightly lower than what we built.

Fig. 3 shows the thermal noise for dampers that are detuned by 0.1%. This raises the Qs to
about 1060 but does little to the thermal noise.

Fig. 4 shows the thermal noise for dampers that are detuned by 1%. This raises the Qs to
about 18,000 but does little to the thermal noise. If anything, the thermal noise is somewhat
worse because the peak is staring to spread out.

Figure 2: Thermal noise seen in DARM for each quad with 10−5 mass ratios. The dampers
are perfectly tuned resulting in bounce and roll Qs of about 460. The loss factor of the
damping material is 1/225 = 0.0045.
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Figure 3: Thermal noise seen in DARM for each quad with 10−5 mass ratios. The dampers
are detuned by +0.1% resulting in bounce and roll Qs of about 1060. The thermal noise is
about the same as the perfectly tuned case.

Figure 4: Thermal noise seen in DARM for each quad with 10−5 mass ratios. The dampers
are detuned by +1% resulting in bounce and roll Qs of about 18,000. The thermal noise is
about the same as the perfectly tuned case.
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5.2 Large Dampers - mass ratio of 2.5× 10−4

This subsection considers dampers with mass ratios of 2.5×10−4. This yields bounce dampers
of about 5 grams on each spring and roll dampers of about 2.2 grams on each spring. The
structural damping loss factor of the damper stiffness is about 1/45 = 0.022.

Fig. 5 shows the thermal noise for the ideal case where the dampers are perfectly tuned.
The Qs are close to the minimum possible value of about 100 for both bounce and roll. The
increased mass yields lower Qs, but higher thermal noise than the smaller damper case.

Fig. 6 shows the thermal noise for dampers that are detuned by 0.1%. This hardly influences
the Qs or the thermal noise. The higher mass has less sensitivity to error.

Fig. 7 shows the thermal noise for dampers that are detuned by 1%. This does influence
the Qs, rasing them to about 350. This is still a pretty descent value. The thermal noise is
not impacted much. Again, the higher mass has less sensitivity to error.

Figure 5: Thermal noise seen in DARM for each quad with 2.5 × 10−4 mass ratios. The
dampers are perfectly tuned resulting in bounce and roll Qs of about 100. The loss factor
of the damping material is 1/45 = 0.022.
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Figure 6: Thermal noise seen in DARM for each quad with 2.5 × 10−4 mass ratios. The
dampers are detuned by +0.1% resulting in bounce and roll Qs of about 115. The thermal
noise is about the same as the perfectly tuned case.

Figure 7: Thermal noise seen in DARM for each quad with 2.5 × 10−4 mass ratios. The
dampers are detuned by +1% resulting in bounce and roll Qs of about 350. The thermal
noise is about the same as the perfectly tuned case.
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5.3 Trend Plots

Some trend plots are included here. Fig. 8 shows the curve for the ideal structural damping
factor d given by Eq. (12). The factor results in the smallest possible Q of the bounce or
roll mode. A correction of 1.15 has been applied to this equation. As mentioned before, the
equation is an approximation that improves for larger mass ratios.

Fig. 9 is similar to Fig. 8 except that it shows viscous damping (e.g. eddy current). The
solid and dashed blue lines show the damping coefficient c from Eq. (11) for the vertical
and roll dampers respectively. Unlike the structural case, the vertical and roll dampers have
different damping coefficients. However, this difference appears only because of the units on
c. If we normalize it to a damping ratio (where 1 is critical damping) by dividing by 2mΩ
we see that the damping ratios are the same, and indeed correspond to the damping ratio
of the structural case (0.5d).

Fig. 10 shows the curves for the minimum bounce and roll Qs as a function of mass ratio.
The Qs for the 0.1% and 1% tuning errors are also plotted. A fit to the perfectly tuned case
is included. This fit is Q ≈ 1.5/

√
µ.

Figure 8: Blue: the ideal structural damping factor d that yields the smallest bounce and
roll Qs, where the damper stiffness is given by k(1 + id). Green: the sum of the vertical and
roll 20 Hz thermal noise with the ideal damping factor d.
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Figure 9: Solid blue: the ideal viscous damping coefficient c that yields the smallest bounce
Q. Dashed blue: the ideal viscous damping coefficient c that yields the smallest roll Q. Green:
the sum of the vertical and roll 20 Hz thermal noise with the ideal damping factor c.

Figure 10: The smallest possible Qs of the bounce and roll modes. The blue line is the Q
achieved with a perfectly tuned damper. The green and red lines show the Qs for dampers
detuned by 0.1% and 1% respectively in frequency. The dotted black line is a fit to the
perfectly tuned case.
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5.4 Direct longitudinal coupling to UIM

Although the dampers are designed to act along a vertical degree of freedom, there may be
a small component of their motion acting along the longitudinal or pitch degree of the UIM,
due to asymmetries or errors in the construction of the dampers. This coupling will also add
thermal noise to the test mass’s longitudinal degree of freedom.

It is unknown how much the dampers will couple to the longitudinal and pitch degrees of
freedom at the UIM. However, we can model how much coupling it would take to pass
the required thermal noise performance. For this modeling we’ll ignore coupling to pitch,
assuming that longitudinal coupling is more sensitive to performance than pitch coupling.

Figure 11 shows the results of this modeling. Coupling values of 10% and 100% are plotted,
along with the undamped sum of vertical and roll from the previous plots and the thermal
noise requirement from T010007. The percent coupling refers to how much the dampers’ act
in longitudinal compared to vertical at the UIM, i.e. 100% means equal parts vertical and
longitudinal. It is clear from these results that direct coupling to the longitudinal degree
of freedom is unlikely to be problematic. We would need nearly 1000% coupling to the
longitudinal degree of freedom to cause concern at 10 Hz from these estimates.

Figure 11: The predicted test mass longitudinal thermal noise assuming a portion of the
dampers’ motion acts along the UIM’s longitudinal degree of freedom. The percent coupling
in the legend references how much the dampers’ act in longitudinal compared to vertical, i.e.
100% means equal parts vertical and longitudinal.
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6 Discussion

In general, larger dampers provide both greater damping and greater thermal noise. However,
the damped Q is less sensitive to tuning errors for more massive dampers. It seems that
the sensitivity of the damped Q is inversely related to the damper mass. That is, doubling
the mass permits twice the percent error on the damper resonant frequency for the same
damped Q.

While not shown here, I tried playing around with the mass and damping values to see if
we could use larger dampers with less damping to improve tuning sensitivity for a given Q,
without increasing thermal noise much. The result was that you can indeed make larger
dampers that give the same Q as a smaller damper with less tuning sensitivity. However,
the thermal noise is still worse than using the optimal smaller damper.

We will need to think about what size damper we want to go with. The smaller one seems
best in theory because a Q of 460 is already a huge improvement. Although the thermal
noise is increased, it is not a huge amount. On the other hand, the tuning has to be better
than 0.1% to keep the Q less than 1000. The suspensions at LHO have a spread in bounce
frequency of 0.8%, so we would likely need to tune each damper to each suspension. The
larger dampers will be easier to build and will be insensitive enough to tuning that we could
put any damper on any suspension.

Modeling suggests that we should not worry too much about inadvertent coupling of the
dampers to the longitudinal and pitch degrees of freedom of the UIM. For any reasonable
coupling values the noise is attenuated by 3 suspension stages to negligible levels.

For the design approach, Figs. 8 and 10 should be very helpful. A good place to start is to
decide what range of Qs is acceptable, and what kind of tuning tolerance seems reasonable.
Find the mass ratio that gives those Qs in Fig. 10. Then, go up to Fig. 8 and use that mass
ratio to tell you what damping factor you need and see if the thermal noise is acceptable. If
those numbers do not work, then iterate.

For example, if we want Qs within 1000, and we think we can build to a tolerance of 0.1%,
Fig 10 tells us we want a mass ratio of 1e-5. Fig. 8 then tells us to use a damping factor of
about 0.0045. The 20 Hz thermal noise with will then be about 4e-21 m/

√
Hz at 20 Hz.
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A Appendix - Class Notes

See the attached class notes for the tuned mass damper derivations.
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Appendix A
Pages from class notes of 'Advanced Structural Dynamics' class at MIT by Professor 
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