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1 Introduction 
For lenses used for the mode correction telescope designed by the Syracuse group, the estimation 
of the TEM00 mode loss needs to be estimated with an accuracy of 0.1%. For the size of focal 
lengths and beam sizes considered, simple formulas based on the paraxial approximation do not 
always work with this accuracy. Reflection of a field by a mirror and transmission through a lens 
with an arbitrary focal length is calculated using the Kirchhoff integral, without using the paraxial 
approximation.  
When the input field is a TEM00 Gaussian field, the integral formula of the reflected or 
transmissted field at an arbitrary location can be expressed by a product of a simple TEM00 
Gaussian field and a correction function, where the correction function can be written in an explicit 
integral form. The correction function becomes a unity in the limit of the paraxial approximation.  
A matlab code is provided which calculates the field propagation based on this formula. 

2 Reflection 

 
Figure 1 Reflection 

 
Figure 2 Effective component 

Using the Kirchhoff integral, Eout, the field reflected by a mirror, can be expressed as follows 
using the incoming field, Ein, the surface height distribution δ, (see Fig.1) and two angles θin and 
θout (see Fig.2). 

δ(u,v)

(u,v)

Eout(x,y,z)
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Eout (x, y, z) =
ik
2π

Ein (u,v,ζ (u,v))
exp(−ikρ)

ρ∫∫ (1− i
k ρ
)cos(θin )cos(θout )dudv

µ2 = (u − x)2 + (v − y)2

ρ 2 = µ2 + (z −δ )2
                 (1) 

The factor cos(θin) picks up the component perpendicular to the optic surface, and cos(θout) picks up 
the component perpendicular to the output plane. 
When the incoming field is almost a Gaussian shape, 

Ein (u,v,ζ ) =
2
π
1
win

exp(−ikζ − (u2 + v2 )( ik
2Rin

+ 1
win

2 ))Fin (u,v,ζ )

                       

(2) 

with Fin = 1 for a pure TEM00 field.

 

When the surface height δ is expressed using the typical 
power term ~ r-2 and the rest d as

 
 

δ = d + u
2 + v2

2Rmir
                                                                    (3) 

the original expression (1) can be written as follows. 

Eout (x, y, z) =
i k
2π

2
π
1
win

exp(−i k z)

exp(i2kd − (u2 + v2 )( ik
2Rout

+ 1
win

2 ))
exp(−ik(ρ − (z −δ ))

ρ∫∫
z −δ
ρ
(1− i

k ρ
)cos(θin )dudv

           (4) 

where Rout is expressed using the incoming field curvature and the mirror curvature as 

1
Rout

= 1
Rin

− 2
Rmir

                                                             (5) 

When the following variable change from (u,v) to (α,β), Eq.(6), is applied, eq.(1) can be expressed 
by a product of terms, one coming from the paraxial approximation and the correction due to the 
transverse effect. 

α = A(u − Bx), β = A(v − By)

A = 1
win

2 + i
k
2
( 1
Rout

+ 1
z
)

B = i k
2z
/ A

                                              (6) 

Eout (x, y, z) = TEM 00(x, y, z)×C

C = 1
π

exp[ik(2d − (ρ − (z −δ )− µ2

2z−∞

∞

∫
−∞

∞

∫ ))− (α 2 + β 2 )] z(z −δ )
ρ 2 (1− i

k ρ
)cos(θin )dαdβ

         

(7) 

TEM00 in eq(7) is the Gaussian function with the curvature and width expected in the paraxial 
approximation, and C is the correction due to the transverse effect which is neglected in the 
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paraxial approximation. For a parabolic mirror, d=0, and by neglecting the transverse effect in the 
limit of large z, the integrant of the correction factor C becomes exp(-α2-β2), hence the correction 
factor C becomes 1, i.e., the reflected field is a pure Gaussian with the beam size and curvature 
expected by a paraxial approximation. 

3 Transmission 

3.1 Output field calculation 
 

 
Figure 3 Transmission 

The field after going through a lens, Fig.2, can be expressed using the following formula. 

Eout (x, y, z) =
ik
2π

Em (u,v,ζ (u,v))
exp(−ikρ)

ρ∫∫ (1− i
k ρ
)cos(θin )cos(θout )dudv

Em (u,v) = Fin (u,v)
2
π
1
win

exp(−i k nδ )exp(−(u2 + v2 )( i k
2Rin

+ 1
win

2 )               
(8) 

In this equation, Em is the field on the surface exiting the lens, Rin and win are the field curvature 
and width on the exiting surface, and n is the refractive index of the lens substrate. 
By using the expression (3), the output field can be written as follows. 

Eout (x, y, z) =
i k
2π

2
π
1
win

exp(−i k z)

exp(−ik(n −1)d − (u2 + v2 )( ik
2Rout

+ 1
win

2 ))
exp(−ik(ρ − (z −δ ))

ρ∫∫
z −δ
ρ
(1− i

k ρ
)cos(θin )dudv

     (9) 

where Rout is expressed using the incoming field curvature and the mirror curvature as 

1
Rout

= n −1
Rin

+ 1
Rmir

                                                             (10) 

This shows that the field curvature is 1/n of the curvature of the incoming field when Rmir=Rin. 

Ein(u,v,ζ)

Eout(x,y,z)

δ(u,v)

μ
θ

z-δ

ρ
Em(u,v,ζ)
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Eq.(9) is essentially identical to eq.(4), and the same expression of the correction factor can be used 
to calculate the transmitted field. When calculating the correction, there are several differences 
between the reflection and transmission. 
One is the effect of the deviation from the pure parabolic shape, i.e., i2kd in the exponent in Eq.(4) 
becomes –i(n-1)kd in Eq.(9). The variation d includes the error of the as-built curvature of the optic 
from the design value, and this difference makes the use of lenses be more tolerant about the 
requirements of the curvature error of optics.  
Secondary, the curvatures of the field leaving the optic, Rout, are different for the two cases, Eq.(4) 
for reflection and Eq. (10) for transmission. 
Another changes needed are that the field curvature (Rin) and width (Win) used for the transmitted 
case are the values of the field after passing the finite thickness of the lens. This is discussed in the 
following section. 

3.2 Finite thickness effect 
The curvature and width of a Gaussian beam change as follows when the field goes through a 
substrate with thickness of d and refractive index of n. 

1
R(d)

= 1
R
(1+ d / n

R
( R

2

k2w4 −1))

1
w(d)2

= 1
w2 (1− 2

d / n
R
)

                                              (11) 

On the right hand side, R and w are curvature and width before the propagation. As is shown in 
eq.(11), the change of the curvature and the width are proportional to d/R. 

3.3 00 mode loss 
The mixing of the 00 mode with different bases, (R,w) and (R’, w’), can be expresses as follows. 

< 00with(R,w) | 00with(R ',w ')> 2 =

2
1+w2 /w '2

⎛
⎝⎜

⎞
⎠⎟

2
1+w '2 /w2

⎛
⎝⎜

⎞
⎠⎟

1+ k
2

w2w '2

w2 +w '2
( 1
R '

− 1
R
)⎛

⎝⎜
⎞
⎠⎟

2

≈1− (kw
2

4R
)2εR

2 − εw
2

1
R '

= (1− εR )
1
R
, w ' = (1− εw )w

                        (12) 

As eq.(12) shows, the loss of the 00 mode is in the second order of the change of the field 
parameters. But the coefficient of the curvature change can be large. E.g., with R=5cm and 
w=0.5mm, the coefficient of the curvature error is 50, and the curvature mismatch of 1% can 
induce 00 mode loss of 0.5%. 
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4 Correction factor 

4.1 Expression of the correction factor 
As has been discussed in Sec.2 and Sec.3, the outgoing field after reflection or transmission can be 
expressed as a production of a simple Gaussian form and a correction factor. Results are 
summarized in Eq.(13) and (14). 

 

Eout (x, y, z) = TEM 00(x, y, z)×C

C = 1
π

exp[ikφ
−∞

∞

∫
−∞

∞

∫ − (α 2 + β 2 )] z(z −δ )
ρ 2 (1− i

k ρ
)cos(θin )dαdβ

                                (13) 

α = A(u − Bx), β = A(v − By)

A = 1
win

2 + i
k
2
( 1
Rout

+ 1
z
), B = i k

2z
/ A

ρ 2 = (x − u)2 + (y − v)2 + (z −δ )2, µ2 = u2 + v2, δ = d + µ2

2Rmir

reflection : φ = 2d − (ρ − (z −δ )− µ2

2z
), 1

Rout
= 1
Rin

− 2
Rmir

transmission : φ = −(n −1)d − (ρ − (z −δ )− µ2

2z
), 1
Rout

= n −1
Rin

+ 1
Rmir

spherical surface:cos(θin ) =
1− 2 u

2 + v2

Rmir
2

1− u
2 + v2

Rmir
2

parabolicsurface: cos(θin ) = 1− u
2 + v2

Rmir
2

          (14)                                                  

 

4.2 Parabolic vs spherical shape 
The main characteristic of the parabolic mirror is that the parallel field reflected by a parabolic 
mirror goes to the focal point. This is demonstrated by injecting a field with RoC of 1m and beam 
size of 1cm is injected to a parabolic and spherical mirrors with RoC of 2.3cm. 

The reflected field is fit by a Gaussian shape using the small central region and the width of the 
beam is calculated from the slope of the power. Fig.4 shows the width at various locations. The 
focal point is 23mm/2 = 11.5mm. The black line is the width based on the paraxial approximation.  
The red line is the width reflected by a parabolic mirror. The beam size goes to zero at the focal 
distance, which is consistent with the characteristic of the parabolic mirror. The beam reflected by a 
spherical mirror is complex. At around the focal distance, the power distribution in radial direction 
becomes wide spread than the prediction by the paraxial approximation. In a narrow range of 
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distance, the power increases from the beam center in a very narrow radial region, and goes down 
outer wards. Two missing points on the blue line are those points. 

 
Figure 4 Reflected beam size vs distance 

4.3 Distance dependence of Power and 00 mode 
The total power of the field can be calculated as 

P(z) = | Eout (x, y, z) |
2 dxdy = 2

π w(z)2
exp(−2 x

2 + y2

w(z)2∫∫∫∫ ) |C(x, y, z) |2 dxdy
             (15)

 

This is the power of the field going along the z axis after the interaction. The field at the point of 
interest, (x,y,z), is the sum of fields coming from all points on the optic surface, and the field is not 
necessarily parallel to the z axis. The factor cos(θout) picks up the component parallel to the z axis. 
Because of that, the energy P(z) may be less than 1. This is around the same effect as the reduction 
by cos(θin), and it can be taken as the systematic uncertainty of the paraxial approximation. 

The amplitude of the TEM00 mode at a propagation distance z can be calculated by the following 
formula, i.e., the Gaussian weighted integral of C. 

A00 = TEM 00(x, y)*Eout (x, y, z) =
2

π w(z)2
exp(−2 x

2 + y2

w(z)2∫∫∫∫ )C(x, y, z)dxdy                    (16) 

In the paraxial approximation, the mode fractions are independent on the propagation distance. 
When this mode fraction is calculated for the aLIGO ITM mirror, the 00 mode fraction is 
essentially unity, independent on the propagation distance, both for the parabolic and spherical case.  
In the rest of this section, details of the correction factor is studied using a simple reflection of a 
field with RoC of 2.3cm and width of 1mm by a mirror with RoC of 2.3cm.  
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Figure 5   00 mode and power loss vs distance 

Fig.5 shows the 00 mode loss, 1-|A00|2 (eq.14),  as a function of the propagation distance reflected 
by a parabolic and spherical mirrors.  
The power loss, 1 – P(z) (eq.15), is essentially identical for both mirror shapes and independent of 
the distance. The power loss comes from the loss to the non-normal components of the incoming 
and out going fields, or by cos(θin) and cos(θout) in eq.(1) and (8) (see Fig.2). The contributions of 
these two effects are almost the same. In the paraxial approximation, fields are propagating along 
the chosen beam axis, and this kind of loss is not taken into account. This loss can be approximated 
by the following formula, which is the power weighted cos(θin)2. 

( 2
π
1
w
)2 exp(-2 u

2 + v2

w2 )(1- u
2 + v2

Rmir
2 )∫∫ ≈1- w2

2Rmir
2                             (17) 

There are two losses, cos(θin) and cos(θout), and the total loss due to the non parallel component can 
be approximated by w2 / Rmir

2. This is an approximation, which can be used to estimation the error 
of the paraxial approximation. 
Fig.6 shows the radial distribution of the correction function at three different locations, 1mm, 2cm 
and 5cm from the mirror. The radial distance is normalized by the beam size at each location, 
0.956mm, 0.131mm and 1.174mm respectively. The position dependence of the 00 mode loss sown 
in Fig.5 comes from the change of the correction function as the propagation distance changes. 
Two figures in the right hand side in Fig.6 is the magnified figures of the left hand side, in the 
radius within one beam size, w(z). 
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Figure 6 correction function at different locations 

 
Figure 7 Hello-Vinet calculation and correction function 

Fig.7 compares the phase change calculation done by Hello-Vinet and the same quantity using the 
correction function. The Hello-Vinet formula does not take into account the variation of the beam 
power, or the beam size is assumed to be much wider than other length of interest. The result will 
be valid near the reflection point, and phase by the correction is calculated at z = 1mm. 
The correction function is compared numerically with a brute force calculation using Eq.(1) as is, 
which is much slower and harder to apply,  and they agreed very well. 
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5 Numerical results for the telescope lenses 
For one design of the telescope, various losses are calculated. 

n = 1.45; th = 0.000; k=2*pi/1.064e-6; 
  
tele(1).Ropt = -0.0498; 
tele(1).Rin = 6.746; 
tele(1).win = 638.7e-6; 
tele(1).dist = 0.05; 
  
tele(2).Ropt = 0.0258; 
tele(2).Rin = -0.061; 
tele(2).win = 350.3e-6; 
tele(2).dist = 0.2809; 
  
tele(3).Ropt = 0.0522; 
tele(3).Rin = 0.623; 
tele(3).win = 557e-6; 
tele(3).dist = 0.05; 
  
tele(4).Ropt = -0.0610; 
tele(4).Rin = 0.146; 
tele(4).win = 846e-6; 
tele(4).dist = 0.9991; 

The result running Paraxialscript.m is as follows. 

 
n = 1.45, lens th = 0 ================= 
---- 
lens 1 : Labr (eq 4.4) = 2.50398e-07, win = 0.0006387, wout = 0.000355854    
spherical : 00 mode loss = 4.68039e-05, dPwr = 4.5838e-05 
parabolic : 00 mode loss = 4.60691e-05, dPwr = 4.58334e-05 
 
---- 
lens 2 : Labr (eq 4.4) = 1.06031e-07, win = 0.0003503, wout = 0.000528571    
spherical : 00 mode loss = 8.98746e-05, dPwr = 8.97645e-05 
parabolic : 00 mode loss = 8.96872e-05, dPwr = 8.9685e-05 
 
----  
lens 3 : Labr (eq 4.4) = 6.31612e-08, win = 0.000557, wout = 0.000842338    
spherical : 00 mode loss = 2.68254e-05, dPwr = 2.65453e-05 
parabolic : 00 mode loss = 2.66193e-05, dPwr = 2.65413e-05 
 
----  
lens 4 : Labr (eq 4.4) = 7.0245e-07, win = 0.000846, wout = 0.000565623    
spherical : 00 mode loss = 9.34488e-05, dPwr = 9.27361e-05 
parabolic : 00 mode loss = 9.30759e-05, dPwr = 9.30734e-05 

The mode loss using the analytic calculation is given in Eq.4.4 in T1500372.  

Laberration =
5
256

(n −1)2 k2 w
8

Rmir
6

                                                            (18)
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dPwr is the loss of the out going power along the z axis, which can be approximated by Eq.(17). 
For all cases, the loss due to the field going out of the z axis is larger than the mode loss calculated 
using a simple lens formula.  

 


