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Consider a background of Poisson-distributed events with a particular rate distribution in threshold
parameter ρ, thus the density and cumulative distributions are dλc/dρth and λc(ρth) where we have used
subscripts on λc and ρth to emphasize the use of cumulate rate (rate of events with ρ > ρth). We would like to
calculate the significance (accidental coincidence probability) of an event from this population falling within
T of a time-of-interest t0. Ordinarily one could pick in advance a single threshold ρth giving a single rate λc,
then use the Poisson probability of falling within a certain time window P (∆t < T ) = 1 − e−λcT ≈ λcT for
small P . If many different thresholds are tested, the accidental coincidence probability may be multiplied
by a trials factor representing the different effective populations of events.

It is convenient to not have to choose a particular threshold in advance, and thus be able to consider a
wide range of possible event rates. In this case, one must generate a single ranking statistic for plausible
coincidences between events characterized by the two parameters ρ (or equivalently λc) and T (closeness to
t0). A natural ranking is the inverse false-alarm probability R = (λcT )−1. λcT was the original accidental
coincidence probability P for a single threshold, but in this case we must add up contributions to accidental
coincience from all possible combinations of λc and T in order to get a faithful representation of the probability
of a coincidence happening with greater R than our event under consideration. We can calculate the expected
number of more highly-ranked events,

N(R > λcT ) =

∫ ∞
0

dλ

∫ λcT/λ

0

dt e−t dλ (1)

By representing the calculation as a sum over slivers of dλ, we can conveniently bypass details about the
actual shape of λc(ρth). Each sliver actually has the same Poisson distribution dλ e−t dλ = dλ+O(dλ2) since
they all cover the same amount of differential rate. However the rank itself is determined by the cumulative
rate, which sets the limit of integration. The exponential reduces to first-order in infinitesimal dλ (flat) and
the integral becomes,

N(R > λcT ) =
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)
(2)

Where λmax and λmin are necessary for convergence.
λmax is naturally constrained by the production threshold of the events, or by the minimum measurable

coincidence time λmaxTmin = λcT . We can also choose a maximum coincidence window Tmax, up to the
live-time of the experiment, to set λminTmax = λcT . Events from 0 < λ < λmin will still contribute to the
accidental coincidence probability but subject to a bounded interval of time Tmax. Therefore we need to add
a constant to the expectation value equal to λcT . Under these constraints the expected number becomes,
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[
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or (3)
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(4)

depending on choice of using λmax or Tmin. A two-sided coincidence window will multiply N by a trials
factor of two. The accidental coincidence probability P ≈ N for small N .
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