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Abstract

LIGO employs two 4-km long Fabry�Pérot arm cavities, which need to be aligned

in order for an interferometer to be locked on a TEM00 mode. Once the cavity is

locked, alignment signals can be derived from wave-front sensors which measure the

TEM01 mode content. However, the alignment state is not always good enough for

locking on TEM00. Even when this is the case, the alignment can be evaluated using

a free swinging cavity, that shows �ashes when higher-order modes become resonant.

By moving test masses, small changes are made to the mirror orientation, and hence

the TEM00 mode can be optimised iteratively. Currently, this is a manual procedure,

and thus it is very time-consuming. Therefore, this project is aimed to study another

possible way to lock the cavity on the TEM00 mode. Misalignment information can

also be extracted from the power of the higher-order modes transmitted through the

cavity. This report presents an algorithm for this alternative and faster way to derive

the alignment state of the arm cavities.

LIGOLIGO
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1 2 BACKGROUND THEORY

1 Introduction

1.1 LIGO

LIGO stands for the Laser Interferometer Gravitational-Wave Observatory. There are
two identical observatories based approximately 3,000 kilometres apart: one is in Liv-
ingston, Louisiana, and its twin is located at the Hanford site, Washington. The Hanford-
site Observatory is the one where this project has been carried out. It is required that,
if a signal is to be reliably defended as an astrophysical gravitational wave, it must be
observed in both observatories. Gravitational-wave signals are so weak that gravitational
wave detectors su�er a lot from background noise: strong earthquakes, or cultural noise
such as tra�c or trains, winds or microseism can negatively impact their performance.
Many e�orts are put into stabilising system to ensure that those e�ects are eliminated or
reduced to minimum.

The Hanford-site detector is an interferometer which contains two 4 km-long arm cavities
formed into �L� shape. The optical con�guration of each detector is a suspended, dual-
recycled Michelson interferometer with Fabry-Pérot cavities for arms. They need to be
aligned, before they can be locked on a fundamental transverse mode, TEM00. Once
the cavity is locked, or controlled on resonance, alignment signals can be derived from
wave-front sensors which measure the TEM01 mode content, which is a superposition
of Hermite-Gaussian TEM01 and TEM10 modes. However, the alignment state is not
always good enough for locking on TEM00. Even when this is the case, the alignment
can be evaluated using a free swinging cavity, that shows �ashes when higher-order modes
become resonant. This requires another round of optimisation, which is currently done
manually.

1.2 Motivation and objectives

The goal of this project was to derive the alignment state from scanning the cavity length
and observing the power build-up of the laser light. By making small changes to the mirror
orientation by moving test masses, the TEM00 mode can be optimized iteratively. If the
alignment state was derived from scanning the cavity length, this would ease the process
of initial alignment. Another goal of the project was to automate the alignment procedure
in order to reduce the manual alignment time, i.e. reduce the time to align a given cavity,
and increase the reliability and repeatability in doing so.

2 Background theory

2.1 Electric �eld

An electric �eld can be described as a sum of the di�erent frequency components and of
the di�erent spatial modes:

E(t, x, y, z) =
∑
j

∑
n,m

ajnmunm(x, y, z)exp(i(ωjt− kjz)),

with unm describing the spatial properties of the beam and ajnm as complex amplitude
factors, where ωj stands for the angular frequency, f is the light �eld, and the wave-number
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kj = ωj/c. This notation can be simpli�ed to describe a single frequency component at
one moment in time (t = 0):

E(x, y, z) = exp(−ikz)
∑
n,m

anmunm(x, y, z).

2.2 Gaussian beam

A simple laser beam can be described by the Gaussian beam to a good approximation.
It can be divided into two di�erent sections along the z-axis: a near �eld, a region around
the beam waist, and a far �eld, far away from the waist. The length of the near-�eld region

is approximately given by the Rayleigh range, zR =
πw2

0
λ (Figure 1).

Figure 1: Gaussian beam [1]

Knowing the Rayleigh range, zR, and the location to the beam waist, z−z0, the following
can be calculated:

w(z) = w0

√
1 +

z − z0

zR

2

.

This equation gives the size of the beam along the z-axis. In the far-�eld regime, where
z � zR, z9, it can be approximated by a linear equation:

w(z) ≈ w0
z

zR
=

zλ

πw0
.

The angle θ between the z-axis and w(z) in the far �eld is called the di�raction angle,
or divergence, and is de�ned as:

θ = arctan

(
w0

zR

)
= arctan

(
λ

πw0

)
≈ w0

zR
.

2.3 Hermite-Gaussian modes

Hermite-Gaussian modes are the eigenmodes of a general spherical cavity (an optical
cavity with spherical mirrors) and represent an exact solution of the paraxial wave equa-
tion. One distinguishes between longitudinal modes (along the optical axis) and transverse
electromagnetic modes (TEM), the spatial distribution of the light beam perpendicular to
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the optical axis. The higher-order Hermite-Gaussian modes can be expressed in terms of
the lowest-order mode, u00, which is simply the Gaussian beam:

E(x, y, z) = E0u00exp(−ikz) = E0

(
1

Rc(z)
− i λ

πω2(z)

)

×exp

(
− ikx

2 + y2

2RC(z)
− x2 + y2

ω2(z)
− ikz

)

(assuming a single frequency and t = 0). Here RC(z) is the radius of curvature of the
beam's wave-front.

The Hermite-Gaussian modes are usually given in their orthonormal form as:

unm(x, y, z) = (2n+m+1n!m!π)−1/2 1

w(z)
exp(i(n+m+ 1)Φ(z))

×Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
− ik(x2 + y2)

2RC(z)
− x2 + y2

w2 ∗ (z)

)
,

with n, m being the mode indices. In this case n refers to the modes in the y − z, or
saggital, plane and m to the x − z, or tangential, plane. The following functions used in
the equation above: Hn(x) - Hermite polynomial of the order n, w(z) - beam radius or
spot size, RC(z) - radius of curvature of the phase front, and Φ(z) - the Gouy phase.

2.4 Gouy phase-shift

Compared to a plane wave, the Hermite-Gaussian modes have a slightly slower phase
velocity, especially close to the waist, in the near-�eld region. This on-axis longitudinal
phase delay is called the Gouy phase:

Φ(z) = arctan

(
z − z0

zR

)
.

The phase lag φ of a Hermite-Gaussian mode is:

φ = (n+m+ 1)Φ(z),

which is called the Gouy phase-shift.

2.5 Misalignments

In the interferometer, if the optical axes of the beam and the cavity do not overlap
perfectly, the set-up is called misaligned. If the beam size or shape at the cavity does not
match the beam shape and size of the (resonant) fundamental eigenmode, the beam is
then not mode-matched to the cavity [2]. There are four possible types of misalignments
of the input axis with respect to the cavity axis: (a) waist size mismatch, (b) axial waist
displacement, (c) transverse displacement in the x-direction, and (d) tilt through an angle
ax. Transverse displacements and tilts in the y-direction are equivalent to (c) and (d) [3].
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Figure 2: Example of misalignment: transverse displacement [3].

Figure 3: Example of misalignment: tilt through an angle α [3].

Example plots of two types of misalignment are pictured above. Figure 2 shows the
transverse displacement and Figure 3 shows the misalignment due to the mirror tilt.

3 Experimental method

3.1 Exposition

In order to develop the algorithm, the work was split into smaller tasks. The �rst part
of the project was to understand modal decomposition coe�cients. This was done using
MATLAB programming language [4] and a software package called FINESSE [5]. The
output of this part was a modal decomposition coe�cient table and their ratio table.

The second part of the project was the algorithm development. Gouy phase shift and
Gaussian geometry was used together with various statistical techniques to create the
output product. The outcome of this part was an algorithm which reads in the power-
distribution data, �nds the peak values and their positions, takes the ratios of the peak
amplitudes with respect to the highest peak, reorders the amplitudes according to their
relative positions, and after a procedure of matching to the values from the ratio table from
the Simulation part, outputs the normalised misalignment parameter. After the algorithm
was developed, further tests were done to improve it and to test its limits.

The objective of the last part of the project was to adapt the algorithm to the real data
input from the interferometer. The seven sets of data were collected at the LHO (LIGO
Hanford site) X-arm. In order to make the algorithm work, only one region corresponding
to single-trip of the data needed to be selected. Since the systematic calibration did not
work perfectly, other methods were used to de�ne the data covering the required region
of fringe scan. The peak-�nding algorithm also needed to be robuster, therefore such
functions as "anti-resolution" or "anti-spike" were introduced. And �nally, because the
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collected data was rough, some data preparation methods such as interpolation and down-
sampling were used together with a digital low-pass Butterworth �lter to make it readable.

3.2 Software

An initial step of the project included the right choice of the software used to obtain
the modal decomposition coe�cient table. Two software packages, FINESSE [5] and E2E
[6] were considered, with the �nal choice to use FINESSE due to its ability to perform
calculations with the higher-order Hermite-Gaussian modes, because its competitor E2E
[6] could only o�er the calculations for the fundamental mode HG00. MATLAB was used
as a programming language to invoke FINESSE scripts and to produce graphical output.

4 Simulation

4.1 Optical cavity

The starting point for the project was a cavity simulation. In the Finesse [5] simulation
software, green TEM00 laser light (532 nm) is injected into the optical system from the
end point, i.e. we simulate injecting green light from downstream of the end mass, into the
cavity and back towards the input test mass in the corner station. End test mass (ETM)
transmits 32% of the initial beam further to the input test mass (ITM). As only 1.1% of the
beam passes through the ITM, most of the beam remains inside the cavity and is re�ected
back and forward multiple times. In a perfectly aligned system, the output beam should
have the same transverse mode as the input beam. However, even minimal misalignments
of the optics can cause the higher-order Hermite-Gaussian modes to appear. In order to
develop an algorithm to minimise the appearance of the higher-order Hermite-Gaussian
modes, a simulation of a misaligned system is modelled.

Figure 4: Optical system with two mirrors [7].

Since the laser beam can be approximated as a Gaussian beam, the initial step was to
calculate the beam-waist radius and the distance to the beam waist for a simple cavity
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with two mirrors with unequal curvatures. The set-up of a cavity is displayed in Figure 4.
Using the formula for confocal parameter, b, the beam-waist radius was estimated to be
w0 = 8.47 mm.

1

2
b =

πw2
0

λ
=

√
d(R1 − d)(R2 − d)(R1 +R2 − d)

R1 +R2 − 2d)
,

w0 =

√
λ

π

4
√
d(R1 − d)(R2 − d)(R1 +R2 − d)√

R1 +R2 − 2d
.

Another equation from Kogelnik's paper [7] enabled us to calculate the distance to the
beam-waist radius, which was found to be t = 1841.72 m.

t =
d(R2 − d)

R1 +R2 − 2d
.

Here R2 = 1939.3 m and R1 = 2241.54 m are the radii of curvature for the ITM and ETM
respectively, and d = 4000.0 m is the length of the interferometer arm.

4.2 Set-up

The set-up used to study the modal decomposition coe�cients is shown in Figure 5.
The laser used emitted 1 W green (λ = 532nm) light. In this particular simulation only
one totally-re�ective mirror (ITM) was used that was described by the parameter L, the
distance between the laser and the ITM.

Figure 5: Simulation set-up.

The amplitude detector was placed between the laser and the mirror. It simply plot-
ted the already calculated amplitudes of the light �eld at the speci�ed frequency. The
amplitude at frequency ωm is a complex number (z), and is calculated as follows:

z =
∑
n

an with n|n ∈ 0, . . . , N ∧ ωn = ωm.
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Here ω0 is the carrier frequency and ω1, ω2, · · · , ωM > 0 are the sidebands. The result can
be written as follows:

S = a exp(iΦ),

with

a =

√∑
n,m

|an,m|2, and Φ = phase

(∑
n,m

an,m

)
.

For the sanity check, the photo-detector was placed to the right of the ITM mirror. The
intensity at the output port of the photo-detector:

|E|2 = E × E∗ =
N∑
i=0

N∑
j=0

aia
∗
je
i(ωi−ωj)t = A0 +A1e

iω1t +A2e
iomega2t+ · · · ,

with Ai being the amplitudes of the light power sorted by the beat frequencies ωi. It should
be proportional to the square of an amplitude:

I ∝ a2.

By default the plane-wave approximation was used in FINESSE simulation. The order
of the higher-order modes was �nite and it was de�ned by the parameter maxTEM: the
simulation included higher-order modes TEMnm with n+m ≤ maxTEM order.

4.3 Decomposition Coe�cients

HG00 mode is a combination of higher-order Hermite-Gaussian modes.

U00(x, y, z) =
∑
m,n

Umn(x′, y′, z′)amn (1)

Therefore, the �rst milestone of the project was to study decomposition coe�cients, amn.
Initial simulation was written to calculate those coe�cients for a light re�ected from a �at
mirror located at the beam waist. The motive for this particular set-up instead of a usual
dual-mirror cavity was based on Finesse limitations.

Because of the geometry of the re�ection law, when a �at mirror was located at the beam
waist, the total angle of misalignment was α = 2θ, where θ was a tilting angle of the mirror.
A plot showing the distribution of the �rst six TEM modes is shown in Figure 6. Later,
the mirror was moved along the z-axis and its curvature was iterated correspondingly to
match the wave-front of the beam, i.e. the distance to the mirror, L, was changed from t,
which was the distance to the beam waist, to ≈ 10t.

The x-axis of the plot was a misalignment parameter∣∣∣i α
α0

+
a

w0

∣∣∣.
But since the radius of the curvature of the mirror was matched to the displacement along

the z-axis, the misalignment parameter was simpli�ed to
∣∣∣i αα0

∣∣∣. Here α is the misalignment

angle.
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Figure 6: Re�ected power distribution of the �rst six TEM modes for various mirror
misalignments.

For RETM and RITM , radii of curvatures of the ETM and of the ITM, α can be rewritten
as

α =
RETMθETM +RITMθITM

RETMRITM − L
,

where α0 is a divergence angle,

α0 =

√
λ

π
4

√
(RETM +RITM − 2L)2

L(RETM − L)(RITM − L)(RETM +RITM − L)
,

a is a tilt, and w0,

w0 =

√
λ

π
4

√
L(RETM − L)(RITM − L)(RETM +RITM − L)

(RETM +RITM − 2L)2

is the beam-waist radius. Using the approximations

tan(α) ≈ α for a small α,

and

when RITM →∞,
RITM +RETM − 2L

RITM − L
× RITM +RETM − 2L

RITM +RETM − L
→ 1,

the divergence angle becomes

α0 =

√
λ

π
4

√
1

L(RETM − L)
,

and the above equation for the x-axis can be derived.
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In order for the optical element (ITM mirror in this case) to match the wave-front of
the beam, its shape had to be corrected accordingly. Since the location of the mirror was
iterated along the z-axis, the radius of its curvature was also iterated:

R(L) = L
[
2 +

(πw2
0

λL

)]
.

Furthermore, in order to compare the plots for di�erent L, the x-axis was normalised using
the normalisation constant, θC ,

θC =

√
1 +

(α0

w0

)2
(L2 − (2×L×t) + (t)2)).

∣

∣

∣
i
α

α0

+
a

w0

∣

∣

∣
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Figure 7: Power distribution of HG20 mode for di�erent mirror positions along
the z-axis; x-axis normalised.

The power distribution plot is shown in Figure 7. This shows only negligible di�erences
for the mirror placed at di�erent positions, which shows that the normalisation was done
correctly. The results of the obtained decomposition coe�cients, amn, for the �rst 11
higher-order modes (HOM) are laid out in Table 4. The table can be expanded horizontally
by including more HOM and vertically by increasing the value of the maximal tilting angle.

5 Algorithm

5.1 Realistic simulation

The second step started with a realistic simulation, which use the original �les from the
�rst step as a basis. They were adjusted to re�ect the realistic characteristics of the cavity.
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Both of the mirrors, ETM and ITM, were used and the cavity length was set to the one
which was used at LIGO. In the realistic case both of the mirrors were being tilted, and
the output power was studied for di�erent number of TEM modes. A 3 − D plot of the
power distribution of HG20 mode is shown in Figure 8.

Figure 8: 3−D power distribution of HG20 mode after misaligning both mirrors.

5.2 Set-up

In the second part of the project, the input is expected to be in the form of a power
distribution at a given length, and the algorithm should compare the power and the relative
peak heights and should decide about the misalignment parameter

O
[( a

w0

)2
+
( α
α0

)2
]
.

Another big challenge in the second step was the extraction of the misalignment informa-
tion. For the simplicity, this was achieved in stages. The �rst stage, later called 1−D case,
only looked at the tilt of one mirror, i.e. if αITM 6= 0 then αETM = 0, and vice versa. The
2 − D case introduced four angles: both of the ETM and ITM were allowed to move in
two directions making pit and yaw rotations. However, if the pit angles were chosen freely,
yaw angles for both ETM and ITM were calculated from the relations below, so that one
plane would show only transverse displacement, whilst the other plane (perpendicular to
the �rst one) would show the tilt through an angle α. Similar restrictions were applied to
the pit angles when yaw angles were chosen freely.

αY
α0

=
RETM · αETM +RITM · αITM

(RETM +RITM − L)× α0
,

αP
α0

=
RETM · αETM −RITM · αITM

(RETM +RITM − L)× α0
,

a

ω0
=

(RETM − t)× (RITM · αITM )− (t− L+RITM )× (RETM · αETM )

(RITM +RETM − L)× ω0
.

And �nally, the 3 −D case corresponded to the case, where both pit- and yaw-angles for
both ETM and ITM were chosen freely.
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The set-up for this part of the simulation is shown in Figure 9. Here L represents the
cavity length, t is the distance to the beam waist, RcETM = 2241.54 m and RcITM =
1939.3 m are the radii of the curvatures of the ETM and ITM.

Figure 9: Realistic cavity set-up.

5.3 Development

The idea of the algorithm was to match the peaks found from the fringe scanning to the
modal decomposition coe�cient data obtained in the �rst part of the project and to extract
the information about the normalised misalignment parameter. In order to do that, the
initial struggle needed to overcome was the correct reordering of the peaks.

One of the methods to correctly reorder the peaks in the input data and to match them
to the higher-order HG modes, is by using the Gouy phase. The Gouy phase change is
evaluated for all TEM modes considered in the simulation, and the relative peak positions
are determined using

Φ(m,n;L) = (m+ n+ 1) arctan(λL/πw2
0),

where (m,n) are the indices of the Hermite-Gaussian modes. Therefore, the �eld amplitude
u becomes:

um,n(r, z) =
w0

w
×Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
·exp{−i(kz − (m+ n+ 1)Φ)− r2

( 1

w2
+
ik

2R

)
}.

Also, the Table 4 is used as a reference table for identi�cation of the misalignment param-
eters.

The algorithm logic is quite simple. Firstly, the peaks and their locations are found, as
shown in Figure 10 and Figure 11. The vector with peak amplitudes is called PKS and
with peak locations - LOCS. Then for each row, the ratios with regard to the highest peak
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Figure 10: Simulated peaks.
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Figure 11: �ndpeaks �nds peaks and
their locations.

are taken. The peak-ratio vector is called PKR. When this is done, the re-ordering process
begins at the PKR element equal to 1, PKRi. A pre-calculated Gouy phase-shift is added
to the right of the LOCi and to the left. The direction 'to the right' means that the Gouy
phase-shift is added and then modulus mod 180 is applied, and 'to the left' means that the
Gouy phase-shift is subtracted from the LOCi and then modulus mod 180 is applied. After
that, the new locations are obtained, LOCL2R and LOCR2L. The minimisation function is
used to �nd the closed element to both of them in the PKR vector: LOC ′L2R and LOC ′R2L.
When those elements are found, the distance between LOCL2R and LOC ′L2R and between
LOCR2L and LOC ′R2L is compared and the shortest is kept. If the shortest distance is 'to
the left', i.e.

∆(LOCR2L − LOC ′R2L) < ∆(LOCL2R − LOC ′L2R)

then the PKRi corresponding to LOCR2L is added to the maximal PKRi (orGOUY_PKRion
its left side, otherwise - on the right side. The assigned elements are deleted from the re-
maining list of PKR items, so that re-ordered values would not be repeated. The same is
repeated for the edge-most elements until PKR is empty and GOUY_PKR has the same
length as original PKR vector. Figure 12 and Figures 13, 14, 15 show the re-ordering
procedure.

5.4 Testing

The algorithm was tested using three sets of maxTEM = 15, 20, and 25. It was also tested
for 1 −D, 2 −D, and 3 −D cases. The plots Figures 16, 17, 18, and 19 show the limits
for the algorithm to extract the correct misalignment parameter. As can be seen from the
graphs, the algorithm is the best to describe the normalised misalignment in the region
where its values is equal to 0.5 - 2.0. It is guessed that the algorithm does not work when
the misalignment is very big because the paraxial approximation does not hold any more.
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Figure 12: Scheme of the PKR re-ordering.

Another sanity check that was used as a test was a transmittance plot. Transmittance
was calculated using the formula:

T (Φ) = T1T2
1

|1− r1r2e0iΦ|2
=

{
Φ = 0, T1T2

(1−r1r2)2
,

Φ = π, T1T2
(1+r1r2)2

,

with r1 and r2 being the amplitudes.

Tcombined = P0T (Φ) + P1T (Φ +Gouy) + P2T (Φ + 2 ·Gouy)

+ · · ·+ Pn+mT (Φ + (n+m) ·Gouy),

where Gouy meant the Gouy phase shift. If the plot obtained using FINESSE software
and pre-calculated transmittance was completely di�erent, those cases were assumed as
FINESSE failures and were rejected from the calculation.They would usually correspond
to the cases where the combined misalignment parameter was very large. Figure 20 shows
a good agreement between FINESSE power distribution and pre-calculated power.

6 Automation

6.1 Data collection

Seven measurements of channel H1_SUS_ETMX_L1_LOCK_L_EXC were carried
out. The gain used was 3 × 106 with time of 5 s, Dt = 1, and frequency = 1 Hz. The
values calculated from the relative displacements are regarded as the normalised true mis-
alignment parameter, and the deviation between the true and estimated values is obtained
at each sample point. Results are shown in Table ??.
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Figure 13: Re-ordering scheme: peak selection.

Figure 14: Vectors of peak ratios and their locations, PKR and
LOCS.

Figure 15: Filling vector GOUY_PKR.
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Figure 16: Algorithm testing: 1-D case,
maxTEM = 15, 20, 25.

Figure 17: Algorithm testing: 2-D case,
maxTEM = 15, 20, 25.

Figure 18: Algorithm testing: 3-D case,
maxTEM = 15, 20, 25.

Figure 19: Algorithm testing: maxTEM
= 20, 1-D, 2-D, 3-D cases.
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Figure 20: Power calculated with FINESSE and pre-calculated power shows good agree-
ment.
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No. αITM_P αITM_Y αETM_P αETM_Y ∆αITM_P ∆αITM_Y ∆αETM_P ∆αETMY

Normalised
true

misalignment
parameter

1 -78.7 1.7 4.8 80.3 0.0 0.0 0.0 0.0 0.000000
2 -76.5 -1.3 6.7 82.5 2.0 -3.0 1.9 2.2 0.687242
3 -74.8 -1.3 8.1 83.6 3.9 -3.0 3.3 3.3 0.903745
4 -74.8 0.0 7.2 81.3 3.9 -1.7 2.4 1.0 0.747380
5 -72.2 -0.3 9.2 81.9 6.5 -2.0 4.4 -8.4 6.405156
6 -70.2 0.4 10.4 81.4 8.5 -1.3 5.6 1.1 1.130984
7 -72.6 3.3 9.5 80.3 6.1 1.6 4.7 0.0 0.945770

Table 1: Green Transmission Measurements.

6.2 Region selection

Since the LIGO calibration was o�:

|WitnessTo −WitnessFrom|
λ

× 360o ≈ 270o,

which is quite far from 180o, a new method to select the region of interest was used. Power
distribution was plotted against the information from witness sensor and the maximal peak
was found. Using the Gouy phase-shift, the second highest peak was found which lies in
the region where witness sensor is linear, i.e. cavity movement is constant, direction does
not change (Figure 21).

6.3 Butterworth �lter

Low-pass digital Butterworth �lter was used to reduce the number of spikes in the
collected data samples and to allow a more accurate selection of the peaks and their
locations. Figure 22 shows the Butterworth �lter which was applied.

6.4 Order-�ip

Information from the witness sensor was used whether to �ip the order of the GOUY_PKR
or not. If the selected region corresponded to the phase where the cavity was being extended
or contracted, the order of the peak-ratio vector was �ipped. Otherwise, if the cavity was
returning to the relaxed position from previously being extended or contracted, the order
of the ratios is not changed. Figure 23 illustrates the case when the order remained the
same, whilst Figure ?? shows the case when the order was changed.

6.5 XOR and XNOR gates

XNOR gate is a digital logic gate whose function is the logical complement of the ex-
clusive OR (XOR) gate. The two-input version implements logical equality, behaving
according to the truth table to the right. A HIGH output (1) results if both of the inputs
to the gate are the same. If one but not both inputs are HIGH (1), a LOW output (0)
results.
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Figure 21: Region selection using the linearity of the witness sensor.

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

Table 2: XOR Truth Table.

A B A XNOR B

0 0 1
0 1 0
1 0 0
1 1 1

Table 3: XNOR Truth Table.

No 1 2 3 4 5 6 7

True 0 0.687242 0.903745 0.747380 6.4055156 1.130984 0.945770
Algorithm 0.4220 0.8158 1.2096 0.6470 2.8131 0.9002 0.9283
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Figure 22: Digital low-pass Butterworth �lter with fC = 400Hz, n = 5.

Figure 23: The order of GOUY_PKR was
not �ipped.

Figure 24: The order of vector GOUY_PKR
was �ipped.
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6.6 Results

7 Conclusions

The algorithm developed during this project can accurately extract the information
about normalised misalignment parameter within a range between 0.5 and 2.0. During
the development stage, two new functions for more robuster peak selection were created:
"anti-resolution" (which eliminates peaks that are too close together) and "anti-spike",
which calculates the prominence to separate real peaks from the accidental spikes in a
dataset. LIGO calibration was found to be o� by ≈ 90o, therefore a new method to select
a single-trip region was used.

The next steps could be the algorithm limit investigation: whether it is due to the
paraxial approximation not being held or maybe due to computational issues. Also, an
information from the optical-lever sensor could be used to improve the accuracy in the
small-misalignment region.
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A Mode Decomposition Coe�cients

Table 4: Higher-order Hermite-Gaussian mode power coe�cients

|i αα0
+ a

w0
| Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

0 1 0 1.7948e-17 0 3.2212e-34 0 5.7814e-51 0 1.0376e-67 0 1.8623e-84
0.020013 0.9996 0.00040012 8.008e-08 1.0685e-11 1.0692e-15 8.5598e-20 5.7105e-24 3.2654e-28 1.6338e-32 7.2666e-37 2.9087e-41
0.040026 0.9984 0.0015986 1.2797e-06 6.83e-10 2.7339e-13 8.7547e-17 2.3362e-20 5.3436e-24 1.0695e-27 1.9026e-31 3.0463e-35
0.060039 0.9964 0.0035896 6.4657e-06 7.7643e-09 6.9927e-12 5.0383e-15 3.0251e-18 1.5568e-21 7.0107e-25 2.8062e-28 1.011e-31
0.080053 0.99362 0.0063636 2.0378e-05 4.3503e-08 6.9653e-11 8.9218e-14 9.5233e-17 8.7131e-20 6.9753e-23 4.9637e-26 3.179e-29
0.10007 0.99004 0.0099073 4.9571e-05 1.6535e-07 4.1367e-10 8.2792e-13 1.3808e-15 1.974e-18 2.4692e-21 2.7455e-24 2.7474e-27
0.12008 0.98569 0.014204 0.00010234 4.9157e-07 1.7709e-09 5.1038e-12 1.2258e-14 2.5233e-17 4.5451e-20 7.2773e-23 1.0487e-25
0.14009 0.98058 0.019233 0.00018861 1.2331e-06 6.0466e-09 2.3719e-11 7.7536e-14 2.1725e-16 5.3264e-19 1.1608e-21 2.2767e-24
0.16011 0.97471 0.02497 0.00031984 2.7312e-06 1.7492e-08 8.9621e-11 3.8265e-13 1.4004e-15 4.4844e-18 1.2764e-20 3.27e-23
0.18012 0.9681 0.031388 0.00050885 5.4994e-06 4.4576e-08 2.8905e-10 1.562e-12 7.2348e-15 2.9321e-17 1.0563e-19 3.4248e-22
0.20013 0.96076 0.038457 0.00076968 1.027e-05 1.0277e-07 8.2272e-10 5.4886e-12 3.1385e-14 1.5704e-16 6.9843e-19 2.7957e-21
0.22014 0.95272 0.046144 0.0011175 1.8041e-05 2.1845e-07 2.1161e-09 1.7081e-11 1.1819e-13 7.1554e-16 3.8507e-18 1.865e-20
0.24016 0.94399 0.054412 0.0015682 3.013e-05 4.3417e-07 5.0051e-09 4.8083e-11 3.9593e-13 2.8527e-15 1.827e-17 1.0531e-19
0.26017 0.93459 0.063222 0.0021384 4.8219e-05 8.1547e-07 1.1033e-08 1.2439e-10 1.2021e-12 1.0165e-14 7.6403e-17 5.1684e-19
0.28018 0.92454 0.072535 0.0028454 7.4411e-05 1.4595e-06 2.29e-08 2.9944e-10 3.3561e-12 3.2913e-14 2.8691e-16 2.2509e-18
0.3002 0.91387 0.082306 0.0037064 0.00011127 2.5053e-06 4.5127e-08 6.7737e-10 8.7152e-12 9.8114e-14 9.8183e-16 8.8426e-18
0.32021 0.9026 0.092491 0.0047389 0.00016187 4.1467e-06 8.4983e-08 1.4514e-09 2.1247e-11 2.7215e-13 3.0986e-15 3.1752e-17
0.34022 0.89076 0.10304 0.0059601 0.00022982 6.6465e-06 1.5377e-07 2.9648e-09 4.8996e-11 7.0848e-13 9.1064e-15 1.0534e-16
0.36024 0.87837 0.11392 0.0073869 0.00031934 1.0354e-05 2.6856e-07 5.8049e-09 1.0755e-10 1.7435e-12 2.5124e-14 3.2583e-16
0.38025 0.86545 0.12506 0.0090356 0.00043522 1.5722e-05 4.5438e-07 1.0943e-08 2.259e-10 4.0803e-12 6.5511e-14 9.4664e-16
0.40026 0.85205 0.13642 0.010921 0.00058289 2.3332e-05 7.4714e-07 1.9938e-08 4.5603e-10 9.127e-12 1.6237e-13 2.5998e-15
0.42028 0.83818 0.14796 0.013059 0.00076841 3.391e-05 1.1972e-06 3.5222e-08 8.8822e-10 1.9599e-11 3.8441e-13 6.7857e-15
0.44029 0.82388 0.15961 0.015461 0.00099847 4.836e-05 1.8738e-06 6.0504e-08 1.6745e-09 4.0552e-11 8.7292e-13 1.6912e-14
0.4603 0.80917 0.17134 0.01814 0.0012804 6.778e-05 2.8705e-06 1.013e-07 3.0644e-09 8.1109e-11 1.9083e-12 4.0408e-14
0.48032 0.79409 0.18309 0.021106 0.0016221 9.3498e-05 4.3114e-06 1.6567e-07 5.4568e-09 1.5727e-10 4.0288e-12 9.2889e-14
0.50033 0.77866 0.1948 0.024367 0.002032 0.00012709 6.359e-06 2.6514e-07 9.476e-09 2.9633e-10 8.2372e-12 2.0607e-13
0.52034 0.76293 0.20644 0.02793 0.0025192 0.00017042 9.2226e-06 4.1592e-07 1.6078e-08 5.4381e-10 1.635e-11 4.4241e-13
0.54035 0.74692 0.21795 0.0318 0.0030931 0.00022564 1.3169e-05 6.4045e-07 2.6698e-08 9.7382e-10 3.1574e-11 9.2133e-13
0.56037 0.73065 0.22929 0.035978 0.0037635 0.00029527 1.8532e-05 9.6929e-07 4.3455e-08 1.7046e-09 5.9438e-11 1.8653e-12
0.58038 0.71417 0.24041 0.040466 0.0045408 0.00038214 2.5729e-05 1.4435e-06 6.942e-08 2.9212e-09 1.0926e-10 3.6782e-12
0.60039 0.6975 0.25128 0.045261 0.0054351 0.0004895 3.5269e-05 2.1176e-06 1.0898e-07 4.9076e-09 1.9644e-10 7.0768e-12
0.62041 0.68068 0.26183 0.05036 0.0064573 0.00062098 4.7774e-05 3.0629e-06 1.6831e-07 8.0931e-09 3.4591e-10 1.3306e-11
0.64042 0.66373 0.27205 0.055755 0.0076178 0.0007806 6.3992e-05 4.3716e-06 2.5598e-07 1.3115e-08 5.973e-10 2.4483e-11
0.66043 0.64668 0.28189 0.061439 0.0089271 0.00097284 8.4813e-05 6.1617e-06 3.837e-07 2.0907e-08 1.0126e-09 4.4141e-11
0.68045 0.62957 0.29132 0.067399 0.010396 0.0012026 0.00011129 8.5829e-06 5.6736e-07 3.2816e-08 1.6872e-09 7.8071e-11
0.70046 0.61242 0.30029 0.073623 0.012034 0.0014751 0.00014466 1.1823e-05 8.2816e-07 5.076e-08 2.7655e-09 1.3561e-10
0.72047 0.59526 0.3088 0.080096 0.01385 0.0017962 0.00018637 1.6113e-05 1.1941e-06 7.7434e-08 4.4633e-09 2.3154e-10
0.74049 0.57811 0.3168 0.0868 0.015855 0.0021721 0.00023805 2.1741e-05 1.702e-06 1.1658e-07 7.0983e-09 3.8897e-10
0.7605 0.56102 0.32427 0.093715 0.018056 0.0026091 0.00030161 2.9055e-05 2.3992e-06 1.7334e-07 1.1132e-08 6.4345e-10
0.78051 0.54399 0.33119 0.10082 0.020461 0.0031142 0.0003792 3.8478e-05 3.3466e-06 2.5469e-07 1.7229e-08 1.0489e-09
0.80053 0.52706 0.33755 0.10809 0.023076 0.0036947 0.00047325 5.0515e-05 4.6218e-06 3.7e-07 2.633e-08 1.6863e-09
0.82054 0.51024 0.34333 0.11551 0.025907 0.004358 0.00058648 6.577e-05 6.3221e-06 5.3175e-07 3.9755e-08 2.675e-09
0.84055 0.49357 0.34851 0.12304 0.028959 0.0051119 0.0007219 8.4955e-05 8.5694e-06 7.5635e-07 5.9339e-08 4.1899e-09
0.86056 0.47706 0.35308 0.13066 0.032234 0.0059643 0.00088286 0.0001089 1.1514e-05 1.0653e-06 8.7601e-08 6.4835e-09
0.88058 0.46073 0.35704 0.13834 0.035736 0.0069233 0.001073 0.00013859 1.5343e-05 1.4862e-06 1.2797e-07 9.9168e-09
0.90059 0.44461 0.36038 0.14606 0.039463 0.0079968 0.0012964 0.00017514 2.028e-05 2.0548e-06 1.8506e-07 1.5e-08
0.9206 0.4287 0.36311 0.15377 0.043415 0.0091931 0.0015573 0.00021984 2.66e-05 2.8162e-06 2.6504e-07 2.2448e-08
0.94062 0.41304 0.36521 0.16146 0.04759 0.01052 0.0018604 0.00027416 3.4632e-05 3.8277e-06 3.7606e-07 3.3252e-08
0.96063 0.39763 0.36671 0.1691 0.051983 0.011985 0.0022107 0.00033979 4.4768e-05 5.1608e-06 5.2884e-07 4.8772e-08
0.98064 0.38248 0.36759 0.17664 0.056588 0.013596 0.0026134 0.00041861 5.7474e-05 6.9045e-06 7.3731e-07 7.086e-08
1.0007 0.36762 0.36788 0.18407 0.061399 0.01536 0.0030742 0.00051273 7.3298e-05 9.1687e-06 1.0195e-06 1.0202e-07

B Code

Full collection of scripts used in the project can be downloaded from https://github.

com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip.

https://github.com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip
https://github.com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip
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