

aLIGO test masses, revisited

- Scattering and loss by test mass
 - Discrepancy between the measured arm loss, 50ppm/mirror, and the loss based on optics data, 25ppm/mirror
 - Understand about the defects in coating
 - Integrating sphere measurement with extension (Liyuan Zhang)
 - Preliminary and proof of concept, but very interesting
 - > Small angle ($\theta \le 1^{\circ}$) and large angle ($\theta \ge 1^{\circ}$) scattering
 - Missing energy in the small angle scattering
 - > Defect size/distribution information
- > Excess PSD at $\lambda_{\text{spatial}} < 3$ mm (system meeting)
 - > PSD of the coated mirror using the latest coating setup is larger than PSD using the original mask by more than 10 at λ_s =3mm~1/3mm
 - Effect on the aLIGO performance when ETM is replaced
 - Increase of arm loss and scattered light which hits beam tube baffles
 - PRG and scattering noise

Hiro Yamamoto LIGO seminar on Dec. 1st, 2015

1

Reflection and propagation of field

Far field and mirror ASD

wide smooth surface characterized by ASD

$$d\mathbf{F}(x, y, z) = \sqrt{\frac{2}{\pi}} \frac{(-2k)}{\lambda L w(z1)} e^{-\frac{ik(x^2+y^2)}{2L} - ikL} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta(f_u, f_v) \,\delta\left(f_u - \frac{\theta_x}{\lambda}, a\right) \delta\left(f_v - \frac{\theta_y}{\lambda}, a\right) df_u \,df_v;$$

$$ASD: \quad h[u, v] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta[f_u, f_v] e^{-i2\pi(u f_u + v f_v)} \,df_u \,df_v; \, \operatorname{Exp}[i \, 2k \, h] \simeq 1 + i \, 2k \, h; \, A = i \, 2k \, h;$$

$$ASD: \quad \theta_x = \frac{x}{L}; \, a = \sqrt{i \frac{1}{\pi \lambda L} \frac{w^2}{w1} \exp(-(\eta(z2) - \eta(z1)))}; \, \delta\left(f_u - \frac{\theta}{\lambda}, a\right) = \frac{\exp\left(-\frac{(f_u - \frac{\theta}{\lambda})^2}{\sqrt{\pi} a}; \int_{-\infty}^{\infty} \delta(f, a) \, df = 1;$$

Hiro Yamamoto

LIGO seminar on Dec. 1st, 2015

Uncoated surface PSD not simple, pretty complex

Hiro Yamamoto LIGO seminar on Dec. 1st, 2015

LIGO Far field and small size defects small defects cannot be characterized by PSD

interference and angle dependence of far field

$$\int_{-a}^{a} \exp[i k \theta_{x} u] du = 2 a \frac{\operatorname{Sin}[k \theta_{x} a]}{k \theta_{x} a}$$

LIGO-G1501419

Hiro Yamamoto LIGO se

o LIGO seminar on Dec. 1st, 2015

LIGO Power distribution depends on the defect size

LIGO Comparison of 1° vs 5° dead region

LIGO seminar on Dec. 1st, 2015

Clustered defects behave like a single defect

Power distribution generated by small defects in a square

Same distribution generated by

LIGO-G1501419

Hiro Yamamoto LIGO seminar on Dec. 1st, 2015

TIS measurement in small angle using integrating sphere

by Liyuan Zhang

Scattering loss of mirrors

- » Total loss in the arm cavity vs mirror data
- » Understanding the defects in the coating
- Integrating sphere covering θ≥1° predicts scattering loss / mirror ~ 10ppm
 - » Solid angle of the hole in θ ≤1° is (π/180)²=3 x 10⁻⁴, so correction should be negligible.
- If there are defects with size > 1µ, this may cause something unexpected
- Integrating sphere + pickoff to measure TIS in the small angle region $\theta \le 1^{\circ}$ in addition to large angle $\theta \ge 1^{\circ}$

Setup for measuring $TIS(\theta \le 1^{\circ})$ and $TIS(\theta \ge 1^{\circ})$

Very preliminary results mirror : initial LIGO ETM04

TIS $(\theta \ge 1^{\circ})$

TIS $(0.7^\circ \le \theta \le 1^\circ)$

$TIS(\theta \le 1^{\circ}) vs TIS(\theta \ge 1^{\circ})$ very preliminary

Quadrants no scratch

Quadrant with scratch

Defect size and total loss assuming defect shape is circle

Defect size vs TIS($\theta \ge 1^{\circ}$)

Total / TIS($\theta \ge 1^{\circ}$) vs TIS($\theta \ge 1^{\circ}$)

LIGO ETM TIS($\theta \ge 1^{\circ}$) low end of TIS($\theta \ge 1^{\circ}$) by continuous roughness

Ratio of teak of measured TIS and loss using uncoated surface RMS of 10 aLIGO ETMs

Majority of the scattered data are by continuous roughness

ETM16 case

Zygo 50x PMM rms \rightarrow loss

eeoa 1 0.079 200a 2 0.086 3 0.077 eeoa 4 0.081 eeoa 5 0.081	Lo
2 0.086 3 0.077 4 0.081 5 0.081	
3 0.077 4 0.081 660 5 0.081 670 6 0.115	
4 0.081 2000 5 0.081 6 0.0115	
5 0.081	
6.0.115	
01.0	
7 0.079	
8 0.094	
9 0.077	
Average 0.085	Av

Integrating sphere counts

LIGO-G1501419

Hiro Yamamoto

LIGO seminar on Dec. 1st, 2015

LIGO ETM PSDs with different coating Does it cause any problems?

LIGO-G1501419

PSDs with and without coating

LIGO-G1501419

Same high PSD in the central region as well

Hiro Yamamoto LIGO seminar on Dec. 1st, 2015

LIGO PSD(coated)/PSD(uncoated) > 10: Is this increase real?

- Three independent measurements of phasemaps of the coated ETM16 are consistent
 - (1) Measured by LIGO Fizeau IFO without magnification
 - (2) Measured by LIGO Fizeau IFO with x10 magnification
 - (3) Measured by LMA Fizeau IFO without magnification

LIGO seminar on Dec. 1st, 2015

One complication we don't/can't handle/understand properly

Zygo PSDs by different devices

LIGO Fizeou IFO Instrument transfer function

x1 x10 @1mm 0.2 @0.1mm 0.1

Change of rms and loss loss=1.3~2ppm @ λ_s =3~1/3mm

Coated ETM16 PSD by LIGO		Uncoated rms / loss	Coated rms / loss
coated ETM16 PSD : effect of ITF 10^{1} Coated x 1 10^{0} (1) xit without ITF -x1 with uft TF -x1 without ITF -x1 with	(1) 3mm ∼1mm	0.03nm 0.1ppm	0.08nm ~ 0.1nm 1.0ppm ~ 1.5ppm
$\int_{0}^{10^{2}} \int_{0}^{10^{2}} \int_{0$	(2)1mm ~0.3mm	0.02nm 0.06ppm	0.06nm ~ 0.07nm 0.50ppm ~ 0.75ppm
	(3)0.3mm ~ 0.1mm	0.02nm 0.08ppm	same as uncoated -assumed
	(4)0.1m m~ 1µm	0.076nm 0.83ppm	same as uncoated -assumed
LIGO-G1501419 LIGO-G1501419 LIGO-G1501419		1.1ppm	2.4ppm ~ 3.2ppm

Scattering by periodic aberration vs point defects

Noise by sparial on ETM07 vs periodical aberration ~1mm on ETM16

$$\delta \tilde{x}_{TM}^{2}(f) = \frac{1}{2} \left(\frac{\lambda}{L_{b}}\right)^{2} \left(\frac{dP}{d\Omega_{ms}}\right)^{2} d\Omega_{ms} \frac{dP}{d\Omega_{bs}} \delta \tilde{x}_{b}^{2}(f)$$
$$= \frac{\left(4\pi\right)^{3}}{\left(\lambda \cdot r_{baff}\right)^{2}} \int_{f_{1}}^{f_{2}} PSD(f_{s})^{2} f_{s} df_{s} \frac{dP}{d\Omega_{bs}} \delta \tilde{x}_{b}^{2}(f)$$

Scattering = 4.5ppm by spiral in a narrow region by mirror = 1.5ppm by $\lambda_s \sim 3 \sim 1/3$ mm in wide spread

Scattering $\frac{dP}{d\Omega_{bs}} = 0.02$ for forward (spiral) by baffle $\frac{d\Omega_{bs}}{d\Omega_{bs}} = 0.005$ for backward ($\lambda_{s} < 4$ mm)

 $\frac{\delta \tilde{x}_b (\lambda_s = 3 \sim 1/3mm)}{\delta \tilde{x}_b (spiral \ on \ ETM \ 07)} = 0.02 \sim 0.04$

Summary

Extended Integrating Sphere measurement

- » Preliminary result proof of concept
- » Comparison of large angle TIS ($θ ≥ 1^\circ$) and small angle TIS($θ ≤ 1^\circ$) provides information about the defect size and uncovered scattering
- » Measurement of aLIGO test masses coated by LMA using better setup and detector.

• Large PSD at short wavelength region

- » Looks real, cause unknown
- » PRG loss and back scattered noise by beam tube baffle, OK
- » Any other issue by higher roughness in the short wavelength region which tends to scatter light to wider angle?